Diese Arbeit automatisiert das geometrische digitale Twinning von bestehenden Brücken anhand ihrer Punktwolken. Sie schlägt eine automatisierte semantische Segmentierung von Brückenpunktwolken unter Verwendung einer Deep-Learning-Architektur vor. Außerdem wird der parametrische Modellierungsprozess von Brücken durch Reverse Engineering und Optimierungstechniken automatisiert. Die Ergebnisse der Anwendung der vorgeschlagenen Methode auf zehn Brücken zeigen eine hohe Genauigkeit bei der Segmentierung (OA = 96.97%, mIoU = 91.57%) und einen geringen Fehler bei der Modellerstellung (MAE = 8.43 cm).
«