Benutzer: Gast  Login
Dokumenttyp:
Masterarbeit
Autor(en):
Atamert Rahma
Titel:
Sampling Neural Networks to Approximate Hamiltonian Functions
Abstract:
Approximating dynamical systems from data is a significant and challenging problem. Incorporating knowledge about physical laws that govern the dynamical process can help reduce data requirements and improve prediction accuracy. Here, we discuss how to approximate Hamiltonian functions of energy-conserving dynamical systems by solving an associated linear partial differential equation. We employ neural network activation functions as basis functions for the solution and evaluate the performance...     »
Aufgabensteller:
Prof. Felix Dietrich
Betreuer:
Chinmay Datar
Jahr:
2024
Quartal:
2. Quartal
Jahr / Monat:
2024-05
Monat:
May
Sprache:
en
Hochschule / Universität:
Technical University of Munich
Fakultät:
TUM School of Computation, Information and Technology
 BibTeX