Benutzer: Gast  Login
Titel:

On the velocity-stress formulation for geometrically nonlinear elastodynamics and its structure-preserving discretization

Dokumenttyp:
Zeitschriftenaufsatz
Autor(en):
Thoma, T.; Kotyczka, P.; Egger, H.
Abstract:
We consider the dynamics of an elastic continuum under large deformation but small strain. Such systems can be described by the equations of geometrically nonlinear elastodynamics in combination with the St. Venant-Kirchhoff material law. The velocity-stress formulation of the problem turns out to have a formal port-Hamiltonian structure. In contrast to the linear case, the operators of the problem are modulated by the displacement field which can be handled as a passive variable and integrated...     »
Stichworte:
velocity-stress formulation; structure-preserving discretization; port-Hamiltonian systems; Finite-Element Methods; Dirac Structures; Systems; boundary conditions; Continuum mechanics; Elastohydrodynamics; Nonlinear equations; Residual stresses; Solitons; Stress analysis;
Dewey Dezimalklassifikation:
620 Ingenieurwissenschaften
Zeitschriftentitel:
Mathematical and Computer Modelling of Dynamical Systems
Jahr:
2024
Jahr / Monat:
2024-12
Quartal:
4. Quartal
Monat:
Dec
Heft / Issue:
Vol. 30 / Issue 1
Seitenangaben Beitrag:
pp. 701-720
Nachgewiesen in:
Scopus; Web of Science
Reviewed:
ja
Sprache:
en
Volltext / DOI:
doi:10.1080/13873954.2024.2397486
Verlag / Institution:
Taylor and Francis Ltd.
Print-ISSN:
1387-3954
E-ISSN:
1744-5051
Eingereicht (bei Zeitschrift):
12.11.2024
Publikationsdatum:
31.12.2024
TUM Einrichtung:
Lehrstuhl für Regelungstechnik
 BibTeX