Benutzer: Gast  Login
Titel:

An Evaluation of Autoencoder and Sparse Filter as Automated Feature Extraction Process for Automotive Damper Defect Diagnosis

Dokumenttyp:
Konferenzbeitrag
Autor(en):
Zehelein, Thomas; Werk, Philip; Lienkamp, Markus
Abstract:
With reduced driver's perceptions in regard of defects of a vehicle's suspension system, caused by autonomous driving, health monitoring of automotive dampers during driving will become increasingly relevant. Using only sensor signals of the vehicle's electronic stability program for this task is cost-efficient since those sensors are already available. Machine learning algorithms in conjunction with actual measurement data can be used to classify sensor readings according to the vehicle's dampe...     »
Stichworte:
FTM Fahrdynamik
Kongress- / Buchtitel:
2019 Fourteenth International Conference on Ecological Vehicles and Renewable Energies (EVER)
Verlag / Institution:
IEEE
Publikationsdatum:
01.05.2019
Jahr:
2019
Nachgewiesen in:
Scopus
Print-ISBN:
9781728137032
Volltext / DOI:
doi:10.1109/ever.2019.8813630
TUM Einrichtung:
Lehrstuhl für Fahrzeugtechnik
 BibTeX