Benutzer: Gast  Login
Titel:

Kernel Point Convolution LSTM Networks for Radar Point Cloud Segmentation

Dokumenttyp:
Zeitschriftenaufsatz
Autor(en):
Nobis, Felix; Fent, Felix; Betz, Johannes; Lienkamp, Markus
Abstract:
State-of-the-art 3D object detection for autonomous driving is achieved by processing lidar sensor data with deep-learning methods. However, the detection quality of the state of the art is still far from enabling safe driving in all conditions. Additional sensor modalities need to be used to increase the confidence and robustness of the overall detection result. Researchers have recently explored radar data as an additional input source for universal 3D object detection. This paper proposes art...     »
Stichworte:
FTM Fahrdynamik
Zeitschriftentitel:
Applied Sciences
Jahr:
2021
Band / Volume:
11
Heft / Issue:
6
Seitenangaben Beitrag:
2599
Nachgewiesen in:
Scopus
Sprache:
en
Volltext / DOI:
doi:10.3390/app11062599
Verlag / Institution:
MDPI AG
E-ISSN:
2076-3417
Publikationsdatum:
15.03.2021
TUM Einrichtung:
Lehrstuhl für Fahrzeugtechnik
 BibTeX