User: Guest  Login
Title:

In Situ Analysis of Stress and Microstructure Evolution during Welding of High-Alloy Steels Using Energy-Dispersive X-Ray Diffraction

Document type:
Zeitschriftenaufsatz
Author(s):
Hempel, Nico; Nitschke-Pagel, Thomas; Klaus, Manuela; Apel, Daniel; Genzel, Christoph; Dilger, Klaus
Abstract:
Constrained thermal expansion and contraction during welding cause a compression-tension cycle and plastic deformation in the heat-affected zone, leading to work hardening. The nature of this hardening effect — isotropic or kinematic — determines the final local yield stress and thus affects the residual stress state. Therefore, mechanical hardening must be modeled correctly in welding simulations for accurately predicting welding residual stresses. Previous studies, relying on comparisons with...     »
Keywords:
austenitic steel, diffraction elastic constants, ferritic steel, in-situ analysis, residual stress, welding, X-ray diffraction
Journal title:
Journal of Materials Engineering and Performance
Year:
2024
Year / month:
2024-04
Reviewed:
ja
Fulltext / DOI:
doi:10.1007/s11665-024-09460-0
Publisher:
Springer Science and Business Media LLC
E-ISSN:
1059-94951544-1024
Submitted:
16.06.2023
Accepted:
08.03.2024
Date of publication:
22.04.2024
TUM Institution:
Lehrstuhl für Werkstofftechnik der Additiven Fertigung
 BibTeX