Benutzer: Gast  Login
Titel:

A system for cloud-based deviation prediction of propulsion energy consumption for EVs

Dokumenttyp:
Konferenzbeitrag
Art des Konferenzbeitrags:
Textbeitrag / Aufsatz
Autor(en):
Grubwinkler, Stefan; Maria Kugler, Markus Lienkamp
Seitenangaben Beitrag:
99-104
Abstract:
Energy prediction for electric vehicles (EVs) is a complex problem because the energy consumption depends on a lot of different and varying impact factors. Since the number of vehicles connected to a server will increase, cloud-based approaches can improve the accuracy of energy prediction for EVs. A prediction model is used, which consists of an in-vehicle part for the prediction of the mean value of propulsion energy consumption and of a cloud-based part to predict the relative deviatio...     »
Stichworte:
FTM Smarte Mobilität
Kongress- / Buchtitel:
IEEE Int. Conference on Vehicular Electronics and Safety
Publikationsdatum:
28.07.2013
Jahr:
2013
Nachgewiesen in:
Scopus
Volltext / DOI:
doi:10.1109/ICVES.2013.6619611
TUM Einrichtung:
Lehrstuhl für Fahrzeugtechnik
 BibTeX