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Abstract

Due to the high computing power of modern computers and the increasing availability of
data, reinforcement learning is gaining importance in many areas of industry. In safety-
critical areas, however, reinforcement learning poses dangers, which is why algorithms
that promise a safe improvement of the behavior policy are of high interest. Therefore,
this master’s thesis examines the Soft-SPIBB algorithms introduced in ”Safe Policy Im-
provement with Soft Baseline Bootstrapping” by Nadjahi et al. Some shortcomings of the
mathematical theory underlying the algorithms are revealed, which have the consequence
that the theoretical safety bounds can no longer be applied to the original algorithms
from the paper. However, this can be remedied by further restricting the algorithms and
this leads to new algorithms to which the theoretical safeties apply.
In addition to adapting further algorithms that incorporate the uncertainty of state-
action pairs into their calculations, and implementing all of these into a unified Python
framework, these algorithms are tested on two different benchmarks. Here, in particular,
a heuristic adaptation of the original algorithms turns out to be both very safe and
performant.



Zusammenfassung

Durch die hohe Rechenleistung moderner Computer und die steigende Verfügbarkeit von
Daten gewinnt Reinforcement Learning in vielen Bereichen der Industrie an Bedeutung.
In sicherheitskritischen Bereichen birgt Reinforcement Learning jedoch Gefahren, weswe-
gen Algorithmen, die eine sichere Verbesserung der Behavior Policy versprechen, von
hohem Interesse sind. Deshalb untersucht diese Masterarbeit die Soft-SPIBB Algorith-
men, welche in ”Safe Policy Improvement with Soft Baseline Bootstrapping” von Nadjahi
et al. eingeführt wurden. Dabei werden einige Unzulänglichkeiten der den Algorithmen
zugrundeliegenden mathematischen Theorie aufgedeckt, die zur Folge haben, dass die the-
oretischen Sicherheitsschranken nicht mehr auf die ursprünglichen Algorithmen aus dem
Paper angewendet werden können. Dies kann jedoch durch eine weitere Einschränkung
der Algorithmen behoben werden, was zu neuen Algorithmen führt, auf die die theoretis-
chen Sicherheiten zutreffen.
Neben der Adaption weiterer Algorithmen, die die Unsicherheit von Zustand-Aktion-
Paaren in ihre Berechnungen mit einbeziehen, und der Implementierung all dieser Al-
gorithmen in ein einheitliches Python Framework werden diese Algorithmen auf zwei
verschiedenen Benchmarks getestet. Dabei erweist sich insbesondere eine heuristische
Anpassung der ursprünglichen Algorithmen als sehr sicher und performant.
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1 Introduction

Due to the increase in computational power and availability of data over the last decades,
machine learning has gained immense importance. Nowadays, machine learning is inte-
grated in various different applications like image recognition [1], speech recognition [2],
medical diagnosing [3], recommender systems [4], and many more.

The general idea behind machine learning is to not directly implement the solution to a
problem, but instead to provide data which the algorithm can use to find the solution
autonomously. This is especially useful, if enough data is available and the task which is
supposed to be learned is too complicated to be implemented directly [5].

Two prominent kinds of machine learning are supervised and unsupervised learning which
have multiple use cases in prediction, classification and pattern recognition [5]. This
master’s thesis focuses on a different kind of machine learning, namely, reinforcement
learning. Reinforcement learning, also called feedback learning, follows the basic idea of
learning by trying various actions and getting constant feedback on past decisions. This
method is used, for example, for controlling robots, in scheduling in computer systems,
in finance, in the energy sector, and transportation [6].

Fig. 1. The setting of the Wet Chicken benchmark used for reinforcement learning. The
boat starts at (x, y) = (0, 0) and starts there again upon falling down the waterfall at
x = 5. The arrows show the direction and strength of the stream towards the waterfall.
Additionally, there are turbulences which are stronger for small y. The goal for the boat
is to stay as close as possible to the waterfall without falling down.

An example problem used in the experiments in Sections 3.4.2 and 3.4.4 is the Wet Chicken
benchmark which is depicted in Figure 1. The general setting is that a person in a boat
is trying to achieve the highest possible reward over a long time on this river. The person
gets a higher reward for staying close to the waterfall without falling down, as they have to
start at (x, y) = (0, 0) again, which yields a low reward. The arrows show that the bigger
y gets, the stronger the stream towards the waterfall becomes. The opposite effect holds
for the turbulence which causes the boat to drift randomly either towards the waterfall
or away from it [7].

The person in the boat has paddles and, thus, the possibility to influence their trajectory
on the river through a variety of different actions. To learn which action to choose in
which state, i.e., position on the river, is the goal of reinforcement learning. In online
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reinforcement learning, this is usually done by choosing an exploration-exploitation trade-
off, which means that the person in the boat tries to exploit prior knowledge through
choosing the action they think is the best, while still exploring the different options
by randomly choosing some which they think are sub-optimal. After sufficient training
time, the person is expected to have improved their initial strategy—called policy in
reinforcement learning—substantially [8].

The problem with these online approaches—particularly in safety-related applications—is
that they naturally perform poorly at the beginning of their training as they will explore
novel options. A possible counter to this is offline reinforcement learning [8]. In the Wet
Chicken benchmark this would mean that there are two different persons at the river.
One person sits in the boat and has most probably already some experience with this
specific river, while the other is at the shore and simply observes the first person. The
goal of offline reinforcement learning is that the observer can use the experience of the
person in the boat directly to devise a good strategy and can, therefore, enter the river
and follow this new strategy without any new exploration done.

This technique could be applied in many optimal-control settings in the industry, for
example, in controlling the gas flow in a gas turbine [9] or controlling wind turbines
[10] to increase the efficiency and durability of these. However, deploying a new policy
for a safety-critical tool without observing it in action beforehand comes at a risk for a
company. Thus, the newly learned policy should not only be expected to be significantly
better than the policy it observed, there should also be some safety mechanism enabling
bounds on the probability the new policy is performing significantly worse than the old
one.

How to achieve safe offline reinforcement learning is the topic of this master’s thesis. For
this I build on “Safe Policy Improvement with Soft Baseline Bootstrapping” by Nadjahi
et al. [11] from 2019, as the authors claim to have found provably safe algorithms to
accomplish this in a discrete state and action space, which also empirically outperform
many existing algorithms designed for the same task and, furthermore, show good per-
formance in the continuous state space. Their interpretation of safe is formally defined
in Definition 1.

The basic idea is to use “Baseline Bootstrapping”, which means to follow the same policy,
which was used to collect the data, at points with a high uncertainty and to concentrate
the optimization process onto states in which the uncertainty is small. To examine the
authors’ claims, this thesis starts with an introduction to reinforcement learning in Sec-
tions 2.1 and 2.2, focusing only on the concepts and methods necessary for the rest of the
thesis. Section 2.3 then presents the main ideas behind the algorithms of Nadjahi et al.
[11] in detail.

Section 3 contains the new work done for this master’s thesis. Here, I begin in Section
3.1 with showing that the original Soft-SPIBB algorithms are not provably safe. How-
ever, one of the safety theorems is corrected and proven as Theorem 3.2 in Section 3.2.
Consequently, a new class of algorithms is introduced, which are natural extensions of the
algorithms of Nadjahi et al. [11] for which the safety theorem truly holds. The limitations
of the theory behind these algorithms and various ways of countering them are discussed
in Section 3.2.4.

After this purely theoretical analysis of their paper, Section 3.3 introduces a framework
containing several different uncertainty incorporating offline reinforcement learning al-
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gorithms. These are either from existing literature or newly developed in this master’s
thesis. In Section 3.4 they are used as a comparison to assess the empirical strength of the
algorithms from Nadjahi et al. [11] and the newly derived variations. As already shown
by the authors, all their algorithms and these variations derived in this thesis perform
well, especially regarding their safety. The majority of the experiments are conducted
using a finite state space. However, I also start first experiments using the continuous
version of the Wet Chicken benchmark to test the implementations using function ap-
proximation of some of the algorithms. Through the promising results of their algorithms
in this benchmark, I can again support the authors’ empirical investigation.
Section 4 concludes this master’s thesis and points at open questions. I try to only include
the most important plots in the main part of this thesis, but for the sake of completeness
I deliver all relevant ones in the appendix.
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2 State of the Art

In the first two subsections of this chapter the goal is to give an introduction to rein-
forcement learning to a reader with no prior knowledge about reinforcement learning to
enable them to understand the most important concepts of the theory and to follow the
rest of this thesis. Subsection 2.1 introduces the general problems which can be tackled
by reinforcement learning. In Subsection 2.2 Dynamic Programming is introduced, which
is a solution method for reinforcement learning and shows the basic structure and idea
behind most reinforcement learning algorithms which are considered in this thesis. These
subsections are based on the book of Sutton and Barto [8]. After this general introduc-
tion to the wide field of reinforcement learning, I present the work done about safe policy
improvement in Laroche et al. [12] and Nadjahi et al. [11]. Especially the work done in
the latter one is thoroughly analyzed in the rest of this master’s thesis.

2.1 Finite Markov Decision Processes

This section is completely based on Sutton and Barto [8]. A Markov Decision Process
(MDP) is a discrete-time process which models the interaction between an agent (decision
maker) and the environment (everything else). The goal of reinforcement learning is to
find a “good” policy (strategy) according to which the agent makes its decisions. The
agent and the environment interact in the following way (as visualized in Figure 2):

� At time t, the agent observes the current reward Rt ∈ R and state St ∈ S and
responds by choosing action At ∈ A.

� Depending on this action, the environment then produces a new reward Rt+1 ∈ R
and state St+1 ∈ S.

R, S, and A are called the reward, state, and action spaces, respectively. Thus, the agent
and the environment together produce the sequence S0, A0, R1, S1, A1, R2, S2, A2, .... Note
that while S and A can be just any sets, R has to be a subset of R. However, as this
thesis focuses on finite MDPs at first, assume that A and S are both finite.

Fig. 2. Basic model of an MDP, p. 48 in Sutton and Barto [8].

Usually, the environment acts in a non-deterministic manner and the probability of the
environment producing the new reward Rt+1 and state St+1, after observing the sequence
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S0 = s0, A0 = a0, R1 = r1, S1 = s1, A1 = a1, R2 = a2, ..., St = s, Rt = r, At = a is
described by

P (St+1 = s′, Rt+1 = r′|At = a, St = s, Rt = r, At−1 = at−1, ..., S0 = s0) (1)

= P (St = s′, Rt = r′|St−1 = s, At−1 = a) (2)

= p(s′, r′|s, a), (3)

where p : S × A × R × S → [0, 1], (s, a, s′, r′) 7→ p(s′, r′|s, a) models the transition
probabilities or dynamics of the MDP. The step from Equation 1 to Equation 2 is called
the Markov Property of MDPs and ensures that the future only depends on the current
state and the correspondingly chosen action. The step from Equation 2 to Equation
3 is called the Stationarity of the MDP and ensures that these probabilities are time
independent.
There are two possible forms of MDPs, episodic ones and non-episodic ones. In an episodic
MDP the agent-environment interaction can be split up into finite subsequences, which
are called episodes. Each of these episodes ends when the environment enters a terminal
state. A non-episodic MDP is the opposite, as its state-reward-action sequence never
ends.
The goal of the agent is to maximize the collected rewards. Instead of just trying to get
the maximal reward in the next step, one tries to maximize the return which includes also
future rewards. Depending on the kind of MDP, the return has to be defined differently:

� in an episodic MDP, the return at time t is defined as the sum of rewards Gt =∑T
i=t+1Ri, where T is the time of termination and

� in a non-episodic MDP, the return at time t is defined as the discounted sum of
rewards Gt =

∑∞
i=t+1 γ

i−(t+1)Ri, where 0 < γ < 1 is called the discount factor, which
influences how high the return values future rewards in relation to the current one.
The closer the discount factor is to 1, the more weight is given to future rewards.

These two definitions can be unified as

Gt =
T∑

i=t+1

γi−t−1Ri, (4)

where T is again the time of termination, if the MDP is episodic and infinity otherwise.
The discount factor 0 ≤ γ ≤ 1 can be chosen as 1 in the episodic case to get the same
definitions for the return as before.
The agent is modeled by a policy π, which is defined as

π : S ×A → [0, 1], π(a|s) = P (At = a|St = s). (5)

Thus, for every state s ∈ S, π(·|s) is a probability distribution over the action space A.
A special class of policies are the deterministic policies, i.e., policies π such that for each
state s ∈ S, there is an action a ∈ A with π(a|s) = 1 and π(a′|s) = 0 for every other
action a′ 6= a.
As mentioned in the beginning, the goal in reinforcement learning is to find a policy which
maximizes the return. However, as St, Rt, and At are random variables, the return is a
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random variable as well and, therefore, it is helpful to look at the expected value of the
return.
Thus, one defines the state-value function vπ(s) of some state s as the expected return
when starting in s and following some policy π:

vπ : S → R, vπ(s) = Eπ[Gt|St = s] (6)

where t is arbitrary and the expected value is over the MDP with an environment governed
by the dynamics p and an agent following the policy π.
Analogously, one defines for a state-action pair the action-value function q(s, a) for some
state s and action a as the expected return when starting in s by choosing a and from
then on following some policy π:

qπ : S ×A → R, qπ(s, a) = Eπ[Gt|St = s, At = a] (7)

where t is again arbitrary and the expected value is over the same quantities as before.
Note that both value functions are well-defined due to the Markov Property and Station-
arity of the MDP.
Before completing all the definitions, I start with computing the relations between the
state- and action-value functions:

vπ(s) = Eπ[Gt|St = s] =
∑
a

π(a|s)Eπ[Gt|St = s, At = a]

=
∑
a

π(a|s)qπ(s, a)
(8)

and
qπ(s, a) = Eπ[Gt|St = s, At = a] = Eπ[Rt+1 + γGt+1|St = s, At = a]

= Eπ[Rt+1 + γvπ(St+1)|St = s, At = a] =
∑
s′,r

p(s′, r|s, a)[r + γvπ(s′)]. (9)

The second step of Equation 9 is due to the formula

Gt = Rt+1 + γGt+1 (10)

which follows directly from the definition of Gt in Equation 4.
Now, it can be defined what it means for a policy to be better than another one. One
writes

π ≥ π′ ⇐⇒ vπ(s) ≥ vπ′(s) for all s ∈ S. (11)

There is always a policy π∗ s.t. π∗ ≥ π for any policy π and this policy is called the
optimal policy [8]. Furthermore, there is always an optimal policy which is deterministic
[8]. One defines the optimal value functions as the value functions of any optimal policy:

v∗(s) = max
π

vπ(s)

q∗(s, a) = max
π

qπ(s, a)
(12)

The next step is to compute some fundamental equations of the theory of Markov Decision
Processes. Using at first Equation 8 and then Equation 9 yields

vπ(s) =
∑
a

π(a|s)qπ(s, a) =
∑
a

π(a|s)
∑
s′,r

p(s′, r|s, a)[r + γvπ(s′)] (13)
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which is known as the Bellman equation for the state-value function. Similarly, one derives
the Bellman equation for the action-value function by computing

qπ(s, a) =
∑
s′,r

p(s′, r|s, a)[r + γvπ(s′)] =
∑
s′,r

p(s′, r|s, a)(r + γ
∑
a′

π(a′|s′)qπ(s′, a′)). (14)

The value functions not only satisfy the Bellman equations, but they are also the unique
solutions to them [8]. The uniqueness is used in the following sections to compute the
value functions. To conclude this subsection, I state the Bellman optimality equation for
the state-value function, of which the unique solution is the optimal state-value function:

v∗(s) = max
a
q∗(s, a) = max

a

∑
s′,r

p(s′, r|s, a)[r + γv∗(s
′)] (15)

where the first step follows again from Equation 8 and the second step from Equation 9.

2.2 Dynamic Programming

In the previous subsection, the problem which is supposed to be solved with reinforcement
learning and its most important quantities were introduced. This subsection shows how to
solve this kind of problems with tabular methods, i.e., by trying to find the exact solution
instead of relying on function approximation. This is only possible if the action and state
spaces are finite and small enough to make exact solutions computationally feasible.
The method I present here is Dynamic Programming, which assumes that the dynamics
of the environment are known. Even though this assumption is not used in the rest of
this thesis, this subsection builds the basis for most of the algorithms considered in later
sections, as most of them estimate the transition probabilities first and then use some
variation of Dynamic Programming.
In this subsection the goal is to find the optimal policy π∗ for a given MDP of which the
transition probabilities are known. I only introduce Policy Iteration, as this is used in
almost any algorithm considered in later chapters. This method can be divided into two
parts:

� Policy Evaluation (PE)

� Policy Improvement (PI)

During the Policy Evaluation step, the goal is to compute the state- or action-value
function for a given policy π and transition probabilities p. In Sutton and Barto [8], the
authors only describe the computations for the state-value function in detail, whereas the
computations for the action-value function are left as Exercise 4.5 on page 82. As the
computations are almost exactly the same for the action-value function and I use this
function later, the Policy Evaluation step for the action-value function is presented in the
following.
Assuming the current policy π and the true dynamics p are known, Equation 14 can
be seen as a system of |S||A| linear equations and |S||A| unknowns. Thus, one way to
compute the action-value function would be to directly solve this system, which is done
in the implementation of the algorithms of Nadjahi et al. [11].
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Another approach is the iterative policy evaluation, which tries to approximate the solu-
tion of Equation 14 iteratively, by a sequence of action-value functions q0, q1, q2, .... It is
possible to initialize q0 arbitrarily and the update from k to k + 1 is the following:

qk+1(s, a) =
∑
s′,r

p(s′, r|s, a)(r + γ
∑
a′

π(a′|s′)qk(s′, a′)) (16)

This sequence converges to its unique fixed point qπ [8].
Once the action-value function is known, the goal is to use this new knowledge about the
expected return of different actions in different states to improve the current policy. The
obvious idea might be to always choose the action with the highest value, i.e., to set

π′(a|s) =

1, if a = arg max
a

qπ(s, a)

0, otherwise
(17)

for all states s ∈ S. This is known as the Policy Improvement step. The fact that it yields
an improvement, i.e., π′ ≥ π, is stated in the Policy Improvement Theorem on page 78
[8].

Theorem 2.1: Policy Improvement Theorem

Let π and π′ be two arbitrary policies. Then

∀s ∈ S :
∑
a∈A

π′(a|s)qπ(s, a) ≥ vπ(s) =⇒ π′ ≥ π. (18)

If, additionally, there is at least one state s, such that∑
a∈A

π′(a|s)qπ(s, a) > vπ(s)

holds, it follows that there is at least one state s′ with vπ′(s
′) > vπ(s′).

Thus, if the action-value function is known, it is easy to improve the current policy, by
simply shifting probability mass of the policy from an action with a small value to an
action with a high value, as it is done, for example, in the Policy Improvement step
in Equation 17. Furthermore, it can be deduced from Theorem 2.1, that if the Policy
Improvement step does not yield an improvement of π, i.e., vπ′(s) = vπ(s) for every state
s, it follows that π′ and π are optimal policies [8].
In conclusion, the Policy Improvement step improves the current policy if the current
policy is not already optimal and produces an optimal policy otherwise.
Policy Iteration starts with an arbitrary policy and from then on alternates until conver-
gence between Policy Evaluation and Policy Improvement. This general concept works
also for other ways of implementing the PE and PI step and is coined as Generalized Pol-
icy Iteration (GPI) by Sutton and Barto [8]. Figure 3 depicts the alternating structure
of GPI and shows that it continues until convergence to the optimal policy value-function
is reached, which is the unique fixed point of this process.
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Fig. 3. Generalized Policy Iteration: Policy Evaluation and Policy Improvement alternate
until convergence to the optimal policy, see page 94 in Sutton and Barto [8].

For finite MDPs, there are only finitely many deterministic policies and, thus, by the
above mentioned properties of the Policy Improvement step, Policy Iteration finds the
optimal policy in finitely many steps.

2.3 Safe Policy Improvement with Soft Baseline Bootstrapping

Having introduced the basic concepts of reinforcement learning, the precise problem being
dealt with by this thesis is detailed in the following. In practice one usually does not know
the true transition probabilities and, thus, cannot simply conduct the PE step as done
for Dynamic Programming in Subsection 2.2. Therefore, one usually has to rely on the
experience of an initial policy to gain knowledge about the transition probabilities or the
value functions directly.

One possibility to use this information is to utilize it as soon as it is observed in order
to improve the current policy to get more informative data. This is called online rein-
forcement learning. However, in safety critical applications it is not recommended to use
such an online algorithm, as it will try to explore different actions to gain knowledge and,
thus, possibly result in fatal consequences.

For this reason, I am interested in offline reinforcement learning, also called batch rein-
forcement learning [13], as a policy is observed for some time without changing it and
then this batch of data is used to derive a new policy. However, Batch RL introduces
new dangers, especially in scenarios in which wrong actions by the policy may result in
terrible outcomes.

Therefore, the goal of this thesis is to determine how to find the best policy π in a safe
way upon receiving data generated from a behavior policy πb without access to the true
transition probabilities and ever testing π on the real MDP.

The paper “Safe Policy Improvement with Soft Baseline Bootstrapping” by Nadjahi et
al. [11] from 2019 introduces a method to solve exactly this problem. It is the successor
paper of Laroche et al. [12].



10 2 STATE OF THE ART

There are many attempts on trying to find a safe solution to this problem and as many
definitions of safe [14]. In this thesis I focus on safe policy improvement and, thus, use
Definition 1 which is similar to the one given in Laroche et al. [12]:

Definition 1 A policy π is said to be a ξ-approximate 1 − δ-safe policy improvement
w.r.t. πb if

PD(∀s ∈ S : vπ(s)− vπb(s) ≥ −ξ) ≥ 1− δ (19)

where πb is an arbitrary behavior policy used to generate a data sets D on an arbitrary
MDP M , PD is the probability over all possible data sets D induced by πb and M , ξ > 0
is the approximation parameter and δ > 0 is the confidence parameter.

With respect to Definition 1, both Laroche et al. [12] and Nadjahi et al. [11] claim to
have found mathematically provably safe Batch RL algorithms, which are practical at
the same time. Since these are, as explained before, favorable properties, this master’s
thesis concentrates on these algorithms and their underlying theory. The focus lies on the
successor paper “Safe Policy Improvement with Soft Baseline Bootstrapping” [11], as the
algorithms introduced here have shown better results in experiments.
In Section 2.3.1 I introduce the mathematical framework from Nadjahi et al. [11] with all
the definitions they use and the theorems stating the safety of their algorithms. Building
upon this framework, I present the algorithms and their properties introduced in Nadjahi
et al. [11] in Section 2.3.2. In Section 2.3.3 the Random MDPs benchmark is presented,
which was used in Nadjahi et al. [11] to evaluate their algorithms. In the last section,
Section 2.3.4, I quickly introduce the general idea behind using function approximation
for reinforcement learning for continuous state spaces and describe how Nadjahi et al.
[11] applied this to their algorithms.

2.3.1 Mathematical framework

The mathematical framework used in Nadjahi et al. [11] is in its basics very similar to
the one introduced in Section 2.1. However, they denote an MDP as M = (S,A, P, R, γ),
where S and A are finite state and action spaces and γ < 1 is the discount factor. P is now
the state-action-state transition probability, i.e., the margin of the transition probabilities

P (s′|s, a) =
∑
r

p(s′, r|s, a). (20)

and R the stochastic reward function corresponding to the density

p(r|s, a) =
∑
s′

p(s′, r|s, a). (21)

Thus, R(s, a) can be seen as a random variable with density p(·|s, a) and is assumed to
be bounded, i.e., R ∈ [−Rmax, Rmax].
The dynamics modeled by p are assumed to be unknown and, thus, also P and R. To use
methods similar to Dynamic Programming one has to estimate these unknown quantities.
Given data D = (sj, aj, rj, s

′
j)j=1,...,n collected by the behavior policy, with n ∈ N the
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number of transitions done by the behavior policy, Nadjahi et al. [11] use the Maximum
Likelihood Estimator (MLE)

P̂ (s′|s, a) =

∑
(sj=s,aj=a,rj ,s′j=s

′)∈D 1

ND(s, a)
(22)

for P and

R̂(s, a) =

∑
(sj=s,aj=a,rj ,s′j)∈D

rj

ND(s, a)
(23)

for R, where ND(s, a) denotes the number of times the state-action pair (s, a) occurred
in D. Note that contrary to P̂ , R̂ is not an estimator of the distribution of R but instead
of its expected value, which is sufficient to estimate the action Bellman Equation 14.
Using these two quantities, it is possible to define the MLE MDP as M̂ = (S,A, P̂ , R̂, γ).
This is again a valid MDP in which all the theory presented in the previous sections holds.
The occurrence of a second MDP makes it necessary to clarify in the notation of value
functions which MDP is used. So, I follow Nadjahi et al. [11] and notate from now on
vMπ and qMπ when referring to the value functions in the MDP M .
Since the authors plan on using this estimated MDP M̂ and want to prove the safety of
their algorithms, they need to bound the error of M̂ as in the following. With probability
1− δ,

||P (·|s, a)− P̂ (·|s, a)||1 ≤ eP (s, a), (24)

|R(s, a)− R̂(s, a)| ≤ eP (s, a)Rmax (25)

and
|qMπb (s, a)− qM̂πb (s, a)| ≤ eq(s, a)vmax (26)

holds for all state-action pairs (s, a) ∈ S × A. Here, vmax denotes the maximum of the
value function and is bounded by vmax ≤ Rmax

1−γ and the two error functions eP and eq are,

according to the authors, directly derived by the Hoeffding’s inequality [15] as

eP (s, a) =

√
2

ND(s, a)
log

2|S||A|2|A|
δ

(27)

and

eq(s, a) =

√
2

ND(s, a)
log

2|S||A|
δ

. (28)

Note that I changed the wording of the bounds a bit to the one on page 3 in Nadjahi et
al. [11], as the original wording would imply that the bound only holds with probability
1 − δ for a single state-action pair. However, the bounds are supposed to be valid for
all state-action pairs at the same time. I get to this in detail in Section 3.2.2, where
I also examine the derivation of the bounds. It is still a bit misleading, as there is no
guarantee that all three bounds in Equations 24, 25, and 26 hold simultaneously. In the
later chapters I demonstrate that the bound on q is sufficient, so this poses no problem.
The plan of the authors is to use these bounds to derive a bound on the performance of
the newly generated policy in the true MDP M . As one might have expected, the bounds
are tighter for a state-action pair if it has been visited many times, which can be directly
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inferred from Equations 27 and 28. In Laroche et al. [12] they used a strict cut-off value
N∧ and gained the safety of their algorithms by only allowing a change of the behavior
policy for state-action pairs with at least N∧ visits, so that the new policy ended up with
the property

∀(s, a) ∈ S ×A : ND(s, a) < N∧ ⇒ π(a|s) = πb(a|s). (29)

For the other state-action pairs they allow computation similar to the Dynamic Program-
ming introduced in Section 2.2. For this algorithm they proved a safety bound depending
on N∧, which is explicitly stated in Section 3.3.3.
To improve their old algorithm, the authors use a “softer” version of this kind of boot-
strapping the behavior policy. That is where the name of the algorithm comes from, as
they call the behavior policy the baseline policy. The soft baseline bootstrapping is done
by using the error functions to penalize changes of the behavior policy. To quantify this,
they define the following:

Definition 2 A policy π is (πb, ε, e)-constrained w.r.t. a baseline policy πb, an error
function e and a hyper-parameter ε, if∑

a∈A

e(s, a)|π(a|s)− πb(a|s)| ≤ ε (30)

holds for all states s ∈ S.

The first theorem in Nadjahi et al. [11] uses the following two definitions, which are
extended in Section 3.2.

Definition 3 The advantage of taking action a in state s against following policy π in
the MDP M is defined as

AMπ (s, a) = qMπ (s, a)− vMπ (s). (31)

Definition 4 A policy π is πb-advantageous in an MDP M , if∑
a∈A

AMπb(s, a)π(a|s) ≥ 0 (32)

holds for all s ∈ S.

By transforming Equation 32 to

0 ≤
∑
a∈A

AMπb(s, a)π(a|s) =
∑
a∈A

(
qMπb (s, a)− vMπb (s)

)
π(a|s) =

∑
a∈A

qMπb (s, a)π(a|s)

−vMπb (s)
(33)

one directly obtains the inequality of the Policy Improvement Theorem (Theorem 2.1)
and, thus, a policy π which is πb-advantageous in M is an improvement to πb in M , i.e.,
π ≥ πb in M . Now, it is possible to state the first theorem proven in Nadjahi et al. [11]:
Theorem 1 (from Soft-SPIBB): Any (πb, eq, ε)-constrained policy π that is πb-advantageous

in M̂ satisfies the following inequality in every state s with probability at least 1− δ:

vMπ (s)− vMπb (s) ≥ −
εvmax
1− γ

. (34)
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I use the exact same wording as the authors and do not write it in the formal theorem
layout, as I state it again later, but in a slightly different version and provide the proof
there.
This theorem yields that a (πb, eq, ε)-constrained policy π, that is πb-advantageous in M̂ ,
is a εvmax

1−γ -approximate 1− δ-safe policy improvement w.r.t. πb.
As ε and δ can be any positive real numbers, this statement can get arbitrary strong, with
the only limitation, that the lower bound on the value function π given by Equation 34
can never surpass the value function of πb. Also, using a smaller δ yields a bigger error
function ep, which follows directly by its definition in 28, which results in less space for
change for the new policy while staying πb-constrained. A smaller ε amplifies this effect,
as can be seen in Definition 2. Therefore, one faces a trade-off between safety and freedom
of the new policy.
The algorithms introduced in Nadjahi et al. [11] and presented in this thesis in Section
2.3.2, are not πb-advantageous and, thus, the authors try to prove a similar statement in
the absence of this property. For this they use an assumption on the true MDP:

Assumption 1: There exists a constant κ < 1
γ

such that, for all state-action pairs (s, a) ∈
S ×A, the following holds:∑

s′,a′

eP (s′, a′)πb(a
′|s′)P (s′|s, a) ≤ κeP (s, a) (35)

The wording is again the same as on page 6 in Nadjahi et al. [11].
This assumption is to the best of my knowledge nowhere justified and it is proven in
Section 3.1 that this cannot hold for all possible MDPs. Furthermore, I show there that
even in the experiments of Nadjahi et al. [11] this assumption does not hold and elaborate
on the consequences of these results.
By using Assumption 1 they proved the following theorem in Nadjahi et al. [11]:

Theorem 2 (from Soft-SPIBB): Under Assumption 1, any (πb, eP , ε)-constrained policy π
satisfies the following inequality in every state s with probability at least 1− δ:

vMπ (s)−vMπb (s) ≥ vM̂π (s)−vM̂πb (s)+2||dMπ (·|s)−dMπb(·|s)||1vmax−
1 + γ

(1− γ)2(1− κγ)
εvmax (36)

Here, dMπ (s′|s) denotes the expected discounted sum of visits to s′ when starting in s and
I get into this in more detail in Section 3.2.1.
This theorem is the justification why it is sufficient for a policy to be (πb, eP , ε)-constrained
to be safe, however, it only holds if Assumption 1 holds. Also, one could go into detail
discussing if the lower bound in Equation 36 is useful, but this is not necessary as I show in
Section 3.1 that Assumption 1 is not true and, so, Theorem 2 is in general not applicable.

2.3.2 Algorithms

The authors present two different algorithms, Exact-Soft-SPIBB and Approx-Soft-SPIBB,
which both rely on the Generalized Policy Iteration as discussed in Section 2.2. Thus, the
algorithms can be divided into a Policy Evaluation step and a Policy Improvement step.
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The PE step is done by solving the system of linear equations from the action Bellman
Equation given in Equation 14, but using the iterative version would work as well. The
only difference is that one does not know the true transition probabilities and reward and,
therefore, uses the MLE estimates P̂ and R̂ from Equations 22 and 23, respectively.
The PI step is what makes these algorithms special. Both try to solve the same optimiza-
tion problem for every state s ∈ S at step (i+ 1):

π(i+1) = arg max
π

∑
a∈A

qM̂π(i)(s, a)π(a|s) (37)

subject to:
Constraint 1: π(i+1)(·|s) being a probability over A:

∑
a∈A π

(i+1)(a|s) = 1 and ∀a ∈ A :
π(i+1)(a|s) ≥ 0.
Constraint 2: π(i+1) being (πb, e, ε)-constrained.
Here, e : S × A → R≥0 is a general error function and can be chosen as eq or eP , for
example. Note that without Constraint 2, this optimization problem would be solved by
the greedy policy π′ as defined in Equation 17. The difference in the two Soft-SPIBB
algorithms is how they solve this optimization problem.
Exact-Soft-SPIBB: For Exact-Soft-SPIBB the optimization problem is reformulated as
a Linear Program. Since (qM̂

π(i)(s, a1)), ..., qM̂
π(i)(s, a|A|)) in Equation 37 may be interpreted

as the (linear) cost function, where all the elements of A are labeled as a1, a2, ..., a|A|, and
Constraint 1 is clearly a linear constraint on π, it suffices to reformulate Constraint 2.
This is done by using, for a fixed state s ∈ S, the following 2|A|+ 1 constraints:

∀a ∈ A : π(i+1)(a|s)− πb(a|s) ≤ z(s, a) (38)

∀a ∈ A : −π(i+1)(a|s) + πb(a|s) ≤ z(s, a) (39)∑
a

e(s, a)z(s, a) ≤ ε (40)

On page 7 in Nadjahi et al. [11], it is stated that this Linear Program is solved by
the simplex algorithm. Contrary to that, in their code accompanying the paper one can
see in line 235 in the file spibb.py, which implements all the SPIBB and Soft-SPIBB
algorithms, that the default solver of scipy.optimize.linprog is used to solve the Linear
Program in the Policy Iteration step of Exact-Soft-SPIBB.1 However, the default solver of
scipy.optimize.linprog is the interior point method as specified in Andersen and Andersen
[16].2 This difference in description and implementation does not change the algorithm
fundamentally, as both solvers try to solve the same problem and should in theory obtain
the same results and Nadjahi et al. [11] even discuss the similarity between both in the
previous section, in 2.3.
Approx-Soft-SPIBB: As solving a Linear Program exactly is computationally expen-
sive, Nadjahi et al. [11] also provide an approximate version. The idea behind this algo-
rithm is to move the probability mass of the policy for each state from actions with a low
value to actions of high value, while ensuring that the policy stays (πb, eq, ε)-constrained.

1https://github.com/RomainLaroche/SPIBB/spibb.py, assessed on 20.03.2021
2https://docs.scipy.org/doc/scipy/reference/generated/scipy.optimize.linprog.html, assessed on

20.03.2021
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Pseudo code for this algorithm is shown in Algorithm 1, which is almost the same as in
the Appendix A.8 in [11]. I only changed it so that it shows the whole PI step instead
of the improvement for just one specific state and changed some of the notation to fit
to the rest of this thesis. Also, I added the for-loop in line 7, to make it closer to their
implementation.3

Algorithm 1: Approx-Soft-SPIBB: Policy Improvement

Input : Behavior policy πb, action space A, state space S, errors e(s, a) for each
(s, a) ∈ S ×A, hyper-parameter ε > 0 and last iteration action-value

function qM̂
π(i)

Initialize: π(i+1) = πb
1 for s ∈ S do
2 E = ε

3 Define A− as A in increasing order of qM̂
π(i)(s, ·)

4 for a− ∈ A− do
5 m− = min{π(i+1)(a−|s), E

2e(s,a−)
}

6 Define A+ as A in decreasing order of
qM̂
π(i)

(s,a)−qM̂
π(i)

(s,a−)

e(s,a)

7 for a+ ∈ A+ do
8 if a+ == a− then
9 break

10 end

11 m+ = min{m−, E
2e(s,a+)

}
12 if m+ > 0 then
13 π(i+1)(a+|s) = π(i+1)(a+|s) +m+

14 π(i+1)(a−|s) = π(i+1)(a−|s)−m+

15 E = E −m+(e(s, a+) + e(s, a−))
16 m− = m− −m+

17 end

18 end

19 end

20 end

The algorithm always starts with improving the behavior policy instead of the policy from
the previous iteration, which makes it easier to ensure that the newly computed policy
is also (πb, ε, e)-constrained. This is done by using the budget E, which is initialized as
ε. To determine how much probability mass is moved from one action to another, one
iterates through A, starting with the action a− which has the lowest value in the state
s. m− is then calculated as the most one can subtract from πb(a

−|s) and still have a
(πb, ε, e)-constrained policy. In Line 6, all the actions are sorted such that the action with
the highest value and lowest error function gets chosen first. This is done by looking at

3https://github.com/RomainLaroche/SPIBB, assessed on 20.03.2021
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the quotient

qM̂
π(i)(s, a)− qM̂

π(i)(s, a
−)

e(s, a)
. (41)

In combination with Lines 8-10, this ensures that mass is only moved from an action
with a lower value to one with a higher value and never the other way around. Line
11 establishes that the policy in the end is (πb, ε, e)-constrained. In Lines 13 and 14 the
probability mass is moved from the low value action a− to the high value action a+. The
budget is updated accordingly in Line 15. In the case that e(s, a+) > e(s, a−), it can
happen that m+ < m− and, thus, there is still some mass which could be moved away
from π(i+1)(a−|s), but it is not possible to move any more probability mass to π(i+1)(a+|s),
while staying (πb, ε, e)-constrained. Thus, the movable mass is updated in Line 16 and
the algorithm continues to move mass to sub-optimal actions, i.e., actions with a positive
value for the quotient from Equation 41, but not the biggest one. If there is still some
budget E left at the end, Approx-Soft-SPIBB also tries to move mass from other actions,
which have not the lowest value, to better ones.

By the definition of the algorithms Theorem 2.2 holds [11].

Theorem 2.2: Soft-SPIBB are constrained

The policy improvement step of Exact-Soft-SPIBB and Approx-Soft-SPIBB generate
policies that are guaranteed to be (πb, ε, e)-constrained.

Regarding the theoretical safety of both Soft-SPIBB algorithms, the authors state that
Theorem 1 is applicable to the algorithms if only one iteration is performed and the error
function eq is used. Since both algorithms are then (πb, ε, eq)-constrained, this means that
Nadjahi et al. [11] think the full versions of their algorithms are not πb-advantageous, but
the one-step versions are. Why this is the case is not addressed in the paper. However,
the argument relies on the optimization problem described in Equation 37, which shows
that π(i+1) is always π(i)-advantageous. Therefore, π(1) is πb-advantageous, as πb = π(0).
However, it cannot be ensured that π(i) is πb-advantageous for i > 1.

2.3.3 Empirical evaluations

After the theoretical evaluation of their algorithms the authors present an empirical one
on the Random MDPs benchmark against several other algorithms. An overview of this
procedure is given in Algorithm 2 which is almost the same as on page 27 in Nadjahi et
al. [11].
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Algorithm 2: Random MDPs benchmark

Input: Number of iterations N , list of hyper-parameter values for the behavior, list
of dataset sizes, list of algorithms in the benchmark, list of hyper-parameter
values for each algorithm

1 for i = 1, .., N do
2 Generate an MDP
3 for each hyper-parameter value for the behavior do
4 Generate a behavior.
5 for each dataset size do
6 Generate a dataset.
7 for each algorithm do
8 for each algorithm hyper-parameter value do
9 Train a policy.

10 Evaluate the policy.
11 Record the performance of the trained policy on this run.

12 end

13 end

14 end

15 end

16 end

So, in every iteration a new MDP is generated. The generation follows these rules:

1. There are 50 states among which 1 state is terminal. Therefore, it is an episodic
task, always starting in the state 0.

2. In each state, except the terminal one, there are 4 actions available.

3. From each state-action pair (s, a), where s is not terminal, there are 4 possible next
states, i.e., the transition probability P (s′|s, a) is nonzero for 4 different states s′.

4. For which states s′ the probability P (s′|s, a) is nonzero is randomly determined and
also the value of P (s′|s, a) is randomly determined.

5. The reward at time t only depends on the next state St+1 and it is 0 for every
non-terminal state, but 1 for the terminal state. Therefore, as the discount factor
is less than 1, the whole task can be described as trying to find the fastest way to
the terminal state.

6. The terminal state is chosen such that the optimal policy achieves the lowest perfor-
mance if this state is chosen as the terminal state. This ensures that the randomly
generated MDP does not turn out to be too simple.

Thus, the random quantities of these Random MDPs are the transition function and
the terminal state. The goal of the benchmark is to use behavior policies with different
performances to check how well the algorithms perform when confronted with either
already very good policies or very bad ones. This is managed by a ratio parameter η from
which the goal performance of the behavior can be calculated by ρπb = ηρπ∗ + (1− η)ρπ̃,
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where ρπ is the performance ρπ = vπ(0) of some policy π, π̃ denotes the uniform policy,
i.e., π̃(a, s) = 1

|A| for every a ∈ A and s ∈ S, and π∗ is the optimal policy. The behavior

policy is then generated using the following three steps [12]:

1. The optimal policy and its action-value function q∗ for this specific MDP are calcu-
lated.

2. The softmax function π(a|s) = σλ
(
(q∗(s, 0), q∗(s, 1), q∗(s, 2), q∗(s, 3))

)
a

= eλq∗(s,a)∑3
i=0 e

λq∗(s,i)

is applied to generate the new policy π in state s. This is done for every state and
for decreasing heat parameter λ until a performance of

ρπb+ρπ∗
2

is reached. Note that
for λ → ∞ the optimal policy is approached and for λ = 0 the uniform policy is
reached. Thus, the heat parameter is chosen higher if a higher performance is the
goal.

3. In the last step, a random state s is chosen and π(a|s) is decreased by some constant,
where a = arg maxa q∗(s, a). π(·|s) is then normalized to be a distribution again.
This is repeated until the goal performance ρb is reached.

By observing a specified number of episodes of the behavior policy on the MDP, the batch
dataset for the learning algorithms is generated. The data collected during one episode
will in the following be referred to as one trajetory. Now, each algorithm is used for a list
of hyperparameter-values to train a new policy, which will be evaluated on the MDP and
its performance will be saved. The algorithms used are [11]:

� Basic RL: Dynamic Programming as explained in Section 2.2 using the estimated
transition probabilities and reward function from Equations 22 and 23.

� Soft-SPIBB: Approx-Soft-SPIBB and Exact-Soft-SPIBB as explained in Section
2.3.2 and their 1-step versions [11].

� SPIBB: The predecessor algorithms of the Soft-SPIBB algorithms [12].

� HCPI: High Confidence Policy Improvement, which uses a standard off-policy [8]
learning algorithm (e.g., the authors here use Q-learning [8]) to learn a policy from
the batch data. This policy is regularized to become a mixture between the policy
learned and the behavior policy. For each mixture policy, a lower bound of the
performance is calculated, such that the probability that this mixture policy has a
performance better than this lower bound is high. Among those mixtures, the one
with the highest lower bound on the estimate is chosen and if its lower bound is
higher than the performance of the behavior policy it is returned. Otherwise the
behavior policy is returned [17].

� Reward-adjusted MDPs: This algorithm incorporates the uncertainty of a state-
action pair by using R̃(s, a) = R̂(s, a)− κ√

ND(s,a)
instead of R̂(s, a) and then applying

Dynamic Programming from Section 2.2 [18].

� Robust MDP: An algorithm which is able to provide safety guarantees by considering
the worst-case scenario [19].
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Figure 4 from page 11 in Nadjahi et al. [11] shows the result for a behavior policy with
a ratio performance of 0.9, which was the highest value used in this experiment and all
the algorithms are run with their best hyper-parameter. The number of iterations run
in this experiment are 100, 000 and the performance is normalized to make them more
comparable between different runs by calculating

ρ̄π =
ρπ − ρπb
ρπ∗ − ρπb

. (42)

Thus, ρ̄π < 0 means a worse performance than the behavior policy, ρ̄π > 0 means an
improvement w.r.t. the behavior policy and ρ̄π = 1 means the optimal performance
was reached. In Figure 4a) the mean normalized performance over all the iterations are
plotted with the number of trajectories used to learn from as the x-axis. RaMDP and
Basic RL outperform all the others, followed by the full Soft-SPIBB algorithms. The
worst performance is achieved by Robust MDP and HCPI.

As Nadjahi et al. [11] are concerned with safe policy improvement, their goal is not to
simply maximize the achieved mean, but to develop algorithms with a low probability of
performing extremely poorly. For this reason, they look at the 1%-CVaR (Critical Value
at Risk) which is the mean performance over the 1% worst runs. This is depicted in Figure
4b) and the advantage of the Soft-SPIBB and SPIBB algorithms now becomes obvious.

In the course of this thesis I present similar experiments including the same algorithms
except—due to their poor performance shown here—Robust MDP and HCPI. Instead I
add further algorithms from the literature or developed in this thesis.

2.3.4 Function approximation

So far, this thesis focused on reinforcement learning with small and finite state and action
spaces, however big or even continuous state spaces are becoming more important for the
industry as many tasks involve continuous parameters, e.g., for the gas turbine already
mentioned in the introduction [9].

One of the problems of a very large finite or continuous state space is that it is infeasible
or even impossible to learn the value functions exactly. Nadjahi et al. [11] circumvent
this by applying function approximation to the value function similar to how it is also
done for other kinds of machine learning [8]. Naturally, there are various possibilities to
approximate the value function and Laroche et al. [12] and Nadjahi et al. [11] apply a
dense neural network [20] for this.

In this subsection, I start with explaining function approximation for reinforcement learn-
ing in general and then introduce all the concepts used by Nadjahi et al. [11] to be able
to describe their method for implementing Approx-Soft-SPIBB, Πb-SPIBB and RaMDP
using function approximation.

As already mentioned the idea is to use a neural network Qw with weights w to map a
state s to a vector Qw(s) ∈ R|A| which gives the approximate value for each action in this
state s. A problem that arises is that training a neural network requires targets which one
does not have in reinforcement learning, since the true action-value function is in general
not known. Thus, similar to the update in Equation 16 for iterative policy iteration, one
can utilize the Bellman equation (Equation 14) and reformulate it using the expected
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(a) Mean

(b) 1%-CVaR

Fig. 4. Random MDPs benchmark: mean (a) and 1%-CVaR (b) performances for a
strong behavior policy (η = 0.9) and Soft-SPIBB with ε = 2.
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value for a continuous state-space [8]:

qπ(s, a) = E[Rt+1 + γ
∑
a′

π(a′|St+1)qπ(St+1, a
′)|St = s, At = a]. (43)

Therefore, it is possible to use

ya = E[Rt+1 + γ
∑
a′

πn(a′|St+1)Qwn(St+1, a
′)|St = s, At = a] (44)

as the target for a state s and action a to update the neural network using the weights
wn in the n-th step. A popular adaption of this, which is used in the discrete but also
in the continuous setting, is Q-learning [8]. Q-learning incorporates the greedy choice of
the policy in the Policy Improvement step into the Policy Evaluation step. This is done
by using the maximal action-value in the next step instead of the current policy πn to
compute the target, which yields the target

ya = E[Rt+1 + γmax
a′

Qwn(St+1, a
′)|St = s, At = a]. (45)

The expected value can be substituted by the unbiased estimator

ya = r + γmax
a′

Qwn(s′, a′) (46)

for each step consisting out of a state s, an action a, a reward r and a next state s′. As
the loss function Nadjahi et al. [11] used the huber loss [21]

Lδ(x, y) =


1

2
(x− y)2, if |x− y| ≤ δ,

δ|x− y| − 1

2
δ2, otherwise,

(47)

which works similar to the L2 loss for small errors, but grows linearly as soon as the error
is greater than some δ > 0 to counter the influence of outliers.
For online reinforcement learning Mnih et al. [22] present two additional modifications.
Firstly, they propose to not use the data in the order it is generated, but to instead use
experience replay which means that they collect a set of the last k transitions and use for
the next update a randomly sampled one from this set. Secondly, they recommend not
to use the latest weights in the target in Equation 45 as continuously changing targets
make the algorithm unstable. Instead, they make use of two neural networks: the training
network which one wants to train and the target network which is only used to generate
the targets. After a fixed number of updates, the weights of the target network are set to
the weights of the training network.
The problem of defining the target as in Equation 45 is that using the maximal action-
value for the next state in the target can result in an overestimation of the value function.
For this reason, Hasselt et al. [23] propose to use Double Q-learning, which decouples
the selection of the best action and the evaluation of this action by training two different
neural networks to approximate the action-value. So, let wn and w′n be the weights for
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two different neural networks and assume one wants to update wn in this step. Then, the
target is defined as

ya = E[Rt+1 + γQw′n(St+1, arg max
a′

Qwn(St+1, a
′))|St = s, At = a]. (48)

Overestimating action-values is not too problematic for online reinforcement learning, as
it increases the exploration. The opposite holds for offline reinforcement learning, as the
algorithm lacks the opportunity to correct its bias through new observations. For this
reason Nadjahi et al. [11] use an adaption of Double Q-learning for the implementation
of all their algorithms. However, they do not rely on training two neural networks in
parallel. Instead they reuse the target neural network introduced before.
The whole family of SPIBB algorithms relies heavily on the number of times a state-
action pair has been visited. For continuous state spaces, this is usually not possible,
as most of the state-action pairs have never been visited. Furthermore, the idea behind
function approximation is to generalize the knowledge of one state-action pair to other
close state-action pairs. Therefore, it makes sense to use a pseudo-count which can be
interpreted as a continuous version of state-action counts. There are many sophisticated
possibilities to compute them, see Bellemare et al. [24] for example, and Nadjahi et al.
[11] rely for computational reasons on the euclidean norm to compute the pseudo-count
for one state-action pair by

ND(s, a) =
∑

(s′,a′)∈D,a′=a

max

(
0, 1− 1

η
||s− s′||

)
, (49)

where η > 0 should be chosen to fit the MDP.
Nadjahi et al. [11] implemented various different algorithms to use for the benchmark.
Vanilla DQN: They call the first one Vanilla DQN, due to the naming in Mnih et al.
[22], which is exactly what is described above and, thus, it uses the targets

ya = E[Rt+1 + γQwm(St+1, arg max
a′

Qwn(St+1, a
′))|St = s, At = a] (50)

in step n, where m ≤ n and wm gets updated to wn after a fixed number of steps.
RaMDP-DQN: The approximative version of RaMDP simply adapts the target in Equa-
tion 50 to

ya = E[Rt+1 + γQwm(St+1, arg max
a′

Qwn(St+1, a
′))

−κND(s, arg max
a′

Qwn(St+1, a
′))|St = s, At = a]

(51)

and, thus, follows the same heuristic as the tabular version of RaMDP.
SPIBB-family-DQN: Nadjahi et al. [11] provide the implementation for SPIBB-DQN
and Approx-Soft-SPIBB-DQN. The idea behind these algorithms is to keep the structure
of Dynamic Programming. In each iteration the Policy Improvement step is conducted
following the same rules as specified in Algorithm 1 for all the states which come up as a
“next state” in the batch which is used to learn from in this iteration. To avoid running
into an overestimation here, Nadjahi et al. [11] apply the idea from Double Q-learning and
use the training network to compute the action-value function which is used to determine
the policy in the PI step. The Policy Evaluation step is done by optimizing the parameters
of the training network as shown in Equation 44 by utilizing the just computed policy.
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Nadjahi et al. [11] conduct experiments for these 4 algorithms, in which their algorithms
show a significant advantage w.r.t. to Vanilla-DQN and RaMDP-DQN. This serves as the
motivation to try to reproduce these results on a new benchmark in Section 3.4.4.
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3 Main Part

After this introduction to the essence of reinforcement learning and its most important
concepts for this thesis and an overview of the paper “Safe Policy Improvement by Soft-
Baseline Bootstrapping”[11], I start now towards the main results in the thesis: the cor-
rection of the theory presented in Nadjahi et al. [11] and the adaption of their algorithms
such that the theory is applicable to them.

Section 3.1 completely focuses on Assumption 1 from the paper as well as its flaws and
consequences for the theory.

Section 3.2 aims at saving the mathematical theory backing up the Soft-SPIBB algorithms.
In order to do this, Theorem 1 is revisited and while some minor flaws in the proof are
eliminated, a fundamental difference in the statement is discovered, which shows that the
theorem is not only invalid for the Soft-SPIBB algorithms in their full version, but also
in their 1-step version. Instead, I present an adaption of the Soft-SPIBB algorithms, for
which the theorem holds.

In Section 3.3, I introduce algorithms that are used as a comparison against the original
Soft-SPIBB algorithms and the new ones introduced in Section 3.2. Apart from using
already existing algorithms, I adapt the exploratory algorithm R-MAX from Brafmann
and Tennenholtz [28] to create the uncertainty incorporating algorithm R-MIN and add
a heuristic to DUIPI [29] to make it more suitable for offline reinforcement learning.
Furthermore, I develop the Lower-Approx-Soft-SPIBB which applies a heuristic already
used in Laroche et al. [12] to the original Approx-Soft-SPIBB algorithm.

The comparison is done in Section 3.4, where I test on the one hand if the original Soft-
SPIBB algorithms perform as well as in Nadjahi et al. [11] and on the other hand if
their new versions, which are provably safe, can compete with them. Furthermore, I
start some exploratory experiments to test the performance of the implementations of
RaMDP, Πb-SPIBB, Approx-Soft-SPIBB, and Lower-Approx-Soft-SPIBB using function
approximation on a benchmark with a continuous state space.

3.1 Discussion of Assumption 1

This section focuses on Assumption 1 from Nadjahi et al. [11]. Section 3.1.1 starts with a
thorough mathematical analysis including an interpretation of Assumption 1 and also the
proof, why it cannot hold in general. In Section 3.1.2, I show that this is not only true for
some artificially designed MDPs, but does also not hold for the MDPs from the Random
MDPs benchmark. I conclude the discussion with the mathematical consequences of these
results in Section 3.1.3.

3.1.1 Mathematical analysis

To start with the mathematical analysis of Assumption 1, I repeat its statement:

Assumption 1: There exists a constant κ < 1
γ

such that, for all state-action pairs (s, a) ∈
S ×A, the following holds:∑

s′,a′

eP (s′, a′)πb(a
′|s′)P (s′|s, a) ≤ κeP (s, a) (52)
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The wording is again the same as on page 6 in Nadjhai et al. [11].
In the paper I did not find any validation, nor justification nor interpretation of it. How-
ever, the interpretation is straightforward, as the product πb(a

′|s′)P (s′|s, a) can be seen
as the probability of receiving the state-action pair (s′, a′) after observing (s, a). So,
Equation 52 can be rewritten as

EP,πb [eP (St+1, At+1)|St = s, At = a] ≤ κeP (s, a). (53)

In words, Assumption 1 assumes that the expectation of the error function of the next
state-action pair can be bounded with a constant κ < 1

γ
times the error function of the

current state-action pair. And this has to hold for any state-action pair, for any behavior
policy, for any by data set collected by the behavior policy and for any MDP.
For a further analysis, it might be helpful to repeat the definition of ep:

eP (s, a) =

√
2

ND(s, a)
log

2|S||A|2|A|
δ

. (54)

Thus, for the same MDP and confidence parameter δ > 0, the whole variation of eP is
due to the variation in ND, the number of visits of the state-action pairs in the data D.
Consequently, Assumption 1 might appear reasonable, as a relation between the number
of visits of one state-action pair and the number of visits of state-action pairs which have
a high probability of occurring after visiting the first one should be expected. However,
it is shown in the following that Assumption 1 does not hold in general.
To show that Assumption 1 does not hold in every scenario, let (s, a) and (ŝ, â) be two
state-action pairs with

1 > πb(â|ŝ)P (ŝ|s, a) > 0. (55)

LetD be data collected by the behavior policy πb, such thatND(s, a) > 0 butND(ŝ, â) = 0.
This is possible, as Equation 55 is assumed. Therefore, by the definition of eP in Equation
54 one gets

eP (s, a) <∞ and eP (ŝ, â) =∞. (56)

Thus, the left hand side of Equation can be bounded 52 by using Equation 55 and 56∑
s′,a′

eP (s′, a′)πb(a
′|s′)P (s′|s, a) ≥ eP (ŝ, â)πb(â|ŝ)P (ŝ|s, a) =∞. (57)

Consequently, Assumption 1 cannot hold in this example as the right hand side of Equa-
tion 52 is finite due to Equation 56.
The setup of this counterexample is not very unrealistic, as it only assumes that there is
a state-action pair (ŝ, â) which has never been visited by the behavior policy, but there is
another state-action pair (s, a), which has been visited and the probability of observing
(ŝ, â) after observing (s, a) is not zero, but can still be arbitrary small. As long as not
enough data is used to visit all the state-action pairs in the experiments in Section 3.4,
this is a scenario which happens almost every time. This can also be seen in Section 3.1.2.
The previous considerations is the easiest way to see that Assumption 1 cannot hold
for every MDP, every behavior policy πb, every data set observed when following πb and
every state-action pair. However, there are two possible arguments against it. Firstly, one
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could counter it, by observing enough data that every possible state-action pair, i.e., every
state-action pair with a non-zero probability, is encountered at least once. Obviously, this
might take quite some time, but is theoretically possible. Secondly, one could change
the definition of eP as Equations 24 and 25 are sufficient for the theory in Nadjahi et al.
[11] and the definition given in Equation 54 is just one possible way of achieving this.
Therefore, I define

e′P (s, a) =

{
eP (s, a), if ND(s, a) > 0

2, otherwise
(58)

as the new error function. Since P (·|s, a) and P̂ (·|s, a) are probability distributions and
R(s, a) ∈ [−Rmax, Rmax] is bounded,

||P (·|s, a)− P̂ (·|s, a)||1 ≤ 2 and |R(s, a)− R̂(s, a)| ≤ 2Rmax (59)

hold. Therefore, e′p fulfills Equations 24 and 25, but the argument for the invalidity of
Assumption 1 cannot be applied here. However, I show in the following that there are
MDPs for which Assumption 1 cannot hold for this new error function. For the proof, it
is necessary to prove Lemma 1 first.

Lemma 1 Let A,B ∈ Rn×n be matrices and λ > 0. If A is positive definite and B is
semi-positive definite, A+ λB is also positive definite.

Proof: Let x ∈ Rn be an arbitrary non-zero vector. Then

xT (A+ λB)x = xTAx+ λxTBx > 0 (60)

holds, since xTAx > 0 and xTBx ≥ 0 by assumption. �

Theorem 3.1: Invalidity of Assumption 1

Let the discount factor 0 < γ < 1 be arbitrary. Then there exists an MDP M with
transition probabilities P such that for any behavior policy πb and any data set D,
which contains every state-action pair at least once, it holds that, for all 0 < δ < 1,∑

s′,a′

e′P (s′, a′)πb(a
′|s′)P (s′|s, a) >

1

γ
e′P (s, a). (61)

This means that Assumption 1 can, independent of the discount factor, never be true
for all MDPs.

Proof: Let 0 < γ < 1 be arbitrary and n ∈ N be such that
√
n > 1

γ
.

Let M be the MDP displayed in Figure 5. It has n + 1 states, from which n states are
terminal states, labeled 1, 2, ..., n. In the only non-terminal state 0, there is only one
action available and choosing it results in any of the terminal states with probability 1

n
.

Also, 0 is the starting state of the MDP. As there is only one action, one can omit the
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Fig. 5. MDP with n+1 states, n of them are final states and in the non final state, there
is only 1 action.

action in the notation of e′P and there is only one behavior policy. So, Equation 61 can
be reduced to

n∑
i=1

e′P (i)

n
>
e′P (0)

γ
. (62)

Now, I show that
n∑
i=1

e′P (i)

n
≥
√
ne′P (0), (63)

which implies Equation 62 as
√
n > 1

γ
. Let D denote the data collected on this MDP such

that every state has been visited at least once. Thus, ND(i) > 0—the number of visits to
state i—holds for every i. Equation 63 is equivalent to

1

n

n∑
i=1

1√
ND(i)

≥
√
n√
N

(64)

where N = ND(0) =
∑n

i=1 ND(i).
Define the function f : X → R by

f(x) =
n−1∑
i=1

1
√
xi

+
1√

N −
∑n−1

i=1 xi

, (65)

with X = {x ∈ Rn−1 : x1, ..., xn−1 > 0,
∑n−1

i=1 xi < N}. Then for every possible data set
D, (ND(1), ..., ND(n− 1)) ∈ X and

f((ND(1), ..., ND(n− 1))) =
n∑
i=1

1√
ND(i)

(66)

holds. Consequently, Equation 64 follows if

f(x) ≥ n
√
n√
N

∀x ∈ X (67)
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holds. The only thing left to show is Equation 67. At first calculate the gradient:

∇f(x) =

 −
1
2
x
− 3

2
1 + 1

2
(N −

∑n−1
i=1 xi)

− 3
2

...

−1
2
x
− 3

2
n−1 + 1

2
(N −

∑n−1
i=1 xi)

− 3
2

 (68)

As X is open, any minimum x′ of f has ∇f(x′) = 0 and, thus, one arrives at the system

1

2
(N −

n−1∑
i=1

x′i)
− 3

2 =
1

2
x
′− 3

2
i , i = 1, ..., n− 1. (69)

This is equivalent to

N −
n−1∑
i=1

x′i = x′1 = x′2 = ... = x′n−1, (70)

which is uniquely solved by x′ = (x′1, ..., x
′
n−1) = (N

n
, ..., N

n
). To show that x′ is a minimum

of f on X, it is necessary to calculate the Hessian matrix

∇2f(x) = diag

(
3

4
x
− 5

2
1 , ...,

3

4
x
− 5

2
n−1

)
+

3

4
(N −

n−1∑
i=1

xi)
5
2

 1 · · · 1
...

. . .
...

1 · · · 1

 , (71)

where diag(v) denotes a diagonal matrix with the vector v on its diagonal. As x ∈ X, it

holds that 3
4
x
− 5

2
i > 0 for all i = 1, ..., n−1 and (N−

∑n−1
i=1 xi)

5
2 > 0. Thus, all eigenvalues of

diag

(
3
4
x
− 5

2
1 , ..., 3

4
x
− 5

2
n−1

)
are positive and so the matrix is positive definite. Also, denoting

A for the last matrix in Equation 71, one can easily check that A is positive semi-definite
as the rank of A is 1, which is due to the fact that all rows are linearly dependent from
each other. Therefore, there is only one non-zero eigenvalue and this is n− 1 since

A

 1
...
1

 =

 1 · · · 1
...

. . .
...

1 · · · 1


 1

...
1

 =

 n− 1
...

n− 1

 = n− 1

 1
...
1

 . (72)

From Lemma 1 it follows that ∇2f(x) is positive definite for all x ∈ X. Thus, f is strictly
convex and as in particular ∇2f(x′) is positive definite, x′ is a local minimum of the
convex function f and, so, also the global minimum of f . Therefore, one gets that for all
x ∈ X

f(x) ≥ f(x′) =
n−1∑
i=1

1√
N
n

+
1√

N −
∑n−1

i=1
N
n

= (n− 1)
1√
N
n

+
1√
N
n

=
n
√
n√
N

(73)

holds and, thus, also Equation 67 holds, which concludes this proof. �
There are several things one should note about Theorem 3.1 and its proof. First of all, as
already stated it shows that Assumption 1 cannot be assumed to be true in the generality
it has been done in Nadjahi et al. [11].



3.1 Discussion of Assumption 1 29

Furthermore, Theorem 3.2 is stronger than necessary to disprove Assumption 1, as this
assumption is a claim about all MDPs, discount factors, behavior policies on the MDP,
data sets generated by the behavior policy on this MDP and safety parameters δ. So, it
would have been enough to find one specific behavior policy and data set on one MDP
for one specific γ and δ to show the flaw of Assumption 1. However, as γ and δ can—to
some degree—be freely chosen by the developers, it is in my opinion important to realize
that there is no a priori choice of the discount factor or safety parameter to counter this
theorem. Additionally, as the only assumption on D was that every state had to be visited
at least once, it shows that weakening the assumption by assuming that Equation 52 does
only hold with some probability cannot work.

Even though an episodic MDP has been used in the proof, its statement also holds for non-
episodic ones. This can be seen, since the class of MDPs used in the proof and depicted
in Figure 5 could have been easily changed to be non-episodic, but still exhibit the same
qualities for e′P , by letting the states 1, . . . , n be non-terminal and making instead the
only action available in those states lead back to 0.

The class of MDPs used in the proof and depicted in Figure 5 gives a good impression
what kind of constellations are critical for Assumption 1. An MDP does not have to
exhibit exactly the same structure to have similar effects, it might already be enough if
there is a state-action pair from which a lot of different states-action pairs are accessible,
that are only accessible after this original state.

A reasonable question is whether although Assumption 1 is invalid in its generality shown
at some specific class of MDPs it might hold on simple MDPs which are not built in order
to disprove Assumption 1. One consideration here is that n does not need to be especially
big as the proof only required

√
n > 1

γ
. So, for any γ > 1√

2
≈ 0.707 it suffices to choose

n = 2. Another consideration in this direction is done by using the benchmark MDPs
which were used in Nadhaji et al. [11].

3.1.2 Experiments

In this section I show that Assumption 1 also fails in the Random MDPs benchmark from
Nadjahi et al. [11] which has already been introduced in Section 2.3.3.

The experiments clearly show that if e′P is used, Equation 52 is invalid for every state-
action pair for every possible κ, unless a low behavior performance ratio of η = 0.1 is used
and at least 200 trajectories are observed. Then the number of invalid state-action pairs
slowly goes down to about 50, which is around 25% of all state-action pairs.

If e′P is considered, the number of state-action pairs invalidating Equation 52 for all
possible κ is significantly lower and decreases further when using a higher performance
ratio for the behavior policy and more trajectories, but is still not getting lower than 30 for
up to 10, 000 trajectories, which is already 5 times the maximum number of trajectories
used in the experiments in Nadjahi et al. [11].

The previous paragraphs focus on a discount factor of γ = 0.95 as it is used in the
experiments of the paper. But even when trying a lower discount factor, e.g., γ = 0.7, it
cannot be ensured that Equation 52 holds for all κ < 1

γ
and for all state-action pairs as can

be seen in Figure 6, where it is shown that independent of the number of trajectories and
the performance of the behavior policy, the number of state-action pairs failing Equation
52 for all possible κ is never less than 10.
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Fig. 6. Heatmap of the number of state-action pairs for which Assumption 1 fails for
γ = 0.7 using the error function e′p on the Random MDPs benchmark [11] with the seed
1234. The x-Axis shows the number of trajectories in D and the y-axis the performance
ratio η of the behavior policy.

One should not pay too much attention to the exact number of state-action pairs failing
Equation 52, but rather notice that Assumption 1 requires all state-action pairs to follow
this inequality and, therefore, Assumption 1 does not hold for this Benchmark.

3.1.3 Mathematical consequences

The consequence of Assumption 1 not holding is that Theorem 2 cannot be proven and,
therefore, the full versions, i.e., the not 1-step versions, of the Soft-SPIBB algorithms are
not theoretically safe, in the sense of Definition 1.
As it was shown in Section 3.1.1, there cannot be an easy fix to Assumption 1 and,
thus, there cannot be an easy workaround for Theorem 2. Therefore, the only theoretical
safety provided in Nadjahi et al. [11] stems from Theorem 1, which only covers the 1-step
versions, so far.

3.2 Discussion of Theorem 1

In the last Section it was shown that Assumption 1 and, therefore, also Theorem 2 do not
hold. Thus, I concentrate on Theorem 1 now, as it is the only theoretical safety guarantee.
I start with an introduction to the notation used in Nadjahi et al. [11] in Section 3.2.1
and prove one preliminary result there. Subsequently, in Section 3.2.2 I prove the bound
on the action-value function from Equation 26, which has to be slightly modified. Here,
it is also discussed in detail which action-value function can be bounded, which becomes
important for the results in the end. In Section 3.2.3 I state and prove the corrected
version of Theorem 1. Section 3.2.4 digs deeper into the theorem to interpret it in more
detail, discusses its strengths and weaknesses, and shows some possible improvements.
Afterwards I analyze its usability for the Soft-SPIBB algorithms in Section 3.2.5. In
this section, it is covered why the full versions of the Soft-SPIBB algorithms are not
πb-advantageous and, thus, Theorem 1 is not applicable to them. Furthermore, I show
that the corrected version of the theorem is not applicable to the 1-step versions of the
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algorithms, but it turns out that there is an easy solution for this. In the last part of this
chapter, I introduce the advantageous versions of the Soft-SPIBB algorithms, which are
similar to the Soft-SPIBB algorithms. However, Theorem 3.2, the corrected version of
Theorem 1, is applicable to them and, thus, they can be considered as safe with respect
to Definition 1.

3.2.1 Introduction of matrix notation and a first use case

To be able to prove Theorem 1, it is necessary to introduce some notation from the
predecessor paper [12]. To enable the use of matrix operations all the quantities introduced
so far are denoted as vectors and matrices in the following. The value functions become

qπ = (qπ(1, 1), ..., qπ(1, |A|), qπ(2, 1), ..., qπ(2, |A|), ..., qπ(|S|, 1), ..., qπ(|S|, |A|)) ∈ R|S||A|
(74)

and
vπ = (vπ(1), ..., vπ(|S|)) ∈ R|S|. (75)

Similarly, the reward vector is

R = (R(1, 1), ..., R(1, |A|), R(2, 1), ..., R(2, |A|), ..., R(|S|, 1), ..., R(|S|, |A|)) ∈ R|S||A|.
(76)

The policy is denoted by

π =


π·1 0 0

. . .

0 π·j 0
. . .

0 0 π·|S|

 ∈ R|S||A|×|S|, (77)

where
π·j = (π(1|j), ..., π(|A||j))T ∈ R|A|, (78)

and the transition probabilities are

P =

 P (1|1, 1) · · · P (1|1, |A|) · · · P (1||S|, |A|)
...

...
...

P (|S||1, 1) · · · P (|S||1, |A|) · · · P (|S||S|, |A|)

 ∈ R|S|×|S||A|. (79)

This notation might seem unintuitive, especially for π, but with this Equation 9 becomes

qπ = R + γvπP (80)

and the Bellman Equation for the state-value function from Equation 13 becomes

vπ = (R + γvπP )π. (81)

Note that I omit the current MDP M in all these notations, as I always do, if it is clear
or not relevant which MDP is currently used.
A useful quantity already mentioned in Section 2.3.1 is the following from Nadjahi et al.
[11].
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Definition 5 One denotes the expectation of the discounted sum of visit to state s′, when
starting in state s and following policy π in MDP M, with transition probabilities P by

dMπ (s′|s) =
∞∑
t=0

γtP(St = s′|Xt ∼ PπSt, S0 = s). (82)

Using the matrix notation for π and P , it can be seen that

dMπ (s′|s) =
∞∑
t=0

γt(Pπ)ts,s′ = (I− γPπ)−1
s,s′ (83)

where I ∈ R|S|×|S| is the identity matrix and it is known that the inverse on the right
exists, since Pπ is a stochastic matrix and γ < 1 [11].
Using this, I can present Proposition 1 and its proof from Nadjahi et al. [11].

Proposition 1 Let π1 and π2 be two policies on an MDP M . Then

vMπ1 − v
M
π2

= qMπ2 (π1 − π2)dMπ1 (84)

holds.

Proof: I start with applying Equation 81 on the left hand side of Equation 84 to get

vMπ1 − v
M
π2

= (R + γvMπ1P )π1 − (R + γvMπ2P )π2

= (R + γvMπ2P )(π1 − π2) + γ(vMπ1 − v
M
π2

)Pπ1

= qMπ2 (π1 − π2) + γ(vMπ1 − v
M
π2

)Pπ1.

(85)

The second step is achieved by adding zero and reordering the summands. The last step
uses Equation 80. From Equation 85 one gets that

(vMπ1 − v
M
π2

)(I− γPπ1) = qMπ2 (π1 − π2) (86)

and, thus, Equation 83 yields

vMπ1 − v
M
π2

= qMπ2 (π1 − π2)dMπ1 (87)

which concludes the proof. �
Proposition 1 yields a decomposition of the difference of the state value function for two
different policies on the same MDP which is utilized to prove the corrected version of
Theorem 1 from Nadjahi et al. [11].

3.2.2 The correct value function

Before proving Theorem 1 it is necessary to go back to the definition of eq in Equation
28 and the statement by Nadjahi et al. [11] that

P
(
∀(s, a) ∈ S ×A : |qMπb (s, a)− qM̂πb (s, a)| ≤ eq(s, a)vmax

)
≥ 1− δ. (88)
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Here, qM̂πb refers to the true action-value function of πb on the estimated MDP M̂ using P̂

and R̂ from Equations 22 and 23, respectively. But considering the proof, however, this
seems wrong. It is necessary to use the Monte-Carlo estimate for qMπb (s, a) from data D

q̂Dπb(s, a) =
1

n

n∑
i=1

Gti (89)

where Gt is the return as defined in Equation 4 and t1, ..., tn are times such that (Sti , Ati) =
(s, a), for all i = 1, ..., n. As E[Gti ] = qMπb (s, a) it is possible to apply the Hoeffding’s
inequality for q̂Dπb , as it is done in the paper. But to the best of my knowledge I do not

know how this should be done for qM̂πb (s, a).

Lemma 2 (Hoeffding) Let X1, ..., Xn be independent variables with values in [0, 1]. Let
X̄ denote the empirical mean X̄ = 1

n

∑n
i=1Xi. Then,

P(X̄ − E[X̄] ≥ t) ≤ exp(−2nt2) (90)

for any t ≥ 0.

This concentration inequality has been proven in Hoeffding [15] and is known as Hoeff-
ding’s inequality.

Lemma 3 For eq as defined in Equation 28, it holds for an arbitrary MDP M with Gmax

as an upper bound on the absolute value of the return in any state-action pair of any policy
and behavior policy πb, that

PD
(
∀(s, a) ∈ S ×A : |qMπb (s, a)− q̂Dπb(s, a)| ≤ eq(s, a)Gmax

)
≥ 1− δ, (91)

if the Gti used to estimate q̂Dπb(s, a) are independent. Here, the subscript D of P emphasizes
that the dataset generated by πb is the random quantity.

Proof: First, note that Hoeffding’s inequality implies that

P(|X̄ − E[X̄]| ≥ t) ≤ 2 exp(−2nt2), (92)

which follows by applying it for X and for 1−X.
Fix the state-action pair (s, a) ∈ S ×A. Then,

PD
(∣∣∣qMπb (s, a)− q̂Dπb(s, a)

∣∣∣ > eq(s, a)Gmax

)

= PD

∣∣∣∣∣(qMπb (s, a) +Gmax)− (q̂Dπb(s, a) +Gmax)

2Gmax

∣∣∣∣∣ >
√

1

2ND(s, a)
log

2|S||A|
δ


≤ 2 exp

(
−2ND(s, a)

1

2ND(s, a)
log

2|S||A|
δ

)
=

δ

|S||A|
,

(93)
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where it is possible to apply Hoeffding’s inequality in the second step since

q̂Dπb(s, a) +Gmax

2Gmax

=
1

n

n∑
i=1

Gti +Gmax

2Gmax

(94)

is the empirical mean of independent variables which are bounded in [0, 1] as Gti are
independent and bounded in [−Gmax, Gmax] and

E[q̂Dπb(s, a)] = E[Gti ] = qMπb (s, a). (95)

�
In Nadjahi et al. [11], it is not explained why the Hoeffding’s inequality works for

qM̂πb . To the best of my knowledge, the only way Hoeffding’s inequality is applicable,

is when q̂Dπb is used. For this reason, I substitute qM̂πb by q̂Dπb . That both are two dif-
ferent quantities and not just computed differently, can be tested in the file differ-
ence in action value functions.py.4

Furthermore, Nadjahi et al. [11] use vmax instead of Gmax as stated in Equation 88. For
this kind of proof, however, vmax does not work, since Gt does not necessarily need to lie
in the interval [−vmax, vmax]. This causes another change in their theorem.
The independence ofGti is essential, as otherwise Hoeffding’s inequality cannot be applied.
In an episodic setting this is easily achieved by ensuring thatGti andGtj are never from the
same episode for i 6= j. In a continuous setting this is harder and might be approximated
by choosing the distance between two adjacent time steps ti and ti+1, such that γti+1−ti

is so small that the dependence between Gti and Gti+1
becomes negligible. This issue is

addressed in more detail in Section 3.2.4.
To enable the use of q̂Dπb for the advantageous property for Theorem 1, it is necessary to
extend the definition given in the paper to arbitrary functions and omit the dependence
on an MDP.

Definition 6 A policy π is πb-advantageous w.r.t. the function q : S ×A → R, if∑
a

q(s, a)(π(a|s)− πb(a|s)) ≥ 0 (96)

holds for all states s ∈ S.

A policy π is πb-advantageous in M if and only if π is πb-advantageous w.r.t. qMπb since∑
a

qMπb (s, a)(π(a|s)− πb(a|s)) =
∑
a

qMπb (s, a)π(a|s)−
∑
a′

qMπb (s, a
′)πb(a

′|s)

=
∑
a

(
qMπb (s, a)− vMπb (s)

)
π(a|s) =

∑
a

AMπbπ(a|s).
(97)

Thus, Definition 6 is an extension of Definition 4 to also allow functions which are in-
dependent of the underlying MDP, i.e., it is now possible to state this property without
access to an MDP, estimated or true.

4https://github.com/Philipp238/Evaluation-of-Safe-Policy-Improvement-with-Baseline-
Bootstrapping/tree/master/auxiliary tests, assessed on 20.03.2021
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3.2.3 The corrected Theorem 1 and its proof

I am now ready to state and prove the corrected version of Theorem 1 as Theorem 3.2.

Theorem 3.2: Safety of constrained and advantageous policies

For any (πb, eq, ε)-constrained policy that is πb-advantageous w.r.t. q̂Dπb , which is esti-
mated with independent returns for each state-action pairs, the following inequality
holds:

PD
(
∀s ∈ S : vMπ (s)− vMπb (s) ≥ −

εGmax

1− γ

)
≥ 1− δ, (98)

where M is the true MDP on which the data D gets sampled by the behavior policy
πb, 0 ≤ γ < 1 is the discount factor and δ > 0 is the safety parameter for eq.

Proof: I start by applying Proposition 1:

vMπ − vMπb = qMπb (π − πb)d
M
π = (qMπb − q̂

D
πb

+ q̂Dπb)(π − πb)d
M
π

= (qMπb − q̂
D
πb

)(π − πb)dMπ + q̂Dπb(π − πb)d
M
π .

(99)

The goal of this proof is to lower bound these two summands. For the first summand,
notice that it is a row vector and, so, a bound on the 1-norm gives a simultaneous bound
for all states. Thus, applying a vector-matrix version of the Hoelder’s inequality, which
is proven in Lemma 5 later on, yields

||(qMπb − q̂
D
πb

)(π − πb)dMπ ||1 ≤ ||((qMπb − q̂
D
πb

)(π − πb))T ||∞||dMπ ||1, (100)

where all the norms refer to matrix norms. Using Lemma 3 and that π is (πb, eq, ε)-
constrained yields that

||
(

(qMπb − q̂
D
πb

)(π − πb)
)T
||∞ ≤ max

s

∑
a

|qMπb (s, a)− q̂Dπb(s, a)||π(a|s)− πb(a|s)|

≤ max
s

∑
a

eq(s, a)Gmax|π(a|s)− πb(a|s)| ≤ εGmax

(101)

holds with probability 1− δ. The next step is to compute

||dMπ ||1 = max
s

∑
s′

∞∑
t=0

γtP(St = s′|Xt ∼ PπSt, S0 = s)

= max
s

∞∑
t=0

γt
∑
s′

P(St = s′|Xt ∼ PπSt, S0 = s) = max
s

∞∑
t=0

γt =
1

1− γ
.

(102)

Thus, one can lower bound the first summand with− εGmax
1−γ with probability 1−δ. To lower

bound the second summand, note that all entries of dMπ are non-negative, so Theorem 3.2
follows if q̂Dπb(π − πb)(s) ≥ 0 for every state s ∈ S. So, let s ∈ S be arbitrary. Then,

q̂Dπb(π − πb)(s) =
∑
a

q̂Dπb(s, a)(π(a|s)− πb(a|s)) ≥ 0 (103)
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holds, since π is πb-advantageous w.r.t. q̂Dπb . �
As mentioned in the proof, it remains to show that the inequality in Equation 100 holds.
The inequality is very similar to Hoelder’s inequality for vectors [25].

Lemma 4 (Hoelder) Let n ∈ N and v, w ∈ Rn be arbitrary. Let p, q ∈ [1,∞] such that
1
p

+ 1
q

= 1, where one defines “ 1
∞ = 0”. Then,

|vTw| ≤ ||v||p||w||q (104)

holds.

However, Equation 100 has a vector-matrix product on the left hand side, instead of a
vector-vector product. In order to show that extending Hoeffding’s inequality to matrices
in general has to be done carefully, consider

A =

(
0 1
0 1

)
and B =

(
0 0
0 1

)
. (105)

Then ||A||2 = 1, as its eigenvectors are (1, 0)T and (1, 1)T with the eigenvalues 0 and 1,
respectively, and ||B||2 = 1, as its eigenvectors are (1, 0)T and (0, 1)T with the eigenvalues
0 and 1, respectively. However,

AB =

(
0 1
0 1

)
(106)

and, thus,
||AB||1 = 2 > 1 = ||A||2||B||2. (107)

Even though this shows that a general matrix version of Hoelder’s inequality does not
hold, the extension required for Equation 100 is true and is proven in Lemma 5.

Lemma 5 Let n ∈ N, v ∈ Rn and A ∈ Rn×n be arbitrary. Then,

||vTA||1 ≤ ||v||∞||A||1 (108)

holds, where all norms refer to matrix norms.

Proof: Denote the columns of A by a1, ..., an. Then,

||vTA||1 = ||(vTa1, ..., vTan)||1 = max
i=1,...,n

{|vTai|}

≤ max
i=1,...,n

{||v||∞||ai||1} = ||v||∞ max
i=1,...,n

{||ai||1} = ||v||∞||A||1
(109)

where I used the definition of the 1-norm for matrices as the maximum absolute column
sum in the second and the last step and Hoeffding’s inequality for vectors in the third
step. �
I focus now on the difference of Theorem 3.2 and Theorem 1 from Nadjahi et al. [11].
One important difference discussed in the previous section is that the policy π has to be
πb-advantageous w.r.t. q̂Dπb instead of πb-advantageous in the MDP M̂ .
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Another change is that it was necessary to substitute vmax by Gmax for reasons explained
in Section 3.2.2.

The last difference is that in the original formulation of their theorem, Nadjahi et al. [11]
state that for one state-action pair the lower bound on the difference of the state-value
functions holds with probability 1 − δ. However, this lower bound holds simultaneously
for all state-action pairs with probability 1− δ, as it should be clear from Theorem 3.2.

The difference in the proof is the consideration of the extension of Hoelder’s inequality in
Equation 100. In the original paper, the authors used on the left hand side the supremum-
norm, possibly interpreting it as a vector norm for a row vector instead of a matrix norm.
Using Hoelder’s inequality for this norm is, however, questionable, as usually the 1-norm
is required.

3.2.4 Analysis of the theorem

In this subsection Theorem 3.2.1 is analyzed in more detail. I start by interpreting its
statement and also applying it to the Random MDPs benchmark the authors tested the
algorithms on. As the given bound turns out to be pretty weak, I discuss various attempts
to strengthen it. The first one is done by revisiting the proof of Theorem 3.2 and the
second one tries to improve the error function. In the end, I try to tackle the problem
that the returns for each state-action pair need to be independent.

Theorem 3.2 yields that any (πb, eq, ε)-constrained and πb-advantageous w.r.t. q̂Dπb policy

is a εGmax
1−γ -approximate (1− δ)-safe policy improvement w.r.t. πb. It is only natural that

the lower bound only holds with some probability close to 1 instead of 1, since there is
always the possibility of observing untypical data and, thus, the action-value function is
estimated poorly. However, by choosing a smaller δ, the error function is increased, and,
thus, more action-value functions are encompassed at the same time, which increases the
probability that the theoretical bound applies.

Furthermore, it should not be of surprise that the lower bound on the difference in the
value functions is negative. One reason for this is that Theorem 3.2 holds for every
behavior policy πb and, thus, also for the optimal policy on the MDP. A positive lower
bound would not be possible here and a lower bound of zero would mean a high probability
that the behavior policy remains unchanged or finds another optimal policy. An additional
reason for this, besides this extreme case, stems directly from the proof, where it can be
seen how the lower bound is derived. Especially the bound on the first summand from
Equation 99, shows that the safety provided by this theorem is rooted in the idea that
it cannot be assumed that the action-value function is correctly estimated, but there are
state-action pairs for which the range of possible values can be bounded more narrowly
with a high probability than for others. By expressing this through the error function,
the (πb, eq, ε)-constrained property is utilized to derive a maximal risk, assuming the
error function actually bounded the action-value function and otherwise the δ probable
case applies, meaning that the performance cannot be bounded from below. And as
one never knows if the action-value function for a state-action pair is overestimated or
underestimated, one cannot get rid of the possibility of a slight loss of the state-value
function for the new policy. The strength of the lower bound is that it involves, besides
two constants, the algorithm hyper-parameter ε. So, theoretically one can decrease ε > 0
as much as desired and, thus, obtain a lower bound which is practically zero.
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In the last two paragraphs I mentioned the limits of Theorem 3.2, namely, that it is only
approximately and probably safe, but countered these restrictions by explaining that δ
and ε are hyper-parameters and can, thus, be chosen as small as desired. This deserves
some more considerations as the choice of these parameters have consequences for the
freedom of π. Assume the extremes ε = 0 and ε = ∞. In the first case, any (πb, eq, 0)-
constrained policy π has to be exactly the same as πb, since eq is always positive. This
shows that the only way to get a lower bound of 0 in Theorem 3.2 is by setting π = πb.
For the other extreme case ε =∞, every policy is (πb, eq,∞)-constrained and the theorem
yields consequently a lower bound of −∞. This shows the trade-off between a high ε
which leads to high freedom of the policy and low safety and a small ε which results in
low freedom and high safety. The remaining question is which role δ plays in this. As
can be seen in the definition of the error function eq in Equation 28, a lower value of δ
increases the error function and, therefore, it becomes harder for a policy to be (πb, eq, ε)-
constrained, but at the same time the safety of the theorem is reinforced. Therefore, one
faces for both, ε and δ, a safety-freedom trade-off.
How this trade-off exactly looks like is shown experimentally in Section 3.4. For now, I
examine what parameters the authors use in their benchmarks. They perform a hyper-
parameter optimization for all the algorithms and for the Soft-SPIBB algorithms ε = 2
turned out to be the best one. In the paper [11] itself, they do not talk about which δ is
used, but in the code it seems like they set δ = 1.5 Obviously, this choice of δ makes no
sense if one plans on using Theorem 3.2, so, they used both hyper-parameters as such,
without considering what it means for the theoretical safety bound. This also becomes
clear considering the choice of ε = 2, as this means a lower bound on the difference of the
value functions of −40, for their choice of γ = 0.95, as the absolute value of the return
is bounded by 1. This can be lowered to 20, since in the Random MDPs benchmark
Gt ∈ [0, 1], which can be translated to Gt ∈ [−1

2
, 1

2
] without changing the problem of the

MDP by simply changing the reward function (by setting the reward of the initial state
to −0.5). As a bound on the return is always a bound on the state-value function, since
it is the expected value of the returns, the difference between the value function at one
state for two different policies in such a random MDP is at most 1. Thus, a choice of
ε = 2 yields a trivial lower bound. Another issue which complicates the application of
this theorem is that Gmax is a parameter not necessarily known about an MDP without
having access to the transition probabilities or at least the reward function.
The previous paragraphs showed on the one hand the theoretical strength of Theorem
3.2 and on the other hand its practical limitations. As the proof used several inequalities
without discussing their sharpness, there might still be some potential hidden in it. Es-
pecially the second summand in Equation 99 might be more exploitable as, so far, it is
only used that all the entries involved are non-negative. Equation 99 and the inequalities
from Equations 101 and 102 yield that with probability 1− δ

vMπ (s)− vMπb (s) ≥ −
εGmax

1− γ
+
∑
s′

(∑
a

q̂Dπb(s
′, a)(π(a|s′)− πb(a|s′))

)
dMπ (s′|s) (110)

holds for all states s ∈ S. The issue, one faces when trying to infer the exact value

5https://github.com/RomainLaroche/SPIBB/blob/master/soft randomMDPs main.py, line 25, as-
sessed on 20.03.2021
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of dMπ (s′|s), is that it involves knowledge about the transition probabilities. Instead, a
possible approach might be to utilize an estimation of the transition probabilities and
bounds on this estimation, similar to the MLE estimate P̂ in Equation 22 and its error
function eP in Equation 27. A detailed discussion of this idea is beyond the scope of
this thesis and might be part of later research. In this master’s thesis, I show a simple
fact about dMπ (s′|s), which enables a slightly improved version of Equation 34. For this
observe that

dMπ (s|s) =
∞∑
t=0

γtP(St = s|Xt ∼ PπSt, S0 = s) ≥ γ0P(S0 = s|Xt ∼ PπSt, S0 = s) = 1,

(111)
i.e., the expected discounted sum of visits to the state in which the MDP started is at
least 1. Inserting this into Equation 110 yields

vMπ (s)− vMπb (s) ≥ −
εGmax

1− γ
+
∑
a

q̂Dπb(s, a)(π(a|s)− πb(a|s)). (112)

Here, the second summand is easily calculated when the policy π has already been com-
puted. This additional summand is non-negative, so, it cannot decrease the lower bound.
How big is depends on the context and is investigated in the experiments in Section 3.4.
Another possibility to improve Theorem 3.2 is to increase the sharpness of the error
function. For this, note that it is not important how the error function is defined, for
the proof of Theorem 3.2 it is sufficient that it fulfills the inequality from Lemma 3.
Thus, defining eq as the authors in Equation 28 by using Hoeffding’s inequality is just
one way of achieving it. One disadvantage of using Hoeffding’s inequality is that it only
incorporates the number of observations to estimate the uncertainty. Even though this
is a valid approach, it neglects additional knowledge of the data, e.g., its variance. It
should be clear that less observations of a quantity are necessary to estimate it with high
confidence, if the quantity has a low variance. This is incorporated in Bennett’s inequality
[15]:

Lemma 6 (Bennett) Let X1, ..., Xn be i.i.d. (independent and identical distributed)
variables with values in [0, 1]. Then,

P

X̄ − E[X̄] ≤

√
2 Var(X1) log 1

δ

n
+

log 1
δ

3n

 ≥ 1− δ (113)

for any δ > 0.

Observe that Hoeffding’s inequality from Lemma 2 can be rewritten to

P

X̄ − E[X̄] ≤

√
log 1

δ

2n

 ≥ 1− δ (114)

to make it easier comparable to Equation 113. Now, one can identify several differences.
Bennett’s inequality states the uncertainty through two separate summands, one which
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only depends on the number of observations and one which depends on both, the number of
observations and of the variance. However, while the bound of the Hoeffding’s inequality

depends on
√

1
n
, the second summand of the bound in Bennett’s inequality depends

directly on 1
n
, which converges substantially faster to zero. The first summand, opposingly,

depends again on
√

1
n

but also incorporates the variance of the variables. Thus, assuming

that the random variables are deterministic, i.e., there is a constant c ∈ [0, 1] such that
X1 = c almost surely, one gets Var(X1) = 0 and, therefore, only the second summand
remains, which is a great improvement in comparison to Hoeffding’s bound.

Assuming the other worst case, namely, that Var(X) = 1
4

it can be seen that Hoeffding’s
inequality is sharper in this scenario as the first summand of Bennett’s bound becomes
exactly the bound from Hoeffding’s inequality. However, for any random variable X
which is bounded in [0, 1], Popoviciu’s inequality [26] states that the variance Var(X)
fulfills Var(X) ≤ 1

4
and the equality is only achieved by a random variable with P(X =

0) = 1
2

= P(X = 1). Thus, for any other sequence of i.i.d. random variables which
are bounded by 0 and 1, the asymptotic bound of Bernett’s inequality is lower than the
asymptotic bound of Hoeffding’s inequality.

However, to be able to use Bernett’s inequality to compute the error function one needs to
know the variance of the action-value function and this cannot be assumed to be known
in general. Consequently, it is necessary to use an empirical bound like the one derived
by Maurer and Pontil [27].

Lemma 7 (Maurer and Pontil) Let X1, ..., Xn be i.i.d. variables with values in [0, 1]
and denote with X the random vector X = (X1, ..., Xn). Then,

P

X̄ − E[X̄] ≤

√
2V̂ar(X) log 2

δ

n
+

7 log 2
δ

3(n− 1)

 ≥ 1− δ (115)

for any δ > 0. Here, V̂ar(X) denotes the sample variance

V̂ar(X) =
1

n(n− 1)

∑
1≤i<j≤n

(Zi − Zj)2 (116)

This lemma gives a similar bound as Bennett’s inequality, however, adds some more
constants and is, thus, weaker, as should have been expected. Following Lemma 7 I
define

eBq (s, a) = 2


√

2V̂ar( G
2Gmax

) log(4|S||A|
δ

)

ND(s, a)
+

7 log(4|S||A|
δ

)

3(ND(s, a)− 1)

 (117)

with G = (Gt1 , ..., Gtn). With exactly the same proof as for Lemma 3 for eq, it is possible
to show the same inequality for eBq , if one applies the empirical version of Bennett’s
inequality instead of Hoeffding’s inequality:
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Lemma 8 For eBq as defined in Equation 117, it holds for an arbitrary MDP M with
Gmax as an upper bound on the absolute value of the return in any state-action pair of
any policy and behavior policy πb, that

PD
(
∀(s, a) ∈ S ×A : |qMπb (s, a)− q̂Dπb(s, a)| ≤ eBq (s, a)Gmax

)
≥ 1− δ, (118)

if the Gti used to estimate q̂Dπb(s, a) are independent.

The advantage of this new version of the error function has already been discussed before:
the improved asymptotic bound, especially for low variance returns. There are also two
disadvantages. The first is that if only a few observations are available, the bound is worse
than the bound achieved by the Hoeffding’s bound. Even more severe, the value Gmax

is used in the definition of eBq and one needs to know it a priori to be able to apply this
error function. However, the maximal return is not necessarily known. There are various
possible approaches to solve this issue.
The first is to derive an estimation for Gmax from the observations Gt. The disadvantage
of this method is that Theorem 3.2 does not hold anymore for an approximated version
of the error function. How strongly it fails depends on the MDP and how good the
approximation was.
As it is sufficient to find an upper bound on eBq to ensure that Theorem 3.2 is still
applicable, the second solution tries to find a lower bound on Gmax. For this, one might
simply choose Ĝmax = 1

2
(maxtGt −mintGt). This has the disadvantage that it increases

the error function and, so, the belief of the uncertainty of the action-value function is
higher than necessary and, consequently, some power of Theorem 3.2 is lost.
The last solution is to observe that Gmax ≤ Rmax

1−γ . How tight this upper bound is, depends

on the MDP, so, choosing Rmax
1−γ as an approximation for Gmax is not necessarily a good

idea, but might be helpful and even a provably good approximation in some MDPs.
However, it is also possible to change some of the theory to use Rmax

1−γ instead of Gmax.
This would mean substituting it in Equations 118 and 117 and, thus, in Theorem 3.2 as
well. This would not only enable the use of eBq without any approximation, it would even
make Theorem 3.2 more understandable as right now the user also cannot know the value
of Gmax and, therefore, cannot interpret its statement correctly. The drawback of this
would be due to the fact that the role of Gmax was to bound the absolute return. By
using a non-sharp upper bound, some of the power of Hoeffding’s or Bennett’s inequality
gets wasted. The size of this waste, again, depends strongly on the MDP.
In Section 3.4 I empirically investigate how the error function relying on the Maurer and
Pontil bound compare to the one relying on Hoeffding’s bound.
In Section 3.2.2, I explained why the independence of the returns Gt is important for
Theorem 3.2 to hold. I also mentioned an easy solution for this in the episodic setting.
For non-episodic MDPs this turns out to be more complicated and I illustrate here the
idea already mentioned in Section 3.2.2.
The idea is to reach for approximate independence. For this assume that St = s = St+h
and At = a = At+h and, thus, the two returns Gt and Gt+h would be used to estimate
q̂Dπb(s, a). To see why these two returns are not independent, remember Equation 4 which
yields that

Gt =
∞∑

i=t+1

γi−t−1Ri =
t+h∑
i=t+1

γi−t−1Ri + γhGt+h. (119)
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By the Markov property, Rt+1, ..., Rt+h are independent of Gt+h, conditioned on the fact
that St = s = St+h and At = a = At+h holds. Thus, Gt − γhGt+h and Gt+h are inde-
pendent. Since one wants to estimate q̂Dπb(s, a) by unbiased samples, one might not want
to simply use Gt − γhGt+h to estimate it, but instead enforce that if two returns Gt and
Gt+h are used, that h is so big that γhGt+h is negligible or in other words Gt − γhGt+h is
approximately Gt. This can be achieved by using a return for the estimation of q̂Dπb(s, a)
only if the last return, which was used to estimate q̂Dπb(s, a), was enough time steps ago
and, otherwise, omit this return. This procedure is formalized in Algorithm 3. Naturally,

Algorithm 3: Ensuring approximate independence of the returns

Input : G1: list of returns achieved after being in the state-action pair (s, a)
T : list of the time steps of the returns in G1

κ: the maximal correlation between two returns one would accept
γ: discount factor

Output: sublist of G1 such that the maximal correlation between two returns in it is
bounded by κ

1 Initialize G2 as an empty list
2 Set t0 = −∞
3 for G ∈ G1 do
4 Let t be the corresponding time step to G in T .
5 if γt−t0 ≤ κ then
6 append G to G2

7 t0 = t

8 end

9 end

reducing the number of returns used to estimate the value function of the behavior policy
increases the error function, which makes the algorithms less flexible. However, if one
wants to apply Theorem 3.2 it is important that the uncertainty estimation in the form
of the error functions is correct, which is only given if independent samples are used.
The problem of highly correlated data becomes clear when looking at the extreme case
where the agent visited the same state-action pair n times in a row. If Algorithm 3 is not
used, the error function gives the confidence for the value function at this state-action
pair considering only that there were n samples it could use. However, as the correlation
between each sample and its successor is exactly the discount factor, see Equation 119, the
information gained by these n samples is far less than by n samples which are distributed
equally over the whole trajectory.

I do not advice to use Algorithm 3 in general as it comes with a loss of information which
is usually, especially in offline reinforcement learning, not a good idea. However, if one
wants to be able to estimate the uncertainty as good as possible and to utilize Theorem 3.2
one should definitely consider applying it. In the experiments in Section 3.4.3 I examine
the influence of this procedure.
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3.2.5 Usability for the Soft-SPIBB algorithms

After discussing Theorem 3.2, the question arises if there is an algorithm one can apply
it to. To be able to apply it, the algorithm has to produce a policy which is

� (πb, eq, ε)-constrained and

� πb-advantageous w.r.t. q̂Dπb .

As stated in Theorem 2.2, the Soft-SPIBB algorithms all fulfill the first property, but
struggle with the second one. Remember that the easiest way to understand what the
Soft-SPIBB algorithms aim for is the optimization problem described in Equation 37. As
mentioned before, both algorithms produce a sequence of policies πb = π(0), π(1), ..., π(n)

which fulfill that π(i+1) is π(i)-advantageous in the estimated MDP M̂ . This was the
reason, Nadjahi et al. [11] stated that Theorem 1 is applicable to the 1-step versions of
the Soft-SPIBB algorithms. However, in Section 3.2 I have shown that the policy has to
be πb-advantageous w.r.t. q̂Dπb instead of πb-advantageous in the estimated MDP M̂ .

The easy solution to make Theorem 3.2 applicable to the 1-step version of Soft-SPIBB
would be to focus on the optimization problem

π(1) = arg max
π

∑
a∈A

qDπb(s, a)π(a|s) (120)

subject to:
Constraint 1: π(1)(·|s) being a probability over A:

∑
a∈A π

(1)(a|s) = 1 and ∀a ∈ A :
π(1)(a|s) ≥ 0.

Constraint 2: π(1) being (πb, eq, ε)-constrained.

The difference to the optimization problem from Equation 37 is that I used here q̂Dπb as

the action-value function I want to optimize the new policy for and, thus, π(1) is πb-
advantageous w.r.t. q̂Dπb .

It is usually desired to perform more than one step to improve the policy, as the action-
value function changes for the new policy. However, it is not clear how to do it without
losing the advantageous property starting from Equation 120.

A modified version of this optimization problem is shown in the next section, which
enables the derivation of two algorithms which produce policies to which Theorem 3.2 is
applicable.

3.2.6 Advantageous versions of the Soft-SPIBB algorithms

In this section I introduce the advantageous version of the optimization problem from
Equation 37 and deduce the two algorithms Adv-Exact-Soft-SPIBB and Adv-Approx-
Soft-SPIBB. The tag Adv- relates to the fact that they always compute policies which
are πb-advantageous w.r.t. q̂Dπb .

For a given error function e : S ×A → R≥0, the new (i+ 1)th PI step is the following:

π(i+1) = arg max
π

∑
a∈A

qM̂π(i)(s, a)π(a|s) (121)
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subject to:
Constraint 1: π(i+1)(·|s) being a probability over A:

∑
a∈A π

(i+1)(a|s) = 1 and ∀a ∈ A :
π(i+1)(a|s) ≥ 0.

Constraint 2: π(i+1) being (πb, e, ε)-constrained.

Constraint 3: π(i+1) being πb-advantageous w.r.t. q̂Dπb .

Thus, it is the same problem already solved by the original Soft-SPIBB algorithms with
the additional constraint that the new policy has to be πb-advantageous w.r.t. q̂Dπb .

Adv-Exact-Soft-SPIBB: Since by definition Constraint 3 is a linear constraint, see
Definition 6, this optimization problem can be solved exactly by adding Equation 96 as
one of the constraints for the linear program already described in Section 2.3.2 and then
solve it for any solver, just the same as its predecessor algorithm Exact-Soft-SPIBB does
it.

Adv-Approx-Soft-SPIBB: Again I build on the original Soft-SPIBB algorithm here,
by using the basic structure from Approx-Soft-SPIBB and adding a budget representing
the right-hand side of Equation 96 to ensure that it is non-negative all the time. This
is done by simply prohibiting the movement of probability mass which would result in a
negative budget. The whole pseudo code is displayed in Algorithm 4.

Since the left-hand side of Equation 96 is 0 for π(·|s) = πb(·|s), the budget B can be
initialized as 0 in Line 3. To check whether the left-hand side increases or decreases when
increasing π(a+|s) and decreasing π(a−|s), one computes the difference in q̂Dπb for the two
different state-action pairs in Line 12. If this is non-negative, one does not have to pay
attention to the budget when asserting how much probability mass to move and one can
just use the same m+ as one used in Approx-Soft-SPIBB in Algorithm 1. Otherwise, one
diminishes the left-hand side of Equation 96 by m+b, where

b = q̂Dπb(s, a
+)− q̂Dπb(s, a

−), (122)

when moving probability mass m+ from a− to a+. Thus, it has to be ensured that

m+ ≤ −B
b

(123)

holds, since the left-hand side of Equation 96 after moving m+ from π(a−|s) to π(a+|s)
is, see the proof of Theorem 3.3,

B + bm+ ≥ B − bB
b

= 0. (124)

Line 19 simply updates B to its new value and the rest is already known from Approx-
Soft-SPIBB.

Theorem 3.3: Adv-Soft-SPIBB properties

The policy improvement steps of Adv-Exact-Soft-SPIBB and Adv-Approx-Soft-SPIBB
generate policies that are guaranteed to be (πb, ε, e)-constrained and πb-advantageous
w.r.t. q̂Dπb .
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Algorithm 4: Adv-Approx-Soft-SPIBB: Policy Improvement

Input : Behavior policy πb, action space A, state space S, errors e(s, a) for each
(s, a) ∈ S ×A, hyper-parameter ε > 0, function q̂Dπb and last iteration

action-value function qM̂
π(i)

Initialize: π(i+1) = πb
1 for s ∈ S do
2 E = ε
3 B = 0

4 Define A− as A in increasing order of qM̂
π(i)(s, ·)

5 for a− ∈ A− do
6 m− = min{π(i+1)(a−|s), E

2e(s,a−)
}

7 Define A+ as A in decreasing order of
qM̂
π(i)

(s,a)−qM̂
π(i)

(s,a−)

e(s,a)

8 for a+ ∈ A+ do
9 if a+ == a− then

10 break
11 end
12 b = q̂Dπb(s, a

+)− q̂Dπb(s, a
−)

13 if b ≥ 0 then
14 m+ = min{m−, E

2e(s,a+)
}

15 else
16 m+ = min{m−, E

2e(s,a+)
,−B

b
}

17 end
18 if m+ > 0 then
19 B = B + bm+

20 π(i+1)(a+|s) = π(i+1)(a+|s) +m+

21 π(i+1)(a−|s) = π(i+1)(a−|s)−m+

22 E = E −m+(e(s, a+) + e(s, a−))
23 m− = m− −m+

24 end

25 end

26 end

27 end

Proof: The optimization problem described in Equation 121, which is a feasible problem
since πb is a feasible point, can be solved by Linear programming and by the constraints
of this problem, the produced policy is always (πb, ε, e)-constrained and πb-advantageous
w.r.t. q̂Dπb . Therefore, Theorem 3.3 is proven for Adv-Exact-Soft-SPIBB.

Some of the properties of Adv-Approx-Soft-SPIBB have already been shown. First of all,
since the same mechanisms, which were used for Approx-Soft-SPIBB to ensure that the
produced policy is (πb, ε, e)-constrained, are still applied, Adv-Approx-Soft-SPIBB is also
(πb, ε, e)-constrained. Furthermore, the intuition behind the budget calculation for the
advantageous property has already been explained. This will be rigorously proven now
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by showing at first inductively that, in Line 16, B is always the correct budget, i.e.,

B =
∑
a

q̂Dπb(s, a)(π(a|s)− πb(a|s)), (125)

where π is the current policy.
The induction start is done by observing that π(·|s) = πb(·|s) which means that the
right-hand side of Equation 125 is 0 and that B is initialized as 0 in Line 3.
For the induction step assume that B fulfills equation 125 and, afterwards, π is updated
to π′ and B to B′ according to Lines 19 to 21. The goal is to show that

B′ =
∑
a

q̂Dπb(s, a)(π′(a|s)− πb(a|s)) (126)

holds. For this calculate ∑
a

q̂Dπb(s, a)(π′(a|s)− πb(a|s))

=
∑
a

q̂Dπb(s, a)(π′(a|s)− π(a|s)) +
∑
a

q̂Dπb(s, a)(π(a|s)− πb(a|s))

= q̂Dπb(s, a
+)(π′(a+|s)− π(a+|s)) + q̂Dπb(s, a

−)(π′(a−|s)− π(a−|s)) +B

= q̂Dπb(s, a
+)m+ − q̂Dπb(s, a

−)m+ +B = bm+ +B = B′.

(127)

Therefore, it is proven that the budget B fulfills Equation 125 in Line 16. Enforcing
the inequality from Equation 123 in Line 16 yields that B is never negative as shown
in Equation 124. Therefore, the current policy is always πb-advantageous w.r.t. q̂Dπb .
Consequently, the end policy of the PI step is also πb-advantageous w.r.t. q̂Dπb . �
Therefore, if one chooses eq from Equation 28 as the error function for the advantageous
versions of the Soft-SPIBB algorithms, the generated policies fulfill the properties required
in Theorem 3.2 and are consequently εGmax

1−γ approximate 1 − δ-safe policy improvements
w.r.t. πb.
Thus, the whole analysis from Section 3.2.3 is applicable to policies generated from Adv-
Exact-Soft-SPIBB and Adv-Approx-Soft-SPIBB, too. In Section 3.4 I empirically test
how these new algorithms compare to the original Soft-SPIBB and SPIBB algorithms
and to some other uncertainty incorporating offline reinforcement learning algorithms.
These algorithms are introduced in Section 3.3.

3.3 Algorithms for comparison

In the previous sections I discussed the theory behind the Soft-SPIBB algorithms and
concluded that the theoretical safety bounds proven in Nadjahi et al. [11] apply only
to a modified version of the 1-step Soft-SPIBB algorithms. However, the Soft-SPIBB
algorithms were extended to Adv-Soft-SPIBB algorithms to make Theorem 3.2, the cor-
rected version of Theorem 1 from Nadjahi et al. [11], applicable. To assess their practical
relevance I use them against several other algorithms on different benchmarks in Section
3.4. The competitor algorithms are

� Basic RL: classical Dynamic Programming as explained in Section 2.2,
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� Reward adjusted MDP: an algorithm adjusting the reward to incorporate the un-
certainty as already mentioned in Section 2.3.3,

� Πb-SPIBB and Π≤b-SPIBB: the predecessor algorithms of Soft-SPIBB from Laroche
et al. [12],

� Lower-Approx-Soft-SPIBB: a newly derived, heuristic adaption of Approx-Soft-
SPIBB,

� R-MIN: pessimistic adaption of the R-MAX algorithm from Brafman, Tennenholtz
[28],

� DUIPI: an algorithm incorporating the covariance matrix of the action-value func-
tion when choosing the policy from Schneegass et al. [29].

All of the above algorithms, except Basic RL, incorporate some kind of theoretical or
heuristical safety mechanism, which is explained in the following subsections in more
detail and I present the framework of my implementation in Subsection 3.3.7.

3.3.1 Basic RL

Similar to Nadjahi et al. [11], I am using Basic RL as an competitor in the benchmarks.
This algorithm simply consists out of estimating the transition probabilities and reward
matrix by Equations 22 and 23, respectively, and using these instead of the real but
unknown transition probabilities and rewards for the Policy Iteration as described in
Section 2.2.
Therefore, after the estimation process in the beginning, all the computations can be
divided into Policy Evaluation (PE) and Policy Improvement (PI) steps. This is a re-
curring theme for the batch reinforcement learning algorithms I am considering here, as
it has already been stated in Section 2.2 for general RL and it is also exploited for the
implementation in Section 3.3.7.

3.3.2 RaMDP

As already explained in Section 2.3.3, RaMDP (Reward adjusted MDP) from Petrik et
al. [18] modifies the reward matrix to incorporate the uncertainty in the following way:

R̃(s, a) = R̂(s, a)− κ√
ND(s, a)

, (128)

where κ > 0 is some hyper-parameter. This algorithm has also been used in the bench-
marks of Nadjahi et al. [11]. Besides this change, RaMDP works exactly as Basic RL.

3.3.3 SPIBB

Laroche et al. [12] propose the Πb- and Π≤b-SPIBB algorithms which follow a similar idea
as the Soft-SPIBB algorithms. They both have the same preparation, i.e., they estimate
P and R, and conduct the same PE step as Basic RL (and Soft-SPIBB). However, they
use a different PI step.
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This depends on the hyperparameter N∧, which divides the state-action pairs (s, a) in
two different sets, depending on their frequency ND(s, a) in the collected data D:

B = {(s, a) ∈ S ×A : ND(s, a) ≤ N∧} and BC = (S ×A) \ B. (129)

B is called the bootstrapped set, as Πb-SPIBB always sets in the PI step

π′(a|s) = πb(a|s), ∀(s, a) ∈ B (130)

for the new policy π′ but optimizes in its complement, i.e., sets

π′(a, s) =


∑

a′|(s,a′)∈BC
πb(a

′|s), if a = arg max
a′|(s,a′)∈BC

qM̂π (s, a′)

0, otherwise

(131)

where the action-value function of the previous policy π on the estimated MDP M̂ is
used. Thus, Laroche et al. [12] try to solve the optimization problem

π′ = arg max
π

∑
a∈A

qM̂π (s, a)π(a|s) (132)

subject to:
Constraint 1: π′(·|s) being a probability over A:

∑
a∈A π

′(a|s) = 1 and ∀a ∈ A :
π′(a|s) ≥ 0.
Constraint 2: π′(a|s) = πb(a|s) for all (s, a) ∈ B.
The fact that a policy computed by Πb-SPIBB equals the behavior policy for any state-
action pair in the bootstrapped set, enables the authors to prove that Πb-SPIBB produces
policies which are ξ-approximate 1 − δ-safe policy improvements w.r.t. to the behavior
policy πb, where

ξ =
4vmax
1− γ

√
2

N∧
log

2|S||A|2|S|
δ

. (133)

Its heuristic variation Π≤b-SPIBB does not exhibit any theoretical safety. However, it
performed even better than Πb-SPIBB in their benchmarks. Its most concise description
is probably via its optimization problem:

π′ = arg max
π

∑
a∈A

qM̂π (s, a)π(a|s) (134)

subject to:
Constraint 1: π′(·|s) being a probability over A:

∑
a∈A π

′(a|s) = 1 and ∀a ∈ A :
π′(a|s) ≥ 0.
Constraint 2: π′(a|s) ≤ πb(a|s) for all (s, a) ∈ B.
This only differs in Constraint 2 to the optimization problem corresponding to Πb-SPIBB.
While Πb-SPIBB prohibits the change of the behavior policy for uncertain state-action
pairs, Π≤b-SPIBB just does not allow to add more weight to them but allows to reduce
it.
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3.3.4 Lower-Approx-Soft-SPIBB

Lower-Approx-Soft-SPIBB is a new variant of the Soft-SPIBB algorithms which incor-
porates the idea from the heuristic adaption of Π≤b-SPIBB from Πb-SPIBB. As seen in
Section 3.3.3 this adaption follows the idea to only consider the uncertainty of a state-
action pair if the new policy is supposed to give more weight to this pair, but it is always
allowed to decrease the probability of a state-action pair, independent of its uncertainty.
Even though this heuristic version lost its theoretical safety, Laroche et al. [12] noticed a
significant improvement with this new algorithm.
In the following, I apply the same heuristic to Approx-Soft-SPIBB. this requires an adap-
tion of the constrainedness-property.

Definition 7 A policy π is (πb, ε, e)-lower-constrained w.r.t. a baseline policy πb, an error
function e and a hyper-parameter ε, if∑

a∈A

e(s, a) max{0, π(a|s)− πb(a|s)} ≤ ε (135)

holds for all states s ∈ S.

The optimization problem which is supposed to be solved by Lower-Approx-Soft-SPIBB
in the PI step of the (i+ 1)th-iteration is:

π(i+1) = arg max
π

∑
a∈A

qM̂π(i)(s, a)π(a|s) (136)

subject to:
Constraint 1: π(i+1)(·|s) being a probability over A:

∑
a∈A π

(i+1)(a|s) = 1 and ∀a ∈ A :
π(i+1)(a|s) ≥ 0.
Constraint 2: π(i+1) being (πb, e, ε)-lower-constrained.
The pseudo code of Lower-Approx-Soft-SPIBB is depicted in Algorithm 5 and has due to
the proximity to Approx-Soft-SPIBB only slight changes to its pseudo code in Algorithm
1, where only Lines 5, 11, and 15 changed. In Line 5, the algorithm can now choose
the whole probability mass π(i+1)(a−|s), as being lower-constrained is independent of the
uncertainty of states I remove probability mass from. Line 15 depicts the budget update
for a lower-constrained policy and Line 11 has been changed to fit to this update to ensure
that the policy stays (πb, e, ε)-lower-constrained.
The property to be (πb, e, ε)-lower-constrained does not yield any provable theoretical
properties, however, it implements an interesting safety heuristic and, thus, I test it out
in the benchmarks in Section 3.4 where it can be seen that it performs really well. Also,
no theoretical safeties are lost by this, as it was shown in the preceding sections that there
are none applying to Approx-Soft-SPIBB.

3.3.5 R-MIN

Brafman and Tannenholtz [28] introduce the R-MAX algorithm as a simple online algo-
rithm for exploration. The basic idea is to use the hyper-parameter N∧ and as long as
a state-action pair has not been visited more than N∧ times yet, its value is set to the
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Algorithm 5: Lower-Approx-Soft-SPIBB: Policy Improvement

Input : Behavior policy πb, action space A, state space S, errors e(s, a) for each
(s, a) ∈ S ×A, hyper-parameter ε > 0 and last iteration action-value

function qM̂
π(i)

Initialize: π(i+1) = πb
1 for s ∈ S do
2 E = ε

3 Define A− as A in increasing order of qM̂
π(i)(s, ·)

4 for a− ∈ A− do
5 m− = π(i+1)(a−|s)

6 Define A+ as A in decreasing order of
qM̂
π(i)

(s,a)−qM̂
π(i)

(s,a−)

e(s,a)

7 for a+ ∈ A+ do
8 if a+ == a− then
9 break

10 end

11 m+ = min{m−, E
e(s,a+)

}
12 if m+ > 0 then
13 π(i+1)(a+|s) = π(i+1)(a+|s) +m+

14 π(i+1)(a−|s) = π(i+1)(a−|s)−m+

15 E = E −m+e(s, a+)
16 m− = m− −m+

17 end

18 end

19 end

20 end

highest possible value to encourage the algorithm to take these state-action pairs for an
efficient exploration.
The problem considered in this master’s thesis is quite contrary to that. First of all, I
am confronted with a batch offline learning problem. Furthermore, I am not interested
in exploration but in safety. Consequently, I invert their technique and instead of setting
the value of uncertain state-action pairs to the best possible value, I set it to the worst
possible value, which is why I renamed the algorithm to R-MIN.
The estimation of the MDP and the PI step are the same as for Basic RL, but the PE
step changes from Equation 16 to

qk+1(s, a) =
∑
s′,r

p(s′, r|s, a)(r + γ
∑
a′

π(a′|s′)qk(s′, a′)), if ND(s, a) > N∧ (137)

and

qk+1(s, a) =
Rmin

1− γ
, if ND(s, a) ≤ N∧ (138)

as Rmin
1−γ is the sharpest lower bound which works for any MDP, without any additional

knowledge about its structure. Note that it is important to apply Equation 138 in every
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iteration of the PE step and not only at the end, as the uncertainty of one state-action
pair should also influence the value of state-action pairs leading to the uncertain one with
a high probability.

3.3.6 DUIPI

The approach of Schneegass et al. [29] for developing a safe RL algorithm is to calculate
not only the action-value function, but also its covariance function.
Contrary to most other papers which reduce the reward function to R : S ×A → R, they
consider

R̂3 : S ×A× S → R, R̂3(s, a, s′) =

∑
(sj=s,aj=a,rj ,s′j=s

′)∈D rj

ND(s, a, s′)
. (139)

As described for Dynamic Programming in Section 2.2, the calculation of the action-value
function for some policy π in the MDP with the estimates P̂ and R̂3 is done iteratively
following Equation 16. The variance of q is also calculated iteratively by using uncertainty
propagation, i.e., the fact that

Var(f(X)) = DVar(X)DT (140)

holds for a function f : Rm → Rn with jacobian Di,j = ∂fi
∂xj

.

They present two different approaches in their paper, the first makes use of the complete
covariance matrix, while the second neglects the correlations between state-action pairs.
Schneegass et al. [29] show that the second approach is significantly faster and that the
correlation is less important for MDPs with bigger state and action spaces. In the bench-
mark where it made a difference there were 6 states with 2 actions and in the one where it
did not matter anymore there were 18 states and 4 actions. As all benchmarks considered
in this thesis use MDPs which are greater than those two, I concentrate on the second
approach which is called DUIPI (Diagonal Approximation of Uncertainty Incorporating
Policy Iteration). By neglecting the covariances Equation 140 becomes

Var(f(X)) =
∑
i

(
∂f

∂Xi

)2

Var(Xi), (141)

which should be read component-wise. Interpreting the action-value update in Equation
16 as a function, Equation 141 yields

Var(qm(s, a)) =
∑
s′

(Dm
q,q)

2

∑
a′

π(a′|s′)2 Var(qm−1(s′, a′))


+
∑
s′

Dm
q,P̂

Var(P̂ (s′|s, a))

+
∑
s′

Dm
q,R̂3

Var(R̂3(s, a, s′)))

(142)

with the derivatives

Dm
q,q = γP̂ (s′|s, a), Dm

q,P̂
= R̂3(s, a, s′) + γ

∑
a′

π(a′|s′)2qm−1(s′, a′)

and Dm
q,R̂3

= P̂ (s′|s, a).

(143)



52 3 MAIN PART

Equation 142 shows that the variance of the action-value function at the current step
depends on the variance of the action-value function at the previous step and on the
variance of the estimators P̂ and R̂3.
To make use of the variance of the action-value function, which is simultaneously computed
in the PE step, the authors propose to define

qu(s, a) = qM̂π (s, a)− ξ
√

Var(qM̂π (s, a)) (144)

and use the uncertainty incorporating action-value function qu instead of qM̂π (s, a) in the
PI step. By choosing ξ > 0, the uncertainty of one state-action pair has a negative
influence on qu and the new policy prefers state-action pairs with a low variance.
Assuming that neglecting covariances between the state-action pairs is a good enough
approximation and additionally assuming some distribution on the action-value of the
state-action pairs, qu(s, a) can work as a probable lower bound on the actual action-value.
One question that remains is how to determine the covariances of the estimators P̂ and
R̂3. The authors present a bayesian approach for this, which is used in this thesis. As the
prior on P̂ they propose the Dirichlet distribution with density

P(P (s1|si, aj), ..., P (s|S||si, aj)) =
1

B(αi,j)

|S|∏
k=1

P (sk|si, aj)αk,i,j−1 (145)

with αi,j =
∑S

k=1 αk,i,j and normalizing constant

B(αi,j) =

∏|S|
k=1 Γ(αk,i,j)

Γ(αi,j)
(146)

since this is a conjugate prior for P̂ . The posterior parameters are

αdk,i,j = αk,i,j +ND(si, aj, sk) (147)

where ND(si, aj, sk) denotes the number of times sk has been visited after choosing action

aj in state si in the data set D [29]. Therefore, the posterior estimator P̂ is

P̂ (sk|si, aj) =
αdk,i,j
αdi,j

(148)

with variance

Var(P̂ (sk|si, aj)) =
αdk,i,j(α

d
i,j − αdk,i,j)

(αdk,i,j)
2(αdk,i,j + 1)

. (149)

I assume no prior knowledge on the MDPs and, thus, choose α = αk,i,j, for all i, j, and
k, to be constant as there is no state which should be more probable a priori. If one
chooses α = 1, one assumes a uniform distribution over all possible distributions over
(P (s1|si, aj), ..., P (s|S||si, aj)). If one chooses α < 1, one assumes a sparse distribution
which means that only a few of those are probably non-zero. This is reasonable for an
MDP, since usually only some states are reachable from a fixed state-action pair. I follow
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the choice of Schneegass et al. [29] on the Trap benchmark and use α = 0.1 in my
experiments.

In both benchmarks the reward matrix is deterministic, if considered as a function on
the state-action-next-state triplet. So, I set the reward matrix accordingly without a
need to estimate it and, thus, its variance is set to 0. This can be easily changed to
non-deterministic rewards and Schneegass et al. [29] also provide a bayesian estimator for
this.

The actual implementation of DUIPI is still a bit different from what I have shown here,
i.e., the policy is not chosen greedy in the PI-step and for more detail see Schneegass
et al. [29] and the pseudo code on page 71. At first I tried to just follow along this
pseudo code but I observed that this estimation of the transition probabilities results
in the possibility that none observed state-action pairs are chosen. For this reason I
implemented an additional step which ensures that this does not happen. Note that this
is no change in the general theory backing up DUIPI, but yields a high performance
improvement, see Figure 24 in Appendix B. For the experiments in Section 3.4 I only use
this new implementation of DUIPI.

3.3.7 Implementation

All of these algorithms are implemented in the directory batch rl algorithms in the github
repository.6 Nadjahi et al. [11] published code for BasicRL, RaMDP, and the SPIBB
and Soft-SPIBB algorithms. My framework aims at extending this framework to all
the above algorithms mentioned so far and unifying all the computations necessary for
the algorithms. The Python implementation is object oriented and tries to benefit from
inheritance to avoid code duplicates.

Figure 7 shows the UML class diagram of the framework. Not all of the attributes are
shown in this diagram, the focus lies on the input parameters and, also, only the im-
portant methods are included. The abstract class every algorithm is inheriting from is
BatchRLAlgorithm. The most of the computation is implemented here. As can be seen,
it gets as input some basic information about the MDP, the behavior policy πb, and the
raw data collected by it. These are used to compute the estimates P̂ and R̂, in the
initial calculations() method which calls build model() and compute R state action().

This is all done in the initialization of the learner. To compute a new policy, the method
fit() has to be called, which is the only method which should usually be called outside
of the class except the constructor. The method fit() starts the actual training pro-
cess, which consists out of repeating the PE and PI step, called policy evaluation() and
policy improvement(), respectively, until the action-value function converges. The here

implemented PE and PI steps are the basic ones for Dynamic Programming as explained
in Section 2.2.

The estimation of P̂ is done via Equation 22 and R̂ is computed using P̂ , as I assume in my
benchmarks—similar to Nadjahi et al. [11]—that the reward is a deterministic function
of the pair of the current and the next state. To extend this to a state-action-next-state
triplet is straightforward and assuming that R is unknown or even on the whole triplet

6https://github.com/Philipp238/Evaluation-of-Safe-Policy-Improvement-with-Baseline-
Bootstrapping, assessed on 20.03.2021
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stochastic, would simply require substituting the current calculation with Equation 23.
The rest of the implementation is independent on the calculation of R̂.
The idea of this structure is that all the different learning algorithms inherit directly or
indirectly from the base class BatchRLAlgorithm and only substitute the methods in which
the algorithm differs. As I have already demonstrated in this section, these differences
are mostly either in the

� initialization, i.e., the computation of P̂ and R̂,

� the policy evaluation step, or

� the policy improvement step.

This is one of the reasons for the structure of these classes. The other reason is that it
gives a nice abstraction when looking at the differences between the approaches of the
different algorithms. Most of the methods of this class including the ones for the PE and
PI step are copied from the code from Nadjahi et al. [11] or are at least tested against
their code to ensure that my implementation produces the same results. This includes the
classical Dynamic Programming versions of the PI and PE step as presented in Section
2.2.
The easiest algorithm to implement is Basic RL, since it is the same as the base class and
can, therefore, be left empty.
RaMDP has the same PE and PI step as Basic RL and only differs through the adjustment
of its reward matrix in the beginning. This step is done exactly as it has been done in
Nadjahi et al. [11].
R-MIN depends on the hyper-parameter N∧ and it starts with a calculation of a mask
marking all state-action pairs which have been visited more than N∧ times. This is used
later in its own variation of the PE step, as explained in Section 3.3.5. As this algorithm
is a new adaption of R-MAX, there is no implementation I can build upon. Therefore, I
implement it myself and use plausibility checks to ensure that there is no mistake in the
code. For this, I especially check the influence of the parameter N∧, which shows that R-
MIN works the same as Basic RL if N∧ = 0 is used and gets more conservative for higher
N∧. Furthermore, for an extremely large N∧ it sets the value for all state-action pairs
simply to the worst possible value. These properties are exactly as R-MIN is expected to
work.
DUIPI depends on the choice of the hyper-parameter ξ and the parameter α for the
Dirichlet prior. During the initialization, P̂ , R̂3 and their variances are calculated. As I
assume that the reward is deterministic, I set Var(R̂3) = 0. If one wants to remove this
assumption from this framework, this should be corrected, too. DUIPI has a substantially
different PI step from Basic RL and also the PE step is implemented individually for
DUIPI, as the variance of the action-value function is computed there. Originally, DUIPI
is planned to be used as an online algorithm, therefore, I cannot directly check if I can
reproduce any of the results from Schneegass et al. [29]. However, I check if the influence
of ξ works as expected, meaning that for a bigger ξ the choice of the new policy is
driven more by the number of times a state is being visited, which turns out to be
true. Furthermore, I conduct a thorough debugging process to validate every step of the
algorithm and I observe a very good performance of DUIPI in the experiments in Section
3.4, which supports the believe that it is implemented correctly.
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For the Soft-SPIBB and SPIBB algorithms, I add for each kind an additional abstract
class between the base class and the actual algorithms, as there are a lot of computations
the Soft-SPIBB algorithms and the SPIBB algorithms share. While this structure is
completely new, the actual implementation of the algorithms is very similar to the one
from Nadjahi et al. [11] and I validate that their code and my code produce the same
results.
The abstract base class for the SPIBB algorithms contains the hyper-parameter N∧ and
implements a method to compute a mask marking all state-action pairs which have been
visited more than N∧ times, similar to the one for R-MIN. Thus, from an implementation
point of view it would be possible to let R-MIN inherit as well from SPIBB abstract,
but this is not recommendable considering the difference in the nature of the algorithms.
Also, the additional code this causes is negligible. The SPIBB algorithms, Πb-SPIBB and
Π≤b-SPIBB, renamed to SPIBB and Lower-SPIBB due to technical reasons in Python,
then only need to implement their specific PI steps.
Similarly, the Soft-SPIBB and Adv-Soft-SPIBB algorithms all make use of the same hyper-
parameters δ and ε and of the calculation of an error function. The user can choose
between the error function relying on Hoeffding’s inequality [15] or the bound derived by
Maurer and Pontil [27] even though the latter should only be used with great caution
due to the problems discussed in Section 3.2.4. Furthermore, I implement a method to
compute q̂Dπb , as it is needed for the advantageous algorithms and for the 1-step algorithms,
if they are supposed to fulfill the properties of Theorem 3.2. As there is usually no point
in using the 1-step algorithms unless they hold an additional property, I add the method
one step algorithms(), which checks if one of the original Soft-SPIBB algorithms is used

with only 1 iteration and, if it is, changes them so that they solve the optimization
problem described in Equation 120. Again, all the explicit algorithms only need their
specific implementation of the PI step.
Looking at the general picture of this framework shows that the big difference between the
SPIBB algorithms including all their successors and all the other algorithms is that the
SPIBB family concentrates on the PI step to incorporate some kind of safety mechanism,
while all the others concentrate on the PE step by penalizing state-action pairs with a
high uncertainty and then assume that the usual Dynamic Programming PI step finds a
good trade-off between safety and performance on its own. DUIPI seems to contradict
this classification, however, the deviation in its PI step is mostly technically and the idea
of DUIPI is rooted in the PE step by taking the variance of the action-value function into
account.

3.4 Benchmarks

The previous sections introduced a new class of algorithms which are variants of the
Soft-SPIBB algorithms from Nadjahi et al. [11] and proved that they are supported by
theoretical safety guarantees. In this section I test how well these algorithms perform
empirically compared to their predecessor algorithms, classic Dynamic Programming and
other algorithms which try to incorporate some safety mechanism, introduced in Section
3.3.
For this I conduct 3 experiments on MDPs with a finite state space. The first one on
the Random MDPs benchmark from Nadjahi et al. [11] to see how these new algorithms
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compare on this benchmark with their predecessors. As this is a very artificial benchmark,
I use later on the discrete version of the Wet Chicken benchmark [7] which tries to depict
a more realistic problem. Similar to Nadjahi et al. [11], during these two benchmarks I
use the hyper-parameters just as such, i.e., I perform a hyper-parameter search for all of
these algorithms and choose the “optimal” one without considering that some of them
have an explicit meaning as stated in Theorem 3.2, for example. There are several reasons
for this approach. Firstly, this makes the experiments more comparable to the ones done
in Nadjahi et al. [11] which I am trying to extend. Secondly, for many of the algorithms
there are no theoretical bounds, so, it would be difficult to choose the hyper-parameters
for them to make a fair comparison. Thirdly, I think that the optimal hyper-parameter
is a fair choice as it depends the least on my subjective view, e.g., in comparison to
“guessing” hyper-parameters a priori. How the optimal hyper-parameter will be chosen
exactly is described in Subsection 3.4.1. Additionally, I include all the hyper-parameter
searches in Appendix B to make it possible to examine the influence of these parameters.

Contrary, in the third experiment I reuse the Wet Chicken benchmark, but this time
concentrate on the algorithms which are supported by some theoretical safety bounds and
choose the parameters such that these become meaningful. The goal of this experiment
is to see how well the algorithms perform under these circumstances to find out if the
theoretical bounds can be used in practice.

In these three experiments I test all the algorithms from Sections 2.3.2, 3.2.6 and 3.3
except the Exact-Soft-SPIBB and Adv-Exact-Soft-SPIBB, as, on the one hand, they show
in most cases numerical problems when applying the solver of the linear program due to
an ill-conditioned matrix in the procedure. This happens independent of which solver was
used. On the other hand they take on average ten times the amount of time from other
algorithms, while performing very similar to their approximate versions—if they do not
run in numerical issues—, which is also stated in Nadjahi et al. [11].

In Section 3.4.4 I conduct an exploratory experiment on the continuous version of the Wet
Chicken benchmark to assess the possibility to use the function approximation versions
of the Soft-SPIBB and SPIBB algorithms.

3.4.1 Random MDPs

This benchmark has already been described in Section 2.3.3. The only change in the
MDPs I use is that this time, after the behavior policy is computed, one of the non-final
and non-starting states is chosen as an easter egg. This easter egg is an additional final
state and also yields a reward of 1. This makes the state special, as the behavior policy has
only been optimized for the MDP without this state and, therefore, it is totally unaware
of its existence. This is beneficial as the training of the behavior policy incorporates the
optimal policy on the original MDP, so, if the MDP remains unchanged after the training,
the behavior policy depends on knowledge about the true MDP. This can have strange
effects, as in this scenario any algorithm, which simply generates the policy that greedily
chooses in each state the most often observed action, might compute the optimal policy
with a high probability. This easter egg should serve to counter effects like this. This
method has already been used by Nadjahi et al. [11], too.

I also tried to substitute this positive easter egg with a negative one, i.e., the exact same
procedure but instead of a reward of 1, this state should yield a reward of -1. The idea
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was that the presence of a danger should make a more interesting scenario for safe RL.
However, the results from these experiments did not yield any new findings as they were
extremely similar to the ones using a good easter egg. Thus, I only present the results of
the Random MDPs benchmark with a good easter egg.
I start the analysis with the hyper-parameter search. Figure 8 depicts the results for
Adv-Approx-Soft-SPIBB for different values of ε. δ was set to 1, which does not make
much sense in regards to Theorem 3.2, but remember that I am not interested in this
benchmark in any of the theoretical bounds, but just in the general performance of these
algorithms for optimized hyper-parameters. Also, the effect of δ is very small, which can
be seen in Section 3.4.3, and very similar to the one by ε, so, fixing δ only reduces the
number of hyper-parameters one has to optimize for. Here, I follow again Nadjahi et al.
[11].

Fig. 8. ECDF for the different hyper-parameter values for Adv-Approx-Soft-SPIBB on
the Random MDPs benchmark.

As shown in Algorithm 2, I consider different target performances for the behavior policy
and different numbers of trajectories the offline reinforcement learning algorithms can
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learn from. Figure 8 describes the hyper-parameter search exemplary for Adv-Approx-
Soft-SPIBB using the error function relying on the Hoeffding’s inequality. In each column
the target performance of the behavior policy is fixed and in each row the number of
trajectories is fixed, according to the value above and right to the plots, respectively. Each
subplot shows the empirical cumulative distribution function (ECDF) of the normalized
performance from Equation 42 for the six different values for ε. The black line shows the
normalized performance of each behavior policy which is 0 by definition.
I use a ECDF plot since every constellation of number of trajectories, target performance
of the behavior policy and ε is computed on more than 10,000 MDPs and the ECDF
plot displays information of the whole distribution of all these runs. This is especially
interesting as I am interested in safe policy improvement and not only a single value like
the mean performance.
This multitude of information about the performance of each algorithm for different hyper-
parameter values makes it harder to choose the “optimal” one. Consequently, I focus on
three things. Firstly, I generally assume that the underlying behavior policy already per-
forms quite well, which is hopefully a reasonable assumption when trying to improve a
policy which is currently used. This means I can focus on the experiments using a tar-
get performance ratio of 0.9, i.e., I only have to consider the 4th column. Secondly, the
focus of this thesis lies on safe policy improvement, so, I also concentrate on this here
and choose the hyper-parameters optimizing for this. Thus, I pay special attention to the
amount of probability left to the black line for each hyper-parameter, which corresponds
to the probability that the algorithm with this parameter performs worse than the be-
havior policy. For this reason, I do not want to choose an ε of 2 or 5, considering their
performances for 10 and 20 trajectories. Thirdly, even though I am interested in a safe
improvement, I am also interested in a strong improvement at the same time, if the safety
is given. Therefore, I choose a parameter which does not contradict the safety like 2 or 5,
but also performs overall very well. This seems to be achieved very well by ε = 1, which I
choose for a comparison against the other algorithms. Furthermore, one can see the effect
of the hyper-parameter ε as already described in Section 3.2.4 as an trade-off between a
high uncertainty for a big ε and a low mean performance for a small ε.
The same is done for all the other algorithm. Their ECDF plots can be found in Appendix
B where I reduced the plots such that it only shows the right column. A table with my
choices is shown in Appendix A.
To compare all the algorithms with optimized hyper-parameters I consider, similarly to
Nadjahi et al. [11], two statistics:

� the mean performance and

� the 1%-CVaR performance.

As explained before, the focus lies on the behavior policy with the highest target per-
formance and, so, the mean and the 1%-CVaR performance can be depicted as a line
plot with the number of trajectories as the x-axis and the normalized performance as the
y-axis. This is done in Figure 9 and 10 for the mean performance and the 1%-CVaR
performance, respectively.
In the mean performance, RaMDP and DUIPI outperform every other algorithm as soon
as at least 50 trajectories are observed. They are followed by Lower-Approx-Soft-SPIBB
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Fig. 9. Mean normalized performance over 10,000 trials on the Random MDPs bench-
mark for the target performance ratio of 0.9 of the behavior policy.

and Basic RL, which come just before the other Soft-SPIBB algorithms. Approx-Soft-
SPIBB shows a slightly better performance than its successor Adv-Approx-Soft-SPIBB.
1-Step-Approx-Soft-SPIBB, Πb-SPIBB (SPIBB) and Π≤b-SPIBB (Lower-SPIBB) seem to
perform the worst. While R-MIN exhibits issues when the data set is very small, it catches
up with the others for bigger data sets. Interestingly, Basic RL performs generally quite
well, but is still outperformed by some algorithms, which might be surprising as the others
are intended for safe RL instead of an optimization of their mean performance. The reason
for this might be that considering the uncertainty of the action-value function is even for
the mean performance beneficial.

The performance in the worst percentile looks very different. Here, it can be seen how
well the safety mechanisms of some of the algorithms work, when they are compared
to Basic RL, which shows the worst overall 1%-CVaR performance. Also, R-MIN and
RaMDP perform very poorly especially for a low number of trajectories. For less than
100 trajectories, DUIPI performs also very poorly but outperforms every other algorithm
for bigger data sets. An interesting observation is that all the SPIBB and Soft-SPIBB
algorithms, except 1-step Approx-Soft-SPIBB, perform in the beginning extremely well,
which is explainable by the fact that they fall back to the behavior policy if not much
data is available. The ranking in the SPIBB family stays the same for the 1%-CVaR
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Fig. 10. 1%-CVaR normalized performance over 10,000 trials on the Random MDPs
benchmark for the target performance ratio of 0.9 of the behavior policy.

as it has been for the mean performance: Lower-Approx-Soft-SPIBB performs the best,
closely followed first by Approx-Soft-SPIBB and Adv-Approx-Soft-SPIBB. Π≤b-SPIBB
falls a bit behind but still manages to perform better than the original Πb-SPIBB. The
worst performance is achieved by 1-step Approx-Soft-SPIBB, which is the only algorithm
to never exceed the behavior policy.

Figure 9 and Figure 10 show that the best overall performance of any of the algorithms
from the SPIBB family is achieved by Lower-Approx-Soft-SPIBB, independent of which
statistic is applied to compare the algorithms, the mean or the 1%-CVaR.

As indicated in the legend of the plots the error function relying on the Hoeffding’s bound
is used for the Soft-SPIBB algorithms. In the following, I want to check if it would be
advantageous to use the error function relying on the Maurer and Pontil bound. As shown
before in Section 3.2.4 it is crucial for this error function to know or to estimate an upper
bound on the absolute return, assuming the return is centered. So, it is necessary to
know the lowest and the highest possible returns. The lowest possible return is 0, as this
happens if no terminal is ever reached, which is highly unlikely but always possible due
to the high stochasticity of the MDP. The highest possible return is harder to estimate
and needs specific knowledge about the MDP. If there is a possibility to get to a terminal
state in only 1 step, it would be 1, otherwise it is reduced by the discount factor in each
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step. For the sake of simplicity, I estimate the upper bound with 1, so, Gmax could be
chosen as 1

2
. Fortunately, if one optimizes the hyper-parameter ε, this approximation

has no influence on the algorithm itself, as this simply changes which ε delivers the best
performance.

Fig. 11. Mean normalized performance over 10,000 trials on the Random MDPs bench-
mark for the target performance ratio of 0.9 of the behavior policy. Comparison between
the Soft-SPIBB algorithms using an error function relying on Hoeffding’s bound (blue) vs.
Soft-SPIBB algorithms using an error function relying on the Maurer and Pontil bound
(brown).

Figure 11 shows the comparison between the Soft-SPIBB algorithms using these two
different error functions for the mean normalized performance in the Random MDPs
benchmark. One clearly sees that the new error function relying on the Maurer and
Pontil bound yields no improvement in this scenario.
Figure 12 depicts this comparison for the 1%-CVaR normalized performance. Here, the
superiority of the error function relying on the Hoeffding’s bound is not as clear as in
the mean normalized performance plot before and is even reversed for the 1-step-Approx-
Soft-SPIBB. However, considering especially Approx-Soft-SPIBB and Adv-Approx-Soft-
SPIBB yields no substantial reason to switch to the more complicated error function
relying on the Maurer and Pontil bound.
To investigate whether the reported differences in the performance between different al-
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Fig. 12. 1%-CVaR normalized performance over 10,000 trials on the Random MDPs
benchmark for the target performance ratio of 0.9 of the behavior policy. Comparison
between the Soft-SPIBB algorithms using an error function relying on Hoeffding’s bound
(blue) vs. Soft-SPIBB algorithms using an error function relying on the Maurer and
Pontil bound (brown).

gorithms considered in this section are significant, I also compute the standard deviation.
The standard deviation of the mean x̄ = 1

N

∑N
i=1 xi, with i.i.d. samples x1,...,xN , is

calculated [30] as

σx̄ =
1√
N
σx, (150)

where σx is the standard deviation of the samples, i.e.,

σ2
x =

1

N − 1

N∑
i=1

(xi − x̄)2. (151)

This formula yields that the standard deviation of the mean performance is less than
0.001 for every algorithm and, so, every visible difference in the figures in this subsection
is highly significant. Calculating the standard deviation of the 1%-CVaR performance is
more complicated and, thus, I make use of the Bootstrap method introduced by Efron
[31]. This method reveals that the standard deviation of the 1%-CVaR performance
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is always between 0.003 and 0.006. This shows that one has to be cautious with over
interpreting every difference between algorithms. However, every trend I have mentioned
in this section remains significant.

3.4.2 Discrete Wet Chicken benchmark

Besides reproducing the results of Nadjahi et al. [11] for additional algorithms, I want to
extend their experiments to a more realistic scenario for which I have chosen the discrete
version of the Wet Chicken benchmark [7] because of its heterogeneous stochasticity.
Figure 13, already displayed in the introduction, visualizes the setting of the Wet Chicken
benchmark. The basic idea behind it is that a person floats in a small boat on a river. The
river has a waterfall at one end and the goal of the person is to stay as close to the waterfall
as possible without falling down. Thus, the closer this person is to the waterfall the higher
the reward gets, but upon falling down they start again at the starting place, which is
as far away from the waterfall as possible. Therefore, this is modeled as a non-episodic
MDP.

Fig. 13. The setting of the Wet Chicken benchmark used for reinforcement learning.
The boat starts at (x, y) = (0, 0) and starts there again upon falling down the waterfall at
x = 5. The arrows show the direction and strength of the stream towards the waterfall.
Additionally, there are turbulences which are stronger for small y. The goal for the boat
is to stay as close as possible to the waterfall without falling down.

The whole river has a length and width of 5, so, there are 25 states. The starting point
is (x, y) = (0, 0) and the waterfall is at x = 5. The position of the person at time t
is denoted by the pair (xt, yt). The river itself has a turbulence which is stronger near
the shore the person starts close to (y = 0) and a stream towards the waterfall which is
stronger near the other shore (y = 4). The velocity of the stream is defined as vt = yt

3
5

and the turbulence as bt = 3.5 − vt. The effect of the turbulence is stochastic; so, let
τt ∼ U(−1, 1) be the parameter describing this stochasticity at time t.
The person itself has 5 actions, which are (ax and ay describe the influence of an action
on xt and yt, respectively):

� Drift: The person does nothing, in formula (ax, ay) = (0, 0).

� Hold: The person paddles back with half its power, in formula (ax, ay) = (−1, 0).



3.4 Benchmarks 65

� Paddle back: The person wholeheartedly paddles back, in formula (ax, ay) = (−2, 0).

� Right: The person tries to go to the right parallel to the waterfall, in formula
(ax, ay) = (0, 1).

� Left: The person tries to go to the left parallel to the waterfall, in formula (ax, ay) =
(0,−1).

The new position of the person assuming no river constraints is then calculated by

x̂ = round(xt + ax + vt + τtst) and ŷ = round(xt + ay), (152)

where the round function is the usual one, i.e., a number is getting rounded down if the
first decimal is 4 or less and rounded up otherwise. Incorporating the boundaries of the
river yields the new position as

xt+1 =

{
x̂, if 0 ≤ x̂ ≤ 4

0, otherwise
and yt+1 =


0, if x̂ > 4

4, if ŷ > 4

0, if ŷ > 0

ŷ, otherwise

. (153)

To evaluate the performance of a policy on an MDP exactly, i.e., without approximating it
by simply testing it out several times on it, one has to compute the transition probabilities.
This is done in the function get transition function(), which is also used to debug the
implementation of the MDP.7

As the aim of this experiment is to have a realistic setting for Batch RL, I want to use a
realistic behavior policy. Thus, I do not make use of the optimal policy or any knowledge
about the transition probabilities as it has been done for the Random MDPs benchmark.
Instead I devise heuristically a policy, considering the overall structure of the MDP.
Therefore, the behavior policy I apply follows the idea that the most beneficial state might
lie in the middle of the river at (x, y) = (2, 2). This idea stems from two trade-offs. The
first trade-off is between low rewards for a small x and a high risk to fall down for a big
x and the second trade-off is between a high turbulence and low velocity for a low y and
the opposite for big y. To be able to ensure the boat stays at the same place turbulence
and velocity should both be limited.
This idea is enforced through the following procedure. If the boat is not in the state (2, 2),
the person tries to get there and if they are already there the person uses the action paddle
back.8 I denote this policy with π′b. The problem with this policy is that it is deterministic,
i.e., in every state there is only one action which is chosen with probability 1. This means
that for each state there is at most 1 action for which data is available when observing
this policy. This is countered by making π′b ε-greedy, i.e., define the behavior policy πb as
the mixture

πb = (1− ε)π′b + επu (154)

7https://github.com/Philipp238/Evaluation-of-Safe-Policy-Improvement-with-Baseline-
Bootstrapping/blob/master/wet chicken discrete/dynamics.py, assessed on 20.03.2021

8For details: https://github.com/Philipp238/Evaluation-of-Safe-Policy-Improvement-with-Baseline-
Bootstrapping/blob/master/wet chicken discrete/baseline policy.py, assessed on 20.03.2021
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where πu is the uniform policy which chooses every action in every state with the same
probability.
Figure 14 gives a feeling about the distribution of performances of deterministic policies.
As the number of possible deterministic policies is too high to compute all of them (525 ≈
2.98 · 1017), 1,000,000 deterministic policies were randomly sampled and used to estimate
this plot. The performance of π′b is about 30 and, thus, π′b is already better than a great
percentage of the deterministic policies. The stochastic behavior policy πb has a similar
performance between 29 and 30 for an 0 < ε ≤ 0.2. For ε = 0.5, which is the least value
I use, its performance is about 27.

Fig. 14. ECDF of the performance of randomly sampled deterministic policies on the
Wet Chicken benchmark (sample size = 1,000,000).

Figure 14 shows some additional very interesting properties of the Wet Chicken bench-
mark. First of all, the range of the performance of all deterministic policies can be seen,
which is equivalent to the range of all policies, since there is always an optimal determin-
istic policy, as mentioned in Section 2.1. This range goes from about 3 up to almost 42.
This is useful to interpret the results of the algorithms. The optimal policy is similar to
π′b in that it tries to reach an optimal position and then uses the paddle back action all
the time, however, the optimal position turns out to be (x, y) = (3, 3).
Furthermore, the distribution of the performances of the deterministic policies is heavily
concentrated on lower values, which makes this benchmark quite complicated and different
to the Random MDPs benchmark, as can be seen in Figure 15, where the same is done
for the Random MDPs benchmark with a good easter egg. I only display the results for
one MDP here, but I tried different ones and got always very similar results. Here, one
can see an ECDF resembling the CDF of a normal distribution on a bounded interval
and especially see a strong symmetry, i.e., high performances are exactly as likely as
low performances. Another observation is that there are jumps in the ECDF for the Wet
Chicken benchmark, which shows that there are many policies with the same performance
which is at least partly due to the many possible actions which have the same effect, since,



3.4 Benchmarks 67

Fig. 15. ECDF of the performance of randomly sampled deterministic policies on the
Random MDPs with a good easter egg benchmark (sample size = 1,000,000).

for example, a policy which chooses the action left when y = 0 gets the exact same result
as one which chooses drift there. This should be kept in mind when analyzing the ECDFs
of the performance of algorithms which produce deterministic policies, as they should be
expected to have the same jumps.
The overall concept of the experiments is similar to the one described in Algorithm 2 which
was used for the Random MDPs benchmark before. However, the MDP itself is fixed now
and the behavior policy is chosen as described above. As it is a non-episodic task, only a
single trajectory is sampled in each iteration but the length of this trajectory varies. The
hyper-parameter selection is following the same ideas and using the same plots as for the
Random MDPs benchmark, so, I refer to the Appendix B for the hyper-parameter search
and to Appendix A for the hyper-parameter choices.
Again, I focus on the error function relying on the Hoeffding’s inequality for the Soft-
SPIBB algorithms, since they show the better overall performances. Figure 25 in Ap-
pendix B compares the Soft-SPIBB algorithms using the two error functions on the Wet
Chicken benchmark.
In Figure 16 the mean performance over all 10,000 runs of the different algorithms can be
seen. Apart from DUIPI, the results are similar to those on the Random MDPs bench-
mark. Again R-MIN performs extremely bad for few data but then improves strongly.
Basic RL, 1-Step-Approx-Soft-SPIBB and DUIPI exhibit the worst performance. All the
other algorithms from the SPIBB family perform very well, especially Lower-Approx-Soft-
SPIBB. The best overall mean performance seems to be achieved by RaMDP again.
Again the 1%-CVaR performance is of high interest and can be seen in Figure 17. This
confirms many of the observations from the Random MDPs benchmark as well. One
can see again that especially Basic RL, but also RaMDP and R-MIN have problems
competing with the SPIBB and Soft-SPIBB algorithms and DUIPI. Among the SPIBB
and Soft-SPIBB algorithms Lower-Approx-Soft-SPIBB seems to perform again the best,
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Fig. 16. Mean performance over 10,000 trials on the Wet Chicken benchmark with a
heuristic epsilon-greedy baseline with ε = 0.1.

followed by Adv-Approx-Soft-SPIBB and Approx-Soft-SPIBB.

Similarly to the experiments on the Random MDPs benchmark, I compute the standard
deviation for the reported measures on the Wet Chicken benchmark. The computation
is done exactly as in Section 3.4.1. The standard deviation of the mean performance is
always below 0.1 and, thus, every clearly visible difference in Figure 16 is a significant one.
The standard deviation of the 1%-CVaR performance amounts up to 0.7 and, so, Figure
17 has to be interpreted cautiously. However, firstly it is important to note the increased
y-scale in Figure 17 in comparison to Figure 16. Secondly, the standard deviation of the
1%-CVaR performance varies strongly among the different algorithm classes. While it is
between 0.2 and 0.7 for Basic RL, RaMDP, R-MIN and sometimes DUIPI, it is almost
exclusively below 0.2 for all algorithms of the SPIBB and Soft-SPIBB family. This is
interesting as those are mostly the ones in close range in this performance measure and,
additionally, it shows that the performance of these algorithms is more stable compared
to the others.

In conclusion, these two benchmarks have shown that especially in the 1%-CVaR per-
formance, the whole SPIBB family performs extremely well and among them Lower-
Approx-Soft-SPIBB excels in almost every scenario, including the mean and 1%-CVaR
performance. Furthermore, it has been shown that the theoretically supported Adv-



3.4 Benchmarks 69

Fig. 17. 1%-CVaR performance over 10,000 trials on the Wet Chicken benchmark with
a heuristic epsilon-greedy baseline with ε = 0.1.

Approx-Soft-SPIBB performs almost as well as its predecessor Approx-Soft-SPIBB, only
falling slightly behind in the mean performance.

3.4.3 Theoretical safety benchmark

As already mentioned, I want to test the theoretical safety properties some of the algo-
rithms exhibit. These algorithms are

� Adv-Approx-Soft-SPIBB,

� 1-Step-Approx-Soft-SPIBB,

� Πb-SPIBB, and

� DUIPI.

The first three algorithms completely fulfill the properties needed for their safety bound,
while DUIPI only uses an approximation of the variance and additionally comes with
a strong assumption on the distribution of the action-value function, namely, that it is
normal distributed. This has to be kept in mind when comparing the different bounds.
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To test these bounds I repeat the experiments on the Wet Chicken benchmark and choose
this time the hyper-parameters such that the bound is a useful one. The goal is not to
directly compare the algorithms against each other. Instead I want to see if the algorithms
can still compute good policies when they are secured by theoretical bounds. As the range
of the returns or the value-functions is important for many of the theoretical safety bounds,
I want to mention here that by adding or subtracting the same constant of the reward in
every state, these two ranges can be arbitrarily translated in non-episodic settings. This
can be seen directly by the definition of the returns as the series of discounted rewards
and the linearity of the expected value implies the same for the value functions. Thus, it
is always possible to find an MDP equivalent to the Wet Chicken MDP such that either
the ranges of the returns or the value functions are centered.

For Adv-Approx-Soft-SPIBB and 1-Step-Approx-Soft-SPIBB the safety guarantee is The-
orem 3.2, thus, I set δ > 0 close to 0 and also ε > 0 small enough to make Equation 34
meaningful. The good thing here is that all the parameters are known a priori so one can
choose ε and directly know the value of the bound. As I use γ = 0.95, all the returns are
between 0 and 80 (80 = 4

1−γ ) and, therefore, Gmax = 40, as there is an MDP equivalent
to the usual Wet Chicken benchmark but with centered returns and Gmax only needs to
be an upper bound on these centered ones, see Section 3.2.4. Remembering Figure 14,
I choose ε to be at most 0.01, as this yields a lower bound of −8 and everything below
that bound is not really useful. I also test smaller ε to see how the performance of the
algorithm changes when I tighten the lower bound.

An ECDF plot similar to the one used for the hyper-parameter search in Section 3.4.1
is used again in Figure 18 to visualize the performance of Adv-Approx-Soft-SPIBB with
ε = 0.01 and δ = 0.01 and its corresponding lower bound, which holds, thus, with a
probability of at least 0.99. One can see here, that this lower bound actually holds all the
time, which shows that Theorem 3.2 is not sharp. In general, the given lower bound is
meaningful, however, it takes a lot of data to get even the slightest improvement over the
behavior policy. If one decreases ε, the bound improves but the performance deteriorates
further. The effect of δ is weaker, so, choosing a lower bound which holds with a higher
probability does not influence the performance strongly. All these additional plots can
be found in Appendix B. The plots for 1-step Approx-Soft-SPIBB are not shown here
as they are essentially the same as for Adv-Approx-Soft-SPIBB. The reason for this is
probably that such a small ε makes the algorithms inflexible and, therefore, one iteration
is already enough to find the optimal policy which is πb-advantageous w.r.t. q̂Dπb .

In Section 3.2.4 I proved that the bound of Theorem 3.2 can be improved to Equation
112. I hoped that this yields a substantial improvement of the bound and might make it
possible to use a bigger ε and still have a meaningful lower bound. Unfortunately, this
extra term in Equation 112 is not big enough for this. The biggest one in this experiment
is about 0.27, which occurred for an ε of 0.01, so, it sharpened the bound from 8 below the
performance of the behavior policy to 7.73 below the performance of the behavior policy.
For smaller ε these improvements were even smaller, always shortening the distance to
the performance of the behavior policy of the original bound by about 3.6%.

As mentioned before, Gmax is known exactly in this setting, which enables the use of the
error function relying on the Maurer and Pontil bound for Adv-Approx-Soft-SPIBB and
1-step Approx-Soft-SPIBB. In Section 3.2.4 I propose this new error function especially
because of its improved asymptotic tightness, which turns out to be of great advantage
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Fig. 18. ECDF plot of the performance of Adv-Approx-Soft-SPIBB using the error func-
tion relying on Hoeffding’s inequality and the lower bound on its performance on the Wet
Chicken benchmark with ε = 0.01 and δ = 0.01 such that the lower bound holds with
probability 0.99.

in this setting as can be seen in Figure 19. While still achieving the same security for
the same parameters as before, the performance of the computed policies is significantly
higher by using the error function relying on the Maurer and Pontil bound.

For Theorem 3.2 to hold, it is necessary that the returns used to estimate the value
function of the behavior policy are independent. In Section 3.2.4 it is discussed how this
can be achieved. Therefore, I apply Algorithm 3 with κ = 0.01 to Adv-Approx-Soft-
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Fig. 19. ECDF plot of the performance of Adv-Approx-Soft-SPIBB using the error func-
tion relying on the Maurer and Pontil bound and the lower bound on its performance on
the Wet Chicken benchmark with ε = 0.01 and δ = 0.01 such that the lower bound holds
with probability 0.99.

SPIBB using the error function relying on the Maurer and Pontil bound. The results for
this are shown in Figure 20. Omitting the returns yields more conservative algorithms
and, thus, policies closer to the behavior policy are produced this time. However, even
though I applied a very strict bound on the correlation of 0.01, the performance has
not diminished substantially and, especially, the algorithms still performed better here,
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than when using the error function relying on the Hoeffding’s bound, but not ensuring
approximate independence.

Fig. 20. ECDF plot of the performance of Adv-Approx-Soft-SPIBB and the lower bound
on its performance on the Wet Chicken benchmark with ε = 0.01 and δ = 0.01 such that
the lower bound holds with probability 0.99, this time the approximate independence of the
returns was ensured by applying Algorithm 3 with κ = 0.01.

In Section 3.3.3 I mentioned that Πb-SPIBB produces policies which are ξ-approximate



74 3 MAIN PART

1− δ-safe policy improvements w.r.t. to the behavior policy πb, where

ξ =
4vmax
1− γ

√
2

N∧
log

2|S||A|2|S|
δ

. (155)

So, one has to choose the hyper-parameter N∧, which is the number of visits a state-action
pair needs for the behavior policy to be changed at this state-action pair, such that this
lower bound becomes meaningful. In the Wet Chicken benchmark, |S| = 25, |A| = 5 and
vmax ≈ 20 (referring to an MDP with centered performances). I use γ = 0.95 and want
δ ≤ 0.05. To choose N∧, Equation 155 is transformed to

N∧ =
32vmax log

(
2S||A|2|S|

δ

)
ξ2(1− γ)2

. (156)

To gain again a lower bound of at least −8, one has to set ξ = 8 and inserting all the
values into Equation 156 yields N∧ = 1, 832, 114 for δ = 0.05. For a smaller δ this is even
bigger. It is obvious that Πb-SPIBB does not work for a N∧ that high, as the output
policy would always be the behavior policy unless there are far more than 10, 000, 000
observations available, what I do not want to assume for a small MDP like this. For this
reason, I exclude Πb-SPIBB from the following experiments.
DUIPI’s safety stems from the calculation of the variance of the action-value function.
By assuming a normal distribution on the action-value function, this yields a confidence
interval on the real action-value function q, as

P(q(s, a) > qu(s, a)) = 1− F (ξ) (157)

holds, with qu as defined in Equation 144 and F as the CDF of a standard normal
distribution [29]. For example, for a lower bound which applies to 99% one has to choose
ξ > 2.33. The problem here is that one does not know in advance how well the lower bound
is, as this depends on the variance which depends on the policy itself. The results are
shown in Figure 21. One sees very well how much data is necessary to get a sharp bound
and produce a good policy at the same time. However, it can be seen that this works
very well with enough data and a highly explorative policy, especially when compared to
the SPIBB based algorithms.
Nevertheless, I have to mention again that this lower bound is subject to some assumptions
and approximations. First of all, DUIPI neglects the covariance between the action-value
function on different state-action pairs. Also, the bound assumes a normal distribution on
the action-value function. This might seem unreasonable as value functions are bounded,
however, the ECDFs of the bounds in Figure 21 looks quite similar to the CDF of the
normal distribution. Besides these theoretical issues with the lower bound, these experi-
ments show that the DUIPI’s lower bound is at least in this benchmark a useful one, as it
is never violated. This cannot be inferred from Figure 21 as the plot of the lower bound
is also an ECDF plot and, thus, they are not necessarily sorted according to how the
performance is sorted. However, I checked this additionally and at least for δ = 0.01 this
holds. Also, it might be reassuring that the ECDF of the lower bound of the performance
and of the performance itself often look similar to the CDF of a normal distribution.
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Fig. 21. ECDF plot of the performance of DUIPI and the lower bound on its performance
on the Wet Chicken benchmark with ξ such that the lower bound holds with probability
0.99.

I have shown several things in this chapter. First of all, the bound of SPIBB turned out
to be—at least on the Wet Chicken benchmark—not useful. The bound of Adv-Approx-
Soft-SPIBB and 1-step Approx-Soft-SPIBB turned out to be a bit better. However,
the algorithms are still strongly constrained if a meaningful bound should be achieved.
The improvement of Theorem 3.2 in Equation 112 helps here, but is by far not strong
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enough. A stronger improvement is achieved by applying the error function relying on the
Maurer and Pontil bound and its improvement even remains significant after omitting data
to ensure independence. DUIPI’s performance and bound improves substantially with
respect to the one of the Soft-SPIBB algorithms as soon as at least 500,000 steps of the
behavior policy have been observed. This bound of DUIPI depends on an assumption of
the distribution of the true action-value function and it might be interesting to investigate
if a similar assumption for Soft-SPIBB helps to improve the bound significantly.

3.4.4 Continuous Wet Chicken benchmark

In this section I use the continuous version of the Wet Chicken benchmark to find out
if I can reproduce the promising results from Nadjahi et al. [11] in this setting. Nat-
urally, I would like to include many of the algorithms introduced in this thesis, how-
ever, most of these algorithms do not come with a straightforward adaption to func-
tion approximation. Therefore, I only include the four algorithms used by Nadjahi et
al. [11]—Vanilla-DQN, RaMDP-DQN, Πb-SPIBB-DQN and Approx-Soft-SPIBB-DQN,
see Section 2.3.4—and the function approximation version of Lower-Approx-Soft-SPIBB.
Applying function approximation to Lower-Approx-Soft-SPIBB works exactly as for Πb-
SPIBB-DQN and Approx-Soft-SPIBB-DQN. So, Equation 44 is used as the target for the
training neural network and in each step the policy is computed by using Algorithm 5,
where the training neural network is used to estimate the action-value function.
The continuous Wet Chicken benchmark only omits the rounding in Equation 152 and
is otherwise the same as the discrete version. Note that continuous actions are still not
allowed and, thus, the boat always stays on one of the 5 lanes in the y-direction, i.e., the
state space can be exactly modeled as [0, 5)× {0, 1, 2, 3, 4}.
Nadjahi et al. [11] provide the framework for these experiments in their github repository9,
which enables the use of different environments and additional algorithms. For their
computations, they apply a fully connected neural network with 3 hidden layers with 32,
128, and 32 neurons, with the rectified linear unit (ReLU) [32]

f(x) = max{0, x} (158)

as the activation function. The input layer has 1 neuron per state space dimension and the
output layer has as many neurons as there are actions. So, in the Wet Chicken benchmark
the networks have 2 input neurons and 5 output neurons. Due to computational reasons I
omit one hidden layer and reduce the number of neurons to 32 and 16, as this still suffices
to learn an appropriate action-value approximation. This was observed by trying to learn
a policy online using Vanilla DQN and this smaller network achieved the same results
as the big one while even smaller networks struggled to find a good policy. Thus, this
network size should be already expressive enough to approximate the true value function,
while it is small enough to conduct many experiments.
Following Nadjahi et al. [11], I also use the network initialization He et al. [33] proposed.
This means I initialize the weights of the neural network by sampling for each weight w
connecting a layer with nin neurons to one with nout neurons from a uniform distribution
over the interval [−a, a], where a =

√
6/nin. This supports the convergence of neural

9https://github.com/rems75/SPIBB-DQN, assessed on 20.03.2021
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networks using ReLU for the activation and a detailed theoretical analysis can be found
in He et al. [33].
As an optimizer Nadjahi et al. [11] rely on the popular optimization algorithm RMSProp
introduced by Tieleman and Hinton [34]. RMSProp uses a parameter update similar to
stochastic gradient descent:

win = win−1 −
α√

Mn + ζ

∂L(wn−1)

∂wi
. (159)

Here, wim ∈ R is one parameter of the weights at step n, L is the loss function, α > 0
is the learning rate, ζ > 0 is a constant improving the stability of the update and Mn is
the rolling average of the mean of recent squared partial derivatives at this weight. Mn is
computed inductively by

Mn = βMn−1 + (1− β)

(
∂L(wn−1)

∂wi

)2

, (160)

where β > 0 is the forgetting factor. Following Nadjahi et al. [11], I set β = 0.95 and
ζ = 10−7 and initialize the learning rate to α = 0.01 and decay it by using α

m
in the m-th

pass over the data. The batch size I use is 32.
The behavior policy for this benchmark is trained using the online variant of Vanilla DQN
as described before, which is basically a DQN [22] with double Q-learning [23]. Following
Nadjahi et al. [11], the softmax function is applied with temperature 0.1 to the behavior
policy, which means that

πb(a|s) =
exp(0.1Q(s, a))∑
a′ exp(0.1Q(s, a′))

(161)

is the behavior policy used to create the data sets and Q is the action-value function
learned using Vanilla DQN. This softmax step is necessary to make the behavior policy
stochastic. Using this policy, data sets with 3,000 and 10,000 transitions are generated.
I try to use many different hyper-parameters for each algorithm as I did for the previous
experiments. Due to computational and time limitations however, it is not possible to
conduct a thorough hyper-parameter search. For the parameter η for the pseudo-count as
defined in Equation 49 I try 0.5 and 1, following the logic that a state which is more than
2 apart from another state does not contain much direct information about the other one.
To start with, I want to state that it is inherently different to train a neural network
to approximate an action-value function in reinforcement learning than to approximate a
function in supervised learning. The big difference is that in supervised learning the labels
are known and, thus, the calculation of the loss is always meaningful and with enough
training steps, a good optimizer with well chosen parameters, and an expressive network
the training error can be reduced as much as desirable. Contrary to that, one does not
have access to the true action-value function in reinforcement learning and, thus, has to
estimate the labels. This is done by using targets like these in Equation 44. Besides the
convergence problem mentioned in Section 2.3.4 caused by changing targets, another issue
that comes up is, that if the current approximation of the action-value function is bad,
the loss computed by using the target will also be bad [35].
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In the online setting, many algorithms like DQN solve these issues by correcting wrong
estimates through collecting more data at desired places [22]. For offline reinforcement
learning, this is not possible. This can be seen by the poor performance of Vanilla DQN
in the table.

Algorithms
Mean performance

(its standard deviation)
for 3000 data steps

Mean performance
(its standard deviation)

for 10000 data steps
Vanilla DQN 1.068 (0.065) 1.119 (0.062)
RaMDP-DQN

(N∧ = 15)
1.903 (0.054) 1.767 (0.065)

SPIBB-DQN
(N∧ = 3)

2.474 (0.003) 2.483 (0.003)

Approx-Soft-SPIBB-DQN
(ε = 2)

2.450 (0.004) 2.464 (0.005)

Lower-Approx-Soft-SPIBB-DQN
(ε = 0.2)

2.450 (0.003) 2.473 (0.003)

This table records the performances over 100 trials for the different algorithms on the
continuous Wet Chicken benchmark with the parameter for the pseudo-count set to η =
0.5, as the performance of the algorithms seems to be slightly better than for η = 1.
The first column states the algorithms together with the hyper-parameter for which they
performed the best. The second column states the mean performance and the standard
deviation of the mean performance over 100 runs for a data set with 3,000 steps. The last
column shows the same for 10,000 steps.

The gap between Vanilla DQN, RaMDP-DQN and the SPIBB and Soft-SPIBB algorithms
becomes very clear, regardless if the smaller or the bigger data set is considered. As the
standard derivation is small compared to the difference in mean performance it can be
concluded that this difference is not by chance. The behavior policy has a performance of
2.411, so only the SPIBB and Soft-SPIBB algorithms manage to improve the behavior in
the mean. Among the SPIBB and Soft-SPIBB algorithms, while there is no particularly
clear preference, SPIBB-DQN appears—contrary to the experiments of Nadjahi et al.
[11]—the foremost in this benchmark.

In the benchmarks before, one could see that the SPIBB and especially the Soft-SPIBB
algorithms exhibit an extremely good 1%-CVaR performance. However, due to com-
putational limitations it is not feasible for me to conduct more than 100 trials on the
continuous Wet Chicken benchmark and, thus, it is not recommendable to consider the
1%-CVaR performance. Instead I want to point at the standard derivation again, as this
is a measure of how much the samples differ from the mean. Here, one sees that the
standard derivation is significantly smaller for the SPIBB and Soft-SPIBB algorithms,
which means that incorporating the uncertainty of state-action pairs and bootstrapping
the behavior policy helps to compute policies with a narrow range of performances.

These experiments are not aimed at providing insight into the ranking in performance
among the algorithms used. The foremost goal is to complement the experiments con-
ducted by Nadjahi et al. [11] and show that this class of algorithms gives rise to intuitive
algorithms which can be used for a continuous state space and still manage to consis-
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tently improve the behavior policy, even though other algorithms like Vanilla DQN and
RaMDP-DQN fail to do so.
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4 Conclusion

Motivated by industrial applications, this master’s thesis aimed at finding theoretical
and empirical safe offline reinforcement learning algorithms following along the paper by
Nadjahi et al. [11]. I quickly summarize the results of this master’s thesis in Section 4.1
and provide possible topics which might be addressed by future research in Section 4.2.

4.1 Summary

In Section 2.3 the Soft-SPIBB algorithms introduced in Nadjahi et al. [11] and the theory
backing them up were presented. To start the analysis of this thesis, the validity of this
theory was assessed in Sections 3.1 and 3.2. Thereby, it was shown that there are several
issues around the theory, which prohibits its applicability to the Soft-SPIBB algorithms.
However, a variant of their safety theorem is proven as Theorem 3.2. As it cannot be
applied to the original Soft-SPIBB algorithms, they are extended to the class of Adv-
Soft-SPIBB algorithms for which this safety bound holds. Complementary, Section 3.2.4
includes a detailed discussion about the strengths and weaknesses of Theorem 3.2.

In Section 3.3 several more offline reinforcement learning algorithms from the literature,
which try to incorporate the uncertainty of state-action pairs, were introduced. Some
of these algorithms had to be adapted to the safe offline reinforcement learning setting
and, additionally, the completely new Lower-Approx-Soft-SPIBB algorithm was intro-
duced, which builds upon the original Approx-Soft-SPIBB by incorporating a reasonable
heuristic. Section 3.3.7 described a new Python framework, which implements all of the
algorithms used in this thesis and can be used for further experiments in the future.

In the following, experiments on the Random MDPs [11] and Wet Chicken [7] bench-
marks were conducted to assess the empirical performance of all algorithms. Here, all
variants of the Soft-SPIBB algorithms turned out to be empirically safe, meaning that
their 1%-CVaR performance was in general better than the one of the remaining algo-
rithms. Especially Lower-Approx-Soft-SPIBB excelled for this measure and showed also
the best mean performance among the Soft-SPIBB family. Section 3.4.3 examined the
strength of different theoretical bounds in the sense of Theorem 3.2, which showed that
these bounds hold in practice, but are very conservative. However, methods like sharpen-
ing the bounds through better uncertainty estimation as explained in Section 3.2.4 turned
out to be highly effective.

In Section 3.4.4 the performances of the approximate versions of the Soft-SPIBB algo-
rithms were explored in an MDP with a continuous state space. They were the only
algorithms which were able to improve the behavior policy in the mean and also exhib-
ited a very small standard deviation compared to the other two algorithms, which hints
at a consistent improvement and few outliers. Therefore, these experiments allow me to
support the empirical findings of Nadjahi et al. [11], that the Soft-SPIBB family can be
used to derive efficient deep offline reinforcement learning algorithms.

To conclude, this master’s thesis corrected and extended the theory and algorithms de-
veloped in Nadjahi et al. [11] and showed that this class of algorithms indeed achieves
remarkable performances in the discrete and continuous setting. Thus, I hope that it mo-
tivates future safe reinforcement learning research to include these algorithms. Possible
theoretical and empirical research options are mentioned in the following section.
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4.2 Outlook

Regarding the theory supporting the safety of the algorithms, there are three interesting
points that should be subject of future research. The first is to try tightening the bound in
Theorem 3.2, which might be achieved either directly by bounding the second summand
of Equation 110 closer from below or indirectly by sharpening the uncertainty estimation
of state-action pairs. The latter approach could prove rewarding by considering more
concentration inequalities like the empirical version of Bennett’s inequality [27] or by
assuming reasonable distributions on the value function as it is done by Schneegass et al.
[29].
In Section 3.2.4 it is discussed how to fulfill the assumption that all returns for one state-
action pair have to be independent. The solution for non-episodic MDPs introduced there
is only heuristic and works by bounding the correlation by some arbitrarily small number.
There are two different ways two solve this problem in a theoretically exact way apparent
to me. One could utilize an adaption of the classical concentration inequalities which deal
with dependent random variables, see, for example, the work done by Pelekis and Ramon
[36]. Another possibility is to use a similar approach to the one described in Section 3.2.4.
However, instead of using slightly correlated but unbiased samples, one could change them
to be slightly biased but independent. Adopting the bounds such that this bias is taken
into account might be a feasible solution.
The last and most interesting open question about the theory is, whether there is a way of
extending the theoretical safety in the discrete setting to the continuous setting. However,
this most probably requires completely new concepts for the proof and even a different
definition of safety.
Empirically, I tried to conduct the experiments very thoroughly in the discrete setting,
thus, future research should be focused on function approximation for continuous state
spaces. I only started some experiments in this setting in order to discern their viability,
which yielded positive results. Therefore, it might be of high interest to conduct more thor-
ough experiments iterating through a long range of hyper-parameters and using different
behavior policies. Furthermore, one might want to try different pseudo-counts, network
architectures, initializations, and optimizers as I mostly just followed along Nadjahi et al.
[11]. Furthermore, the function approximation versions of SPIBB, Approx-Soft-SPIBB
and Lower-Approx-Soft-SPIBB should be tested on various benchmarks against state of
the art uncertainty incorporating offline reinforcement learning algorithms, similar to the
experiments of Fujimoto et al. [35].
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Appendices

A Hyper-parameter Choices

In the following the choices for the hyper-parameters for all algorithms used in Section 3.4
or Appendix B on the Random MDPs and discrete Wet Chicken benchmark are reported.
DUIPI (native) refers to the original implementation of DUIPI, without the mechanism
to avoid unvisited state-action pairs.

Algorithm
Hyper-parameter choice
for the Random MDPs

Hyper-parameter choice
for Wet Chicken

Πb-SPIBB N∧ = 10 N∧ = 7
Π≤b-SPIBB N∧ = 10 N∧ = 7

Approx-Soft-SPIBB-
Hoeffding

ε = 2 ε = 1

Approx-Soft-SPIBB-
MPeB

ε = 5 ε = 5

1-Step-Approx-Soft-SPIBB-
Hoeffding

ε = 1 ε = 0.2

1-Step-Approx-Soft-SPIBB-
MPeB

ε = 2 ε = 0.5

Adv-Approx-Soft-SPIBB-
Hoeffding

ε = 2 ε = 1

Adv-Approx-Soft-SPIBB-
MPeB

ε = 5 ε = 5

Lower-Approx-Soft-SPIBB-
Hoeffding

ε = 1 ε = 0.5

Lower-Approx-Soft-SPIBB-
MPeB

ε = 5 ε = 5

DUIPI ξ = 0.1 ξ = 0.5
DUIPI (native) ξ = 0.5 -

R-MIN N∧ = 3 N∧ = 3
RaMDP κ = 0.05 κ = 2

B Additional Plots
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(a) Πb-SPIBB (b) Π≤b-SPIBB

Fig. 22. ECDF for different hyper-parameter values for various algorithms on the Ran-
dom MDPs benchmark.
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(c) Approx-Soft-SPIBB-Hoeffding (d) Approx-Soft-SPIBB-MPeB

Fig. 22. ECDF for different hyper-parameter values for various algorithms on the Ran-
dom MDPs benchmark.
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(e) 1-Step-Approx-Soft-SPIBB-Hoeffding (f) 1-Step-Approx-Soft-SPIBB-MPeB

Fig. 22. ECDF for different hyper-parameter values for various algorithms on the Ran-
dom MDPs benchmark.
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(g) Adv-Approx-Soft-SPIBB-Hoeffding (h) Adv-Approx-Soft-SPIBB-MPeB

Fig. 22. ECDF for different hyper-parameter values for various algorithms on the Ran-
dom MDPs benchmark.
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(i) Lower-Approx-Soft-SPIBB-Hoeffding (j) Lower-Approx-Soft-SPIBB-MPeB

Fig. 22. ECDF for different hyper-parameter values for various algorithms on the Ran-
dom MDPs benchmark.
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(k) DUIPI (l) DUIPI (native)

Fig. 22. ECDF for different hyper-parameter values for various algorithms on the Ran-
dom MDPs benchmark.
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(m) R-MIN (n) RaMDP

Fig. 22. ECDF for different hyper-parameter values for various algorithms on the Ran-
dom MDPs benchmark.
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(a) Πb-SPIBB (b) Π≤b-SPIBB

Fig. 23. ECDF for different hyper-parameter values for various algorithms on the Wet
Chicken benchmark.
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(c) Approx-Soft-SPIBB-Hoeffding (d) Approx-Soft-SPIBB-MPeB

Fig. 23. ECDF for different hyper-parameter values for various algorithms on the Wet
Chicken benchmark.
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(e) 1-Step-Approx-Soft-SPIBB-Hoeffding (f) 1-Step-Approx-Soft-SPIBB-MPeB

Fig. 23. ECDF for different hyper-parameter values for various algorithms on the Wet
Chicken benchmark.
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(g) Adv-Approx-Soft-SPIBB-Hoeffding (h) Adv-Approx-Soft-SPIBB-MPeB

Fig. 23. ECDF for different hyper-parameter values for various algorithms on the Wet
Chicken benchmark.
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(i) Lower-Approx-Soft-SPIBB-Hoeffding (j) Lower-Approx-Soft-SPIBB-MPeB

Fig. 23. ECDF for different hyper-parameter values for various algorithms on the Wet
Chicken benchmark.
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(k) DUIPI (l) R-MIN

Fig. 23. ECDF for different hyper-parameter values for various algorithms on the Wet
Chicken benchmark.
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(m) RaMDP

Fig. 23. ECDF for different hyper-parameter values for various algorithms on the Wet
Chicken benchmark.
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(a) Mean

(b) 1%-CVaR

Fig. 24. Mean (a) and 1%-CVaR (b) performance over 10,000 trials on the Random
MDPs benchmark for the target performance ratio of 0.9 of the behavior policy. Com-
parison between the original version of DUIPI (DUIPI bayesian native) and my adaption
which avoids none visited state-action pairs (DUIPI bayesian).
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(a) Mean

(b) 1%-CVaR

Fig. 25. Mean (a) and 1%-CVaR (b) performance on the Wet Chicken benchmark for
a 0.1-greedy behavior policy. Comparison between the Soft-SPIBB algorithms using an
error function relying on Hoeffding’s bound (blue) vs. Soft-SPIBB algorithms using an
error function relying on the Maurer and Pontil bound (brown).
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(a) δ = 0.01, ε = 0.001

Fig. 26. ECDF plots of the performance of Adv-Approx-Soft-SPIBB-MPeB and the
lower bound on its performance on the Wet Chicken benchmark with various ε and δ.
The approximate independence of the returns was ensured by applying Algorithm 3 with
κ = 0.01.
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(b) δ = 0.001, ε = 0.01

Fig. 26. ECDF plots of the performance of Adv-Approx-Soft-SPIBB-MPeB and the
lower bound on its performance on the Wet Chicken benchmark with various ε and δ.
The approximate independence of the returns was ensured by applying Algorithm 3 with
κ = 0.01.
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(c) δ = 0.001, ε = 0.001

Fig. 26. ECDF plots of the performance of Adv-Approx-Soft-SPIBB-MPeB and the
lower bound on its performance on the Wet Chicken benchmark with various ε and δ.
The approximate independence of the returns was ensured by applying Algorithm 3 with
κ = 0.01.
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Fig. 27. ECDF plot of the performance of DUIPI and the lower bound on its performance
on the Wet Chicken benchmark with ξ such that the lower bound holds with probability
0.999.
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