This article presents a nonlinear finite element model developed to simulate the load-deformation behavior of wood joints when loaded by a dowel-type fastener. Particular attention was paid to the initial load-deformation behavior that had a significant influence on the joint stiffness, a joint property with a large influence on the mechanical behavior of wood-based composite structures connected with semirigid joints. To obtain accurate predictions of joint deformation, the material models available in the literature were adapted and nonlinear deformations were taken into consideration during very early loading. The proposed model precisely describes the embedding behavior of different wood species and densities. Numerical results compared very well with those obtained in experiments. Based on this analysis, the recommendation is to obtain the material model inputs based on design values available in the literature.
«
This article presents a nonlinear finite element model developed to simulate the load-deformation behavior of wood joints when loaded by a dowel-type fastener. Particular attention was paid to the initial load-deformation behavior that had a significant influence on the joint stiffness, a joint property with a large influence on the mechanical behavior of wood-based composite structures connected with semirigid joints. To obtain accurate predictions of joint deformation, the material models avai...
»