Benutzer: Gast  Login
Titel:

Comparative Study of State-Of-Charge Estimation with Recurrent Neural Networks

Dokumenttyp:
Konferenzbeitrag
Autor(en):
Wassiliadis, Nikolaos; Herrmann, Thomas; Wildfeuer, Leo; Reiter, Christoph; Lienkamp, Markus
Abstract:
The key to the safe and reliable operation of an electric vehicle is the precise knowledge of the state-of-charge (SOC)of its energy storage system. Since this state variable is not directly observable, it is derived from other quantities using model-based techniques such as Kalman filtering. More recently, data-based approaches using machine-learning have become feasible, promising the potential of reduced modeling effort and therefore reduced implementation time under similar or even higher ac...     »
Stichworte:
FTM Komponenten von Elektrofahrzeugen, FTM Elektrische Antriebssysteme
Kongress- / Buchtitel:
2019 IEEE Transportation Electrification Conference and Expo (ITEC)
Verlag / Institution:
IEEE
Publikationsdatum:
01.06.2019
Jahr:
2019
Nachgewiesen in:
Scopus
Print-ISBN:
9781538693100
Sprache:
en
Volltext / DOI:
doi:10.1109/itec.2019.8790597
TUM Einrichtung:
Lehrstuhl für Fahrzeugtechnik
 BibTeX