Neural Network-Based Dynamic State Estimation for Fast Frequency Support Using Energy Storage Systems
Dokumenttyp:
Konferenzbeitrag
Art des Konferenzbeitrags:
Textbeitrag / Aufsatz
Autor(en):
Bhujel, N.; Rai, A.; Hummels, D.; Tamrakar, U.; Tonkoski, R.
Stichworte:
Adaptation models; System dynamics; Computational modeling; Microgrids; Frequency estimation; Data models; Velocity measurement; state estimator; neural network; frequency dynamics; microgrids; fast frequency support
Kongress- / Buchtitel:
2024 IEEE Electrical Energy Storage Application and Technologies Conference (EESAT)