Benutzer: Gast  Login
Dokumenttyp:
Masterarbeit
Autor(en):
Philipp Scholl
Titel:
Evaluation of Safe Policy Improvement with Soft Baseline Bootstrapping
Abstract:
Due to the high computing power of modern computers and the increasing availability of data, reinforcement learning is gaining importance in many areas of industry. In safety critical areas, however, reinforcement learning poses dangers, which is why algorithms that promise a safe improvement of the behavior policy are of high interest. Therefore, this master's thesis examines the Soft-SPIBB algorithms introduced in "Safe Policy Improvement with Soft Baseline Bootstrapping" by Nadjahi et al. Som...     »
Aufgabensteller:
Hans-Joachim Bungartz
Betreuer:
Felix Dietrich; Clemens Otte; Steffen Udluft
Jahr:
2021
Quartal:
2. Quartal
Jahr / Monat:
2021-04
Monat:
Apr
Sprache:
en
Hochschule / Universität:
Technical University of Munich
Fakultät:
Fakultät für Mathematik
 BibTeX