Benutzer: Gast  Login
Dokumenttyp:
Masterarbeit
Autor(en):
Ezgi Sarıkayak
Titel:
Data-Driven Compression for Computational Fluid Dynamics Simulations Using Hypernetworks and Implicit Neural Representations
Abstract:
Fluid dynamics simulations play a crucial role in analyzing the behavior of fluids in a wide range of scientific and engineering applications, including aerospace and automotive design. However, Computational Fluid Dynamicss (CFDs) demands substantial computational resources for storage and processing. This thesis presents a data-driven compression framework to reduce storage requirements for 3D simulation datasets. The proposed framework utilizes hypernetworks to dynamically generate coordinate...     »
Aufgabensteller:
Felix Dietrich
Betreuer:
Laurent de Vito
Jahr:
2024
Quartal:
4. Quartal
Jahr / Monat:
2024-10
Monat:
Oct
Sprache:
en
Hochschule / Universität:
Technical University of Munich
Fakultät:
TUM School of Computation, Information and Technology
 BibTeX