User: Guest  Login
Title:

Predicting the solidification time of low pressure die castings using geometric feature-based machine learning metamodels

Document type:
Zeitschriftenaufsatz
Author(s):
Rosnitschek, Tobias; Erber, Maximilian; Alber-Laukant, Bettina; Hartmann, Christoph; Volk, Wolfram; Rieg, Frank; Tremmel, Stephan
Abstract:
Casting process simulations are commonly used to predict and avoid defect formation. Their integration into structural optimization can enable automated structure- and process-optimized castings. Nevertheless, these simulations are time-consuming and computationally expensive. Therefore, this paper used graph theory and skeletonization techniques to extract geometric features from arbitrary 3D geometries and transferred them to machine learning-metamodels. This method can replace casting process...     »
Journal title:
Procedia CIRP
Year:
2023
Journal volume:
118
Pages contribution:
1102-1107
Covered by:
Scopus
Reviewed:
ja
Language:
en
Fulltext / DOI:
doi:10.1016/j.procir.2023.06.189
Publisher:
Elsevier BV
E-ISSN:
2212-8271
Date of publication:
01.01.2023
TUM Institution:
Lehrstuhl für Umformtechnik und Gießereiwesen
 BibTeX