Benutzer: Gast  Login
Dokumenttyp:
Masterarbeit
Autor(en):
Aurangzeb Ali Rathore
Titel:
Adaptive Multifidelity Deep Gaussian Process for Uncertainty Quantification
Übersetzter Titel:
Adaptive Multifidelity Deep Gauß Prozesse zur Quantifizerung von Untersicherheit
Abstract:
Most physical models need to be designed with high accuracy with the absence of certain features. It can be a challenge to obtain high accuracy in exchange for high computational and resource cost when dealing with complex systems. In this paper we explore methods related to Multi-Fidelity Gaussian Models to tackle these problems. We will first design a multi-fidelity Gaussian process regression model which augments high-fidelity data with low-fidelity data for an approximation of the high-fidel...     »
Aufgabensteller:
Bungartz, Hans-Joachim
Betreuer:
Kislaya Ravi
Jahr:
2021
Quartal:
2. Quartal
Jahr / Monat:
2021-08
Monat:
Aug
Sprache:
en
Hochschule / Universität:
Technical University of Munich
Fakultät:
Fakultät für Informatik
 BibTeX