Benutzer: Gast  Login
Titel:

Physics-informed neural networks for inverse problems in supersonic flows

Dokumenttyp:
Zeitschriftenaufsatz
Autor(en):
Jagtap, Ameya D.; Mao, Zhiping; Adams, Nikolaus; Karniadakis, George Em
Abstract:
Accurate solutions to inverse supersonic compressible flow problems are often required for designing specialized aerospace vehicles. In particular, we consider the problem where we have data available for density gradients from Schlieren photography as well as data at the inflow and part of the wall boundaries. These inverse problems are notoriously difficult, and traditional methods may not be adequate to solve such ill-posed inverse problems. To this end, we employ the physics-informed neural...     »
Stichworte:
Extended physics-informed neural networks; Entropy conditions: Supersonic compressible flows; Inverse problems
Dewey Dezimalklassifikation:
620 Ingenieurwissenschaften
Zeitschriftentitel:
Journal of Computational Physics
Jahr:
2022
Band / Volume:
466
Seitenangaben Beitrag:
111402
Nachgewiesen in:
Scopus
Sprache:
en
Volltext / DOI:
doi:10.1016/j.jcp.2022.111402
WWW:
https://www.sciencedirect.com/science/article/pii/S0021999122004648
Verlag / Institution:
Elsevier BV
E-ISSN:
0021-9991
Eingereicht (bei Zeitschrift):
23.02.2022
Angenommen (von Zeitschrift):
17.06.2022
Publikationsdatum:
01.10.2022
TUM Einrichtung:
Lehrstuhl für Aerodynamik und Strömungsmechanik
 BibTeX