We investigate stochastic optimization methods with the main application of training machine learning models. One approach involves a practical stochastic proximal point method with variance reduction, where the subproblem is solved via semismooth Newton. We also consider algorithms that use the stochastic Polyak step size. Here, we propose a proximal version for regularized problems. Using a model-based viewpoint of momentum, we derive Polyak-type adaptive learning rates for momentum methods.
Übersetzte Kurzfassung:
Die Arbeit befasst sich mit stochastischen Methoden der Optimierung und dem Trainieren von Machine Learning-Modellen als Anwendung. Der erste Teil behandelt das Stochastic Proximal Point Verfahren mit Varianzreduktion. Dabei werden die Teilprobleme mithilfe des semiglatten Newton-Verfahrens gelöst. Im Weiteren werden stochastische Algorithmen, die die Polyak-Schrittweite benutzen, entwickelt. Wir untersuchen eine proximale Variante für regularisierte Probleme sowie die Kombination mit Momentum.