
Technische Universität München

TUM School of Computation, Information and Technology

Topics in Stochastic Optimization:

Learning with Implicit and Adaptive

Steps

Fabian Schaipp

Vollständiger Abdruck der von der TUM School of Computation, Information and Tech-
nology der Technischen Universität München zur Erlangung eines

Doktors der Naturwissenschaften (Dr. rer. nat.)

genehmigten Dissertation.

Vorsitz: Prof. Dr. Mathias Drton

Prüfende der Dissertation: 1. Prof. Dr. Michael Ulbrich

2. Prof. Dr. Suvrit Sra

3. Prof. Dr. Dirk Lorenz

Die Dissertation wurde am 09.02.2024 bei der Technischen Universität München ein-
gereicht und durch die TUM School of Computation, Information and Technology am
20.06.2024 angenommen.

Abstract

We investigate stochastic optimization methods with the main application of training machine
learning models. One approach involves a practical stochastic proximal point method with
variance reduction, where the subproblem is solved via semismooth Newton. We also consider
algorithms that use the stochastic Polyak step size. Here, we propose a proximal version for
regularized problems. Using a model-based viewpoint of momentum, we derive Polyak-type
adaptive learning rates for momentum methods.

i

ii

Acknowledgements

First and foremost, I would like to thank my advisor Prof. Michael Ulbrich for his continu-
ously strong support throughout the PhD. His valuable comments and suggestions deepened my
mathematical understanding, and helped me to improve my work in terms of mathematical rigor
and simplicity. I would like to thank Prof. Michael Ulbrich for providing me the opportunity to
attend several workshops and conferences and to visit researchers abroad. I thank him for his
guidance that enabled me to quickly develop research ideas independently.

I am very grateful to Prof. Christian L. Müller for always having an open ear for questions and
research ideas. Christian has been a great mentor throughout my PhD. Through him I had the
opportunity to get a broad view of scientific research, a more eclectic perspective on the field of
optimization, and also to start new collaborations.

I want to thank Robert M. Gower for his tremendous support over the last two years of my PhD.
Conducting research with Robert has been a privilege and an exciting journey. I thank Robert
for hosting me twice at the Flatiron Institute in New York City. The working environment and
the conversations I had with my research colleagues at the Flatiron Institute have led to many
new ideas and advancements for my own work.

I am very grateful to the Simons Foundation for providing financial support for both visits in
New York. The computations in this thesis were, in part, run at the Leibniz-Rechenzentrum
Munich and at facilities supported by the Scientific Computing Core at the Flatiron Institute.
I want to thank both institutions for providing the access to computational resources.

I want to thank all of my co-authors for their suggestions, feedback and inspiration during the
work on the contents of this thesis – your support is highly appreciated.

I would like to thank all of my colleagues in Munich, who fostered a welcoming working atmo-
sphere from the first day and always provided help or suggestions when needed.

Finally, I owe many thanks to my parents and to my sister for their strong support and patience
throughout the years. I want to thank Lili for being a wonderful companion ever since.

iii

iv

Contents

Abstract i

Acknowledgements iii

List of Publications and Preprints ix

Notation xi

Introduction 1

1 Background and Preliminaries 5

1.1 Clarke Subdifferential . 5

1.2 Convexity and Fenchel Conjugate . 6

1.3 Proximal Operator and Moreau Envelope . 7

1.4 Smoothness and Semismoothness . 8

1.5 Supplementary Results . 9

2 Classical Results of Stochastic Optimization for Machine Learning 11

2.1 Optimization in the Context of Machine Learning 11

2.2 Problem Setup . 13

2.3 Stochastic Oracles and Empirical Risk Minimization 15

2.4 Proximal Stochastic Gradient Descent . 16

2.4.1 Convergence Results . 17

2.5 Variance Reduction . 19

2.5.1 An Illustrative Variance-Reduced Method 19

2.5.2 SVRG and SAGA . 19

2.5.3 Interpolation . 21

2.6 Adaptive Methods . 22

2.7 Model-based Stochastic Optimization . 24

2.7.1 Almost Sure Convergence for SPP . 25

2.7.2 The Weakly Convex Case . 26

3 A Semismooth Newton Stochastic Proximal Point Algorithm With Variance
Reduction 27

3.1 Introduction . 27

3.2 Background and Contributions . 29

3.3 The Stochastic Proximal Point Method . 29

3.3.1 Preliminaries and Assumptions . 29

3.3.2 Algorithmic Framework . 30

v

3.4 A Semismooth Newton Method for Solving the Subproblem 32

3.5 Controlling the Inexactness of the Update . 35

3.6 Convergence Analysis . 36

3.6.1 Weakly Convex Case . 36

3.6.2 Strongly Convex Case . 37

3.7 Numerical Experiments . 37

3.7.1 General Setting . 38

3.7.2 Logistic Regression with `1-Regularization 38

3.7.3 Sparse Student-t Regression . 42

3.8 Supplementary Material and Missing Proofs . 44

3.8.1 Bounding the Variance . 44

3.8.2 Proof for the Weakly Convex Case . 46

3.8.3 Proof for the Strongly Convex Case . 49

3.8.4 Parameter Choices . 53

3.8.5 Additional Plots . 53

3.9 Extension: Additional Loss and Regularization Functions 54

3.9.1 Loss Functions and their Conjugate . 54

3.9.2 Regularization Functions . 59

3.10 Extension: Prox-linear Algorithm . 61

3.10.1 Background and Related Work . 61

3.10.2 Algorithmic Framework . 62

3.11 Conclusions and Open Questions . 64

4 A Stochastic Proximal Polyak Step Size 67

4.1 Introduction . 67

4.2 Background and Contributions . 69

4.3 A Model-based Viewpoint for the Unregularized Case 70

4.4 The Regularized Case . 71

4.4.1 The Special Case of `2-regularization . 72

4.4.2 Comparing the Model of SPS and ProxSPS 73

4.5 Convergence Analysis . 74

4.5.1 Globally Bounded Subgradients . 75

4.5.2 Lipschitz Smoothness . 76

4.6 Numerical Experiments . 79

4.6.1 General Parameter Setting . 79

4.6.2 Regularized Matrix Factorization . 80

4.6.3 Regularized Matrix Completion . 82

4.6.4 Deep Networks for Image Classification 83

4.7 Conclusions and Open Questions . 85

4.8 Supplementary Material and Missing Proofs . 88

4.8.1 Update Lemmas for the Truncated Model 88

4.8.2 Proof of Theorem 4.7 . 90

4.8.3 Proof of Theorem 4.8 . 92

4.8.4 Auxiliary Lemmas . 94

4.8.5 Model Equivalence for SGD and `2-regularization 95

4.9 Supplementary Material on Numerical Experiments 95

4.9.1 Matrix Factorization . 95

4.9.2 Imagenet32 Experiment . 97

4.9.3 Interpolation Constant . 99

vi

5 Momentum Models for Adaptive Learning Rates 101
5.1 Introduction . 101
5.2 Background and Contributions . 102
5.3 Model-Based Momentum Methods . 104

5.3.1 Model-Based Viewpoint of Momentum . 104
5.3.2 Deriving MoMo . 105
5.3.3 The Coefficients ρj,k: To Bias or not to Bias 106

5.4 Weight Decay and Preconditioning . 108
5.5 Convergence Analysis . 109
5.6 Estimating a Lower Bound . 111
5.7 Numerical Experiments . 112

5.7.1 Zero as Lower Bound . 113
5.7.2 Online Lower Bound Estimation . 116

5.8 Conclusions and Open Questions . 117
5.9 Supplementary Material and Missing Proofs . 119

5.9.1 Convergence Proofs . 120
5.9.2 Notes on the Averaging Coefficients . 123
5.9.3 Comparison of MoMo-Adam to AdamW . 125
5.9.4 Implementation details on MoMo? . 125

5.10 Supplementary Material on Numerical Experiments 125
5.10.1 Experimental Setup of Section 5.7.1 . 125
5.10.2 Models and Datasets . 126
5.10.3 Additional Experiments . 127
5.10.4 Illustrative Example of Online Lower Bound Estimation 128

vii

viii

List of Publications and Preprints

A. Milzarek, F. Schaipp, and M. Ulbrich, A Semismooth Newton Stochastic Proximal
Point Algorithm with Variance Reduction, SIAM Journal on Optimization, 34 (2024), pp. 1157–
1185, https://epubs.siam.org/doi/10.1137/22M1488181.

F. Schaipp, R. M. Gower, and M. Ulbrich, A Stochastic Proximal Polyak Step Size, Trans-
actions on Machine Learning Research, (2023), https://openreview.net/forum?id=jWr41htaB3.

F. Schaipp, R. Ohana, M. Eickenberg, A. Defazio, and R. M. Gower, MoMo: Momen-
tum Models for Adaptive Learning Rates, 41st International Conference on Machine Learning,
2024, https://proceedings.mlr.press/v235/schaipp24a.html.

The following publications and preprints have been completed during the time of the dissertation,
but their contents do not form an essential part of the thesis.

F. Schaipp, O. Vlasovets, and C. L. Müller, GGLasso - a Python package for General
Graphical Lasso computation, Journal of Open Source Software, 6 (2021), p. 3865, https:

//joss.theoj.org/papers/10.21105/joss.03865.

F. Schaipp, Decay no more, in ICLR Blogposts 2023, https://iclr-blogposts.github.io/
2023/blog/2023/adamw/.

G. Garrigos, R. M. Gower, F. Schaipp, Function Value Learning: Adaptive Learning
Rates Based on the Polyak Stepsize and Function Splitting in ERM, 2023, arXiv:2307.14528
[cs.LG].

F. Schaipp, U. Şimşekli, R. M. Gower, Robust gradient estimation in the presence of
heavy-tailed noise, in NeurIPS 2023 Workshop Heavy Tails in Machine Learning, 2023, https:
//openreview.net/forum?id=C6PiH9Fkjd.

ix

https://epubs.siam.org/doi/10.1137/22M1488181
https://openreview.net/forum?id=jWr41htaB3
https://proceedings.mlr.press/v235/schaipp24a.html
https://joss.theoj.org/papers/10.21105/joss.03865
https://joss.theoj.org/papers/10.21105/joss.03865
https://iclr-blogposts.github.io/2023/blog/2023/adamw/
https://iclr-blogposts.github.io/2023/blog/2023/adamw/
https://arxiv.org/abs/2307.14528
https://arxiv.org/abs/2307.14528
https://openreview.net/forum?id=C6PiH9Fkjd
https://openreview.net/forum?id=C6PiH9Fkjd

x

Notation

Sets

R+,R++ Set of non-negative and positive real numbers

R Set of real extended numbers, R = R ∪ {+∞}
Sn Set of symmetric n× n matrices
Sn+,Sn++ Set of symmetric, positive (semi)definite n× n matrices
int(C), ri(C) Interior and relative interior of a set C
[n] Set of integers {1, . . . , n}

Linear Algebra

〈·, ·〉 Euclidean inner product

‖ · ‖ Euclidean norm, i.e. ‖x‖ =
√
〈x, x〉

〈·, ·〉M Inner product induced by M ∈ Sn++, i.e. 〈x, y〉M = 〈x,My〉
‖ · ‖M Norm induced by M ∈ Sn++, i.e. ‖x‖M =

√
〈x, x〉M

A> Transposed of matrix A
λmin(A), λmax(A) Smallest and largest eigenvalue of A ∈ Sn
tr(A) Trace of square matrix A
Diag(v) Diagonal matrix with the entries of v ∈ Rn on the diagonal
Diag((vi)i=1,...,n) — ” —
diag(A) The diagonal of a square matrix A
1n Vector of ones of length n
Idn Identity matrix in Rn; we omit the index n when the context is clear
ei i-th unit vector of the standard Euclidean basis

For A ∈ Sn+ with eigen-decomposition A = UΛU>, its square root is given by A1/2 = UΛ1/2U>,
where Λ1/2 is obtained by taking the square root of all diagonal elements of Λ.

In the following, let ϕ : Rn → R and Φ : Rn → Rm be functions.

Functions and Operators

dom(ϕ) Domain of ϕ, i.e. all points x such that ϕ(x) < +∞
1(·) Boolean indicator function, 1True = 1 and 1False = 0

δC Indicator function of set C, defined as δC = 0 if x ∈ C and δC = +∞ else
Φ ∈ C1 The function Φ is continuously differentiable
ProjC(x) Euclidean projection of x onto a non-empty, closed, convex set C
(·)+ Positive part, defined by (x)+ := max{x, 0}
� Elementwise multiplication

We write Õ when dropping logarithmic terms in theO-notation, e.g. O(ln(1+K)
K) = Õ(1

K).

xi

xii

Introduction

What do you want from theory alone?

Cillian Murphy in Oppenheimer

Over the past decades, hand in hand with the availability of more data and increasing comput-
ing power, machine learning has become a discipline that affects many parts of modern society.
While machine learning models have continuously become more proficient in the classical do-
mains of language modeling and computer vision [18, 32], there has been tremendous progress
as well in many scientific applications over the years: for example, machine learning has been
proven to be useful for weather forecasting and climate modeling [40,65,78], protein folding [72]
or cosmology [24].

Training of machine learning models is inherently an optimization problem: the goal is to find the
set of parameters for a given architecture that performs best on a certain task. This is typically
achieved by minimizing a predescribed loss function over the training data. This problem can
be formalized as

min
x∈Rn

Es∼P [f(x; s)], (1)

where x are learnable parameters, s is a random vector distributed according to the training-data
distribution P , and f(x; s) is the loss function. The core contribution of optimization research
within machine learning is (i) to design algorithms that can solve the above training task in a
reliable and efficient manner and (ii) to prove convergence guarantees for these algorithms. In
many applications, P is not entirely known or it is too expensive to compute the full expectation
in the objective of (1), or gradients thereof. Therefore, stochastic methods are employed, having
access to only one sample of s per iteration [16,104,145]. Undoubtedly, the most comprehensively
studied method in this domain is stochastic gradient descent (SGD) [15,122], while Adam [74,89]
is nowadays the most widely used method in practice.

Over the last years, research in optimization within this area faced a dilemma: The dominating
trend in machine learning applications has been to scale up the model and train with more
data in order to obtain improvements [63,149]. This in consequence leads to a higher number of
learnable parameters (dimension n) as well as to the loss (and its gradient) being more expensive
to compute (size of sample space associated with P).

While training algorithms had to be improved in order to deal with the continuously growing
problem scale, at the same time, theoretical understanding of the loss landscape and optimization
dynamics was lagging behind. Even state-of-the art theoretical results for SGD or Adam often

1

2 Introduction

require assumptions that are not practical, hard to verify (for example, upper bounds on the
step size or noise assumptions) or that are not met in modern model architectures (for example,
convexity of the objective function). For non-convex problems the additional caveat comes into
play that convergence rates generally apply to stationarity instead of minimality. To make a
very concrete example, the convergence of gradient flow to a global minimum for a network with
one hidden layer, the arguably simplest non-convex architecture, has not been proven in full
generality, even though there has been recent progress [20, 69]. As a consequence, convergence
results often have to be read in a comparative manner, and the results in this thesis will make
no exception.

In the practical world, SGD and Adam are established as default methods for training, despite the
proposal of many other algorithmic schemes for which it has been claimed that they improve
these baselines. The performance of these optimization algorithms depends largely on the tuning
of their hyperparameters – for example, the learning rate or momentum coefficient – and their
optimal values can be different for each model and dataset [25, 137]. This tuning procedure is
extremely cumbersome for machine learning practitioners, as well as computationally expensive
given that even for modern research problem scales, one single training run can easily take several
hours on a GPU. In the recent years, inspired by the insights of extensive benchmarking studies
[25, 137], more focus has been put on addressing these issues by making existing algorithms
more robust and easier to use [28, 67, 107]. Continuing this research direction, a recurring
theme throughout this thesis will be to design and analyze optimization methods that need less
tuning.

Training Machine Learning Models with Stochastic Optimization. Most of the thesis
deals with problems of the form (1), or more generally, the regularized problem

min
x∈Rn

f(x) + ϕ(x), f(x) := Es∼P [f(x; s)], (2)

where ϕ is a convex, possibly non-smooth regularization function. Classical statistical learning
problems often employed the `1- or `2-norm for ϕ, in order to obtain (group) sparse solutions
[58, 143]. However, the standard (explicit) regularization function of modern deep learning is
the squared `2-norm, also called weight decay [77, 161].

Studying and developing stochastic optimization methods for problems of the form (2) is at
the core of this thesis. In Chapter 2 we outline classical results for proximal stochastic gradient
descent which can be considered the most profoundly studied method for this problem class. We
also present recent algorithmic advancements, such as variance-reduced methods like SAGA or
SVRG [27,56,68,71,157], and adaptive methods like Adam or AdaGrad [36,74,89,94]. The chapter
ends with the concept of model-based stochastic optimization [6,26,37], which comprises many
known schemes and lays the groundwork for novel methods we develop in Chapters 4 and 5.

Stochastic Proximal Point with Variance Reduction. The proximal point method [124,
125] can be considered an implicit version of the proximal gradient method. Only very recently,
the stochastic proximal point method has been analyzed [6,12,17,26,114,152], however mostly as
a theoretical method in absence of an efficient way to compute the implicit step. In Chapter 3, we
aim to make stochastic proximal point a practical and implementable method. This is achieved
by deriving a dual formulation of the implicit update, and solving it via an efficient, globalized
semismooth Newton method. This technique is related to the algorithmic development of highly
efficient (deterministic) methods in [84,164,167]. Our setup consists of a regularized, finite-sum
problem formulation where each summand is the composition of a linear mapping and a nonlinear
loss function. Our framework further allows to incorporate variance reduction into stochastic

3

proximal point. We establish convex and non-convex convergence results that match the rates
of SVRG, taking into account the inexactness of our update. An extension of our approach for
problems with the composition of two non-linear functions is provided as well. The main content
of Chapter 3 is based on the article [98].

Stochastic Proximal Polyak Step Size. Boris Polyak proposed a step size rule for problems
where the optimal value is known [117]. This idea witnessed a surprising revival for train-
ing machine learning models with SGD, where the optimal value can often be guessed due to
overparametrization and the use of non-negative loss functions [59, 88, 91, 109]. For regular-
ized problems of form (2), this poses the question how to handle the additional term ϕ(x). In
Chapter 4 we propose a proximal version of the (stochastic) Polyak step size (ProxSPS). We
establish convergence theory for convex and non-convex regularized problems that extend the
existing theory for stochastic Polyak step sizes. The main focus lies on problems with squared `2-
regularization, where ProxSPS has a closed-form update. Our experiments show that ProxSPS is
favourable in comparison to previous ways of handling the regularization term, and competitive
in comparison to SGD or Adam while being less sensitive to hyperparameter choices. Chapter 4
is based on the article [132].

Adaptive Learning Rates for Momentum Methods. Connecting to the previous para-
graph, an important open question is how to combine momentum and adaptive step sizes like the
one of Polyak [116,117]. This is mainly motivated by the fact that momentum methods in gen-
eral are superior in practice for deep learning [148]. In Chapter 5 we propose an answer to this
question, and derive adaptive learning rates for SGD with momentum, which we call MoMo. The
key insight is to re-interpret momentum as an averaging of linearizations of the loss around past
iterates. This naturally connects momentum to model-based stochastic optimization, allowing
us to combine it with the model-based viewpoint of the Polyak step size, which we have already
used in Chapter 4. Even more so, incorporating a preconditioning matrix in the model-based
update, we obtain Polyak-type learning rates for any momentum method, most importantly
Adam, within one single framework. MoMo strongly improves the stability with respect to the
learning-rate value, and often leads to more accurate models when compared to the baseline
methods at fixed tuning budget. From various experiments across different deep learning tasks,
models, and datasets, we conclude that MoMo reduces the tuning for SGD with momentum or
Adam. Chapter 5 is based on the article [134]. An implementation of the method is provided
in [133].

Structure of this thesis. The first chapter presents the mathematical tools and concepts that
will be used throughout. In Chapter 2, we set the stage by describing the central problem setup
and summarizing classical methods and results of stochastic optimization. We further provide a
short review of machine learning landmarks in Section 2.1, situating the context for optimization
problems we are interested in.

The third, fourth and fifth chapter constitute the main contributions of this thesis. Chapter 3
presents a practical stochastic proximal point method for finite-sum problems. Chapter 4 and
Chapter 5 are closely related to one another, both dealing with stochastic Polyak step sizes and
showing how they can be extended to regularized problems and momentum.

All of these three chapters share a common basic structure: each chapter contains a detailed
Introduction to the specific topic, a section with Background and Contributions, as well as a
short section Conclusions and Open Questions in the end. In each chapter, we defer technical
proofs and supplementary material to the end.

4

Chapter 1

Background and Preliminaries

In this chapter, we introduce formal definitions and basic properties of the mathematical concepts
that we will need throughout the thesis. There exist several standard textbooks which contain
a complete presentation of the selected topics. For convex analysis, we refer to the book by
Rockafellar [123], by Beck [9], by Bauschke and Combettes [8], by Hiriart-Urruty and Lemaréchal
[61], and by Nesterov [106]. More advanced topics, particularly on the concept of subdifferentials,
can be found in the book by Rockafellar and Wets [126]. Regarding the Clarke subdifferential
and semismoothness, we point to the book by Clarke [22], by Ulbrich [153], and the books of
Facchinei and Pang [42,43].

We also refer to the table of notation given on page xi.

1.1 Clarke Subdifferential

We say that a function F is locally Lipschitz near x if F is Lipschitz continuous in a neighborhood
of x. Let U ⊂ Rn be nonempty, open and let F : U → Rm. Denote by ΩF ⊂ U the set of points
where F is differentiable. Rademacher’s Theorem states that if F is locally Lipschitz, then
the set U \ ΩF has Lebesgue measure zero and hence F is differentiable almost everywhere. If
x ∈ ΩF , we denote by DF (x) the (Frèchet) derivative of F at x. This leads us to the following
definition:

Definition 1.1. Let U ⊂ Rn be nonempty, open and let F : U → Rm be locally Lipschitz near
x. Then, for x ∈ U we define

∂BF (x) := {M ∈ Rm×n | ∃(xk)k∈N ⊂ ΩF , xk → x, DF (xk)→M, k →∞}.

The Clarke subdifferential of F at x ∈ U is given by ∂F (x) := conv
(
∂BF (x)

)
.

The set ∂BF is called Bouligand subdifferential ; the Clarke subdifferential has been introduced
in the seminal work [22]. We state a few useful properties: from the definition we see that
if F is continuously differentiable in a neighborhood of x then ∂F (x) = {DF (x)}. Further,
if F1 and F2 are locally Lipschitz near x and regular in the sense of [22, Def. 2.3.4], then
∂(F1 + F2)(x) = ∂F1(x) + ∂F2(x) [22, Cor. 3, Thm. 2.5.1]. In particular, convex functions and
continuously differentiable functions are regular [22, Prop. 2.3.6, Cor. on p. 32].

5

6 Chapter 1. Background and Preliminaries

1.2 Convexity and Fenchel Conjugate

An extended real-valued function ϕ : Rn → R is called convex if for all x, y ∈ dom(ϕ) ⊂ Rn and
all λ ∈ [0, 1] it holds ϕ(λx+ (1− λ)y) ≤ λϕ(x) + (1− λ)ϕ(y). The domain dom(ϕ) of a convex
function ϕ is a convex set [8, Prop. 8.2, Prop. 8.4]. The function ϕ is called ρ-weakly convex for
ρ ≥ 0 if ϕ+ ρ

2‖ · ‖2 is convex. The function ϕ is called µ-strongly convex for µ ≥ 0 if ϕ− µ
2‖ · ‖2

is convex.

Let ϕ be proper and convex. For x ∈ dom(ϕ), the vector v is a subgradient (cf. [9, Def. 3.1]) of
ϕ at x if and only if

ϕ(y) ≥ ϕ(x) + 〈v, y − x〉 for all y ∈ Rn.

The set of all subgradients is called (convex) subdifferential of ϕ at x and denoted by ∂ϕ(x).
If x /∈ dom(ϕ), we define ∂ϕ(x) = ∅. The sum rule of subdifferential calculus states: if
ϕ1, . . . , ϕm are proper, convex functions, and if ∩mi=1 ri(dom(ϕi)) 6= ∅, then for any x ∈ Rn

it holds ∂
(∑m

i=1 ϕi

)
(x) =

∑m
i=1 ∂ϕi(x) [123, Thm. 23.8].

For a convex, real-valued function ϕ : Rn → R its convex subdifferential is equal to its Clarke
differential up to transposition [22, Thm. 2.5.1, Thm. 2.2.7].

Next, we will introduce a more general notion of a subdifferential for non-convex functions.
Consider a function ϕ : Rn → R. If ϕ(x) = +∞ we define ∂ϕ(x) = ∅. If ϕ(x) is finite, we define
the subdifferential of ϕ at x as the set of all vectors v ∈ Rn satisfying

ϕ(y) ≥ ϕ(x) + 〈v, y − x〉+ o(‖y − x‖) as y → x.

The above is known as the regular subdifferential [126, Def. 8.3]. We will summarize several
properties: first, if x is a local minimum of ϕ, then by definition it holds 0 ∈ ∂ϕ(x). If ϕ is
differentiable in x, then ∂ϕ(x) = {∇ϕ(x)} [126, Ex. 8.8 (a)]. If ϕ = ϕ1 + ϕ2, x ∈ dom(ϕ1),
and ϕ2 is continuously differentiable in a neighborhood of x, then due to [126, Ex. 8.8 (c)] we
have

∂ϕ(x) = ∂ϕ1(x) +∇ϕ2(x). (1.1)

Moreover, if ϕ is convex, then the regular subdifferential coincides with the convex subdifferential
[126, Prop. 8.12].

Now, let ϕ : Rn → R be ρ-weakly convex and hence ϕ̂ := ϕ + ρ
2‖ · ‖2 is convex. Then for any

x ∈ dom(ϕ), the subdifferential of ϕ can be characterized by

∂ϕ(x) = {v ∈ Rn | v = w − ρx, w ∈ ∂ϕ̂(x)}. (1.2)

Here, ∂ϕ̂ is the convex subdifferential. The above result follows from the fact that ∂
(
− ρ

2‖x‖2
)

=
{−ρx} and (1.1). We also refer to [26, Lem. 2.1].

As weakly convex, real-valued functions are a sum of a convex and a continuously differentiable
function, they are regular functions (cf. [22, Def. 2.3.4, Prop. 2.3.6]). Due to the sum rule for the
Clarke subdifferential for regular functions, we obtain that the Clarke subdifferential coincides
with the characterization in (1.2).

As shown, the regular and Clarke (and convex) subdifferential all coincide for real-valued, weakly
convex (convex) functions; hence, we will always denote the subdifferential of ϕ by ∂ϕ and it
will be clear from the context which definition can be applied.

1.3. Proximal Operator and Moreau Envelope 7

For a function ϕ : Rn → R its (Fenchel) conjugate function is defined as

ϕ∗(z) = sup
y∈Rn
〈z, y〉 − ϕ(y). (1.3)

The following result on the gradient of the Fenchel conjugate of a strongly convex function
essentially follows from Danskin’s theorem.

Proposition 1.2. Let g : Rn → R be proper and closed. If g is µ-strongly convex, then its
conjugate g∗ is closed, proper, convex, and Fréchet differentiable and its gradient is given by
∇g∗(x) = arg maxz∈Rn 〈x, z〉 − g(z). In addition, ∇g∗ : Rn → Rn is Lipschitz continuous with
Lipschitz constant µ−1.

Proof. The first part is a consequence of [9, Cor. 4.21] and [8, Prop. 17.36]. The remaining
properties follow from [8, Prop. 13.11, Thm. 13.32, and Thm. 18.15].

1.3 Proximal Operator and Moreau Envelope

Definition 1.3. Let ϕ : Rn → R be proper, closed, and ρ-weakly convex. Suppose that M ∈ S++

satisfies ρ < λmin(M). Then, the proximal operator is defined as

proxMϕ (x) := arg min
z∈Rn

ϕ(z) +
1

2
‖z − x‖2M . (1.4)

Moreover, we write proxϕ(x) := proxId
ϕ (x) if ρ < 1.

We make a few remarks on the above definition. The proximal operator has been studied
in many standard textbooks on convex analysis and optimization such as [8, 9, 126]. It is often
introduced for convex functions and the standard Euclidean norm (e.g. [9, Def. 6.1]). An overview
of the proximal operator for convex functions but arbitrary norms is given in [97, Sec. 3].
The condition ρ < λmin(M) is simply due to the fact that the objective of (1.4) needs to
be strongly convex in order for proxMϕ (x) to be well-defined. In particular, proxϕ(x) is well-
defined for any closed, proper, and convex function ϕ. It is easy to see that by rescaling we

obtain proxαϕ(x) = prox
1
α
Id

ϕ (x). Thus, if ϕ is ρ-weakly convex, then proxαϕ(x) is well-defined
for any α < ρ−1.

Assume in the following that ϕ : Rn → R is proper, closed, and ρ-weakly convex and M ∈
S++ satisfies ρ < λmin(M). The objective of problem (1.4) is strongly convex. Using the
necessary and sufficient first-order optimality condition [9, Thm. 3.63] together with (1.2), we
can characterize the proximal operator by

y = proxMϕ (x) ⇐⇒ 0 ∈ ∂ϕ(y) +M(y − x). (1.5)

If we have additionally that ϕ = ϕ1 + ϕ2 where ϕ1 is ρ-weakly convex and ϕ2 ∈ C1, then it
holds

y = proxMϕ (x) ⇐⇒ 0 ∈ ∂ϕ1(y) +∇ϕ2(y) +M(y − x)

⇐⇒ 0 ∈ ∂ϕ1(y) +M [y − (x−M−1∇ϕ2(y))]

(1.5)⇐⇒ y = proxMϕ1
(x−M−1∇ϕ2(y)).

(1.6)

8 Chapter 1. Background and Preliminaries

In particular, if M = 1
αId with α < ρ−1 we obtain the implicit characterization

y = proxαϕ(x) ⇐⇒ y = proxαϕ1
(x− α∇ϕ2(y)). (1.7)

If ϕ is closed, proper, convex, the proximal operator is firmly nonexpansive [9, Thm. 6.42],
i.e.,

‖proxϕ(x)− proxϕ(y)‖2 ≤ 〈x− y,proxϕ(x)− proxϕ(y)〉 ∀ x, y ∈ Rn. (1.8)

In particular, proxϕ is then Lipschitz continuous with constant 1.

A concept closely related to the proximal operator is the Moreau envelope [100].

Definition 1.4. Let ϕ : Rn → R be proper, closed, and convex and let α > 0. Then, the Moreau
envelope is defined as

envαϕ(x) := min
z∈Rn

ϕ(z) +
1

2α
‖z − x‖2. (1.9)

We will further use the notation envϕ(x) := env1
ϕ(x) and remark that envαϕ = α · envαϕ. The

Moreau envelope is continuously differentiable and its derivative is given by [9, Thm. 6.60],
i.e.

∇envαϕ(x) =
1

α
(x− proxαϕ(x)). (1.10)

Due to (1.5) it holds

x̂ = proxαϕ(x) =⇒ ∃v ∈ ∂ϕ(x̂) : ‖v‖ = α−1‖x̂− x‖ = ‖∇envαϕ(x)‖,

which explains why the gradient of the Moreau envelope can be interpreted as a measure of
stationarity at x̂ [26]. Definition 1.4 and its properties above can be extended to ϕ being ρ-
weakly convex as long as α ∈ (0, ρ−1), since ϕ+ ρ

2‖·‖2 is convex (see [26, Lem. 2.2] and Lemma 1.8
for details).

1.4 Smoothness and Semismoothness

A proper convex function ϕ : Rn → R is called essentially differentiable, if ϕ is differentiable on
int(dom(ϕ)) 6= ∅, and limj→∞ ‖∇ϕ(xj)‖ = +∞ for any sequence (xj) converging to a boundary
point of int(dom(ϕ)) [49, p. 2]. If ϕ is closed, proper, convex and essentially differentiable, then
we have ∂ϕ(x) = ∅ if x /∈ int(dom(ϕ)) [123, Thm. 26.1].

A function f ∈ C1 is called L-Lipschitz smooth (or L-smooth) if its gradient is Lipschitz contin-
uous with constant L, i.e. it holds

‖∇f(x)−∇f(y)‖ ≤ L‖x− y‖ for all x, y ∈ Rn.

We will sometimes use the common abbreviation L-smoothness. A fundamental property of
L-smooth functions is the descent lemma which states as follows.

Lemma 1.5 (Lem. 5.7 in [9]). Let f : Rn → R be L-Lipschitz smooth over a convex set U ⊂ Rn.
Then, for any x, y ∈ U it holds

f(y) ≤ f(x) + 〈∇f(x), y − x〉+
L

2
‖x− y‖2. (1.11)

1.5. Supplementary Results 9

The gradient norm of L-smooth functions can be bounded as follows.

Lemma 1.6. Let f : Rn → R be L-smooth over Rn and bounded from below, i.e. inf f > −∞.
Then, it holds

f(x)− inf f ≥ 1

2L
‖∇f(x)‖2 for all x ∈ Rn.

Proof. Using (1.11), we obtain that for all x, y ∈ Rn it holds

inf f ≤ f(y) ≤ f(x) + 〈∇f(x), y − x〉+
L

2
‖x− y‖2.

The right-hand side is minimized at y = x− 1
L∇f(x). Plugging in yields

inf f ≤ f(x)− 〈∇f(x), 1
L∇f(x)〉+ L

2 ‖ 1
L∇f(x)‖2 = f(x)− 1

2L‖∇f(x)‖2.

The notion of semismooth mappings dates back to Mifflin [96]. Its relevance and broad applica-
bility stems from the fact that it allows to generalize Newton’s method to nonsmooth operators:
for solving the equations F (x) = 0, Newton’s method converges locally q-superlinearly if F is
semismooth [119,153].

Definition 1.7. Let F : V → Rm be locally Lipschitz on a nonempty, open set V ⊂ Rn. F is
called semismooth at x ∈ V (with respect to ∂F) if F is directionally differentiable at x and if
it holds

sup
M∈∂F (x+s)

‖F (x+ s)− F (x)−Ms‖ = o(‖s‖) as s→ 0. (1.12)

If F is semsimooth at every x ∈ V , then F is called semismooth (on V). Further, for 0 < ν ≤ 1,
F is called ν-order semismooth (strongly semismooth for ν = 1) at x ∈ V , if F is ν-order
B-differentiable at x (cf. [153, Def. 2.6 (c)]) and we have

sup
M∈∂F (x+s)

‖F (x+ s)− F (x)−Ms‖ = O(‖s‖1+ν) as s→ 0. (1.13)

Next, we summarize a few useful results on semismoothness; we refer to the book by Ulbrich [153,
Chapter 2] and references therein for more details. If F is a piecewise C1(C2)-function it is
semismooth (strongly semismooth) [153, Prop. 2.26]. The classes of semimsooth and ν-order
semismooth functions are closed under composition [153, Prop. 2.9, Prop. 2.16].

In Definition 1.7 we did not specify the subdifferential, but the natural choice is the Clarke
subdifferential (see also [153]). However, the Clarke subdifferential does not admit a chain
rule (with equality) in general. If F : Rp → Rn, G : Rn → Rp are semismooth at G(x) and
x respectively, then for the composition (F ◦ G)(x) condition (1.12) holds for the surrogate
subdifferential {VW |V ∈ ∂F (G(x)), W ∈ ∂G(x)} [43, Thm. 7.5.17].

1.5 Supplementary Results

Lemma 1.8. Let ϕ : Rn → R be a proper, closed, and ρ-weakly convex function. Then, for
α < ρ−1 the Moreau envelope envαϕ given by (1.9) is well-defined and it holds

∇envαϕ(x) =
1

α
(x− proxαϕ(x)).

10 Chapter 1. Background and Preliminaries

Proof. Clearly, for α < ρ−1 the objective function in (1.9) is strongly convex and hence envαϕ
is well-defined. Denote ϕ̂ := ϕ + ρ

2‖ · ‖2 and hence ϕ̂ is convex. Define µ := 1
1−ρα > 0. For

x, y ∈ Rn we have

‖y − x‖2 = ‖y − µx‖2 + (µ− 1)2‖x‖2 + 2〈y − µx, (µ− 1)x〉
= ‖y − µx‖2 + 2(µ− 1)〈x, y〉+ (1− µ2)‖x‖2.

Further, it holds

ϕ(y) +
1

2α
‖y − x‖2 = ϕ(y) +

ρ

2
‖y‖2 +

1− ρα
2α

‖y − x‖2 − ρ〈x, y〉+
ρ

2
‖x‖2

= ϕ̂(y) +
1

2αµ
‖y − µx‖2 +

1− µ2

2αµ
‖x‖2 +

ρ

2
‖x‖2

cst.(y)

,

where we used that 2(µ−1)
2αµ = ρ

µ(1−ρα) = ρ. Simple calculations show 1−µ2
2αµ + ρ

2 = −ρµ
2 . Minimizing

both sides in y, we get that proxαϕ(x) = proxαµϕ̂(µx) and from the definition of the Moreau
envelope

envαϕ(x) = envµαϕ̂ (µx)− ρµ

2
‖x‖2.

Differentianting both sides in x and applying [9, Thm. 6.60] on envµαϕ̂ (µx), we get

∇envαϕ(x) = µ
1

µα

[
µx− proxµαϕ̂(µx)

]
− ρµx =

1

α

[
µ(1− αρ)x− proxαϕ(x)

]
.

As µ(1− αρ) = 1, the claim follows.

Chapter 2

Classical Results of Stochastic Optimiza-
tion for Machine Learning

This thesis deals with optimization problem where the objective function consists of an expected
value. Stochastic optimization encompasses algorithms that, in each iteration, can not access
the expectation-valued objective function or its derivatives. Instead, the methods we consider
can access only random samples of the objective (or its gradient); as a consequence the iterates
of the algorithm become random as well. The most famously known method in this framework
is stochastic gradient descent (SGD) which is often attributed to Robbins and Monro [122] and
Kiefer and Wolfowitz [73].

Organization of the chapter. We start by embedding stochastic optimization into the context
of training machine learning models, which is the main application we are interested in for this
thesis. In the main part of this chapter, we first establish the problem setup of stochastic op-
timization, and then explain the notion of stochastic oracles and relate this to empirical risk
minimization problems. Subsequently, a summary of convergence results for the famous (proxi-
mal) stochastic gradient method is provided. This serves as baseline for more recent optimization
techniques such as variance reduction, adaptive methods and model-based optimization. The
latter will be the central building block and guiding principle for much of the ideas, algorithm
designs and proof techniques that are presented in subsequent chapters.

Most (if not all) contents of this chapter are widely established and known results in the op-
timization community. The reader who is familiar with this literature can comfortably jump
ahead to subsequent chapters which contain the main contributions of this thesis.

2.1 Optimization in the Context of Machine Learning

Suppose that we are given a dataset (yi)i=1,...,N where yi = (yin
i , y

out
i) is a pair of input-output

data. Typically, the input yin
i can be an image, a sentence of words, or a vector of known

numerical features, while yout
i is the target or label, for example an image class, the translation

of a sentence, or a numerical quantity of interest that we want to predict.

Given a single data pair y = (yin, yout), the goal of supervised learning is to train a (parametrized)
model forwardx(yin) which performs well at predicting yout. Here, we denote with x ∈ Rn the

11

12 Chapter 2. Classical Results of Stochastic Optimization for Machine Learning

vector of all (learnable) parameters of forward, thus we are free to choose the values of x.1

If there are no targets yout given, an alternative task is to learn only from the input data, for
example to identify structures in an image (e.g. auto-encoder architectures) or to predict the
next word of a sentence (e.g. large language models such as GPT [18]). This is often referred to
as unsupervised or self-supervised learning [81,160].

Machine learning is connected to optimization by the fact that for training the model we have
to find the best choice of parameters x in order to perform well at the respective learning task.
For example, choose a loss function loss that compares the model output forwardx(yin) and
the target yout. From this, we naturally obtain an optimization problem, namely minimizing
loss(forwardx(yin), yout), averaged over the training dataset, with respect to the learnable
parameters x. In a self-supervised setting, where no targets yout are given, the objective is
typically a function of the form loss(forwardx(yin), yin) instead.2

In classical statistical learning, much focus was put on (generalized) linear models [58]. As
the name suggests, the principal idea is to restrain the model to be a linear function of the
input: we have forwardx(yin) = 〈x, yin〉 (wlog. an intercept can be modeled by adding a feature
of ones to yin). However, it is clear that such an approach can not capture nonlinear effects;
generalized linear models address this by using pre-computed features, derived from yin, as input.
This technique is closely related to kernel methods [57,138]. Generalized linear models are often
combined with regularization. For example, it can be desirable to obtain a sparse x, meaning that
the final learned parameter vector contains many zeros; sparsity is useful in high-dimensional
learning problems and/or if the practitioner seeks for interpretability. Using the `1-norm as
regularization function, we obtain the famously known Lasso for sparse regression [150]. We
refer to textbooks on statistical learning [57,58] for a more detailed introduction.

Generalized linear models have several short-comings: first, if we want to capture nonlinear
effects, it is necessary to manually engineer features from the raw input data which often requires
domain expertise. One paradigm of modern deep learning is to learn these features instead of
pre-selecting them [81]. Second, for certain types of input data additional structural information
can be leveraged; for example, stacking all pixel values of an image would ignore pixel position,
as small patches of pixels typically contain (local) information of the image.

In the last decades, the increasing availability of data and computational resources led to an
enormous progress in machine learning. Arguably this would not have been possible without
fundamental contributions in numerical methods, optimization and development of open-source
software frameworks such as Pytorch [113] or Tensorflow [1]. We refer the reader to [81] for
a detailed review of the deep learning (r)evolution. Below we give a short list of influential
developments regarding model architectures. We want to stress that this list is by far not
complete – it mainly serves to give historical context for the architectures which will be used
later in our numerical experiments.

Multi-Layer Perceptron (MLP). At least since the 1960’s, scientists developed learning tech-
niques based on the functional principles of the human brain [3, 66, 130]. MLP architectures
consists of several layers, where each layer is a linear transformation followed by a (nonlinear)

1The standard notation in machine learning literature would be to use w or θ for learnable parameters and to
use (xi, yi)i=1,...N for input and output data. However, as the topics of this thesis are mainly situated in the field
of optimization, we use the standard notation where x is the optimization variable.

2From an optimization perspective, the setting of supervised and self-/unsupervised learning is very similar
and hence we will focus on the supervised setting in our examples.

2.2. Problem Setup 13

activation function: in particular, we multiply a weight matrix (which is part of x) by the out-
put of the previous layer (plus a bias term). Then, we apply a nonlinear activation function
elementwise on the result of this linear transformation. Commonly used activation functions are
Sigmoid(z) = 1

1+exp(−z) and ReLU(z) = (z)+ or variants thereof.

Convolutional Neural Networks (CNN). If the input data is an image, it has proven successful
to leverage the structure of images for designing the model architecture. Convolutions can be
understood as inner products of small patches (e.g. five by five pixels) with (learnable) kernels
of the same size. This technique is able to detect local patterns (e.g. edges) which is then
aggregated globally (e.g. by pooling) [81]. From the pioneering work of Fukushima [45] in 1980
to today, architectures have become simultaneously deeper (by stacking several convolutional
layers) and more powerful, with LeNet [80], DanNet [21], AlexNet [76], and VGG [144] along the
way. Later, ResNet models added residual connections to avoid training instabilities [60] and
remained the gold standard until the rise of the vision transformer (see below).

Transformer. Language and text data is sequential by nature. Thus, the type of architec-
ture for language tasks (e.g. translation) is distinct from the ones used for image data. Most
modern language architectures are based on the transformer [154]. The main distinction of trans-
former architectures to previous approaches consists in its design centered around the attention
mechanism. In short, the model learns for each text element (called token) which parts of the
remaining sentence are important, for example, in order to predict the next word. We refer
to [154] for a detailed description of the architecture as well as for historical background. Ever
since this breakthrough has been achieved in language modeling, the attention mechanism was
subsequently used in other domains, such as the vision transformer for image classification [32]
or for diffusion models used in image-generation [127].

2.2 Problem Setup

Having described how optimization problems arise naturally in machine learning tasks, we can
now formulate a problem setting. Let the function f : Rn → R be given by

f(x) :=

∫

S
f(x; s)dP (s) = E[f(x;S)], (2.1)

where S is a sample space (or sample set) and P (s) is the associated probability measure. We
assume that f(x; s) is measurable with respect to P (s) for fixed x ∈ Rn. We assume that for
each s ∈ S the function f(·; s) : Rn → R is locally Lipschitz. If not specified otherwise, we
denote by ∂f(x; s) the Clarke subdifferential of f(·; s) at x ∈ Rn.

Throughout this thesis, we will consider problems of the form

min
x∈Rn

ψ(x), ψ(x) := f(x) + ϕ(x), (P)

where ϕ : Rn → R is a proper, closed, and convex function. We will refer to f as the loss function
and to ϕ as the regularization function. For problems of form (P) without regularization, i.e. if
ϕ = 0, the most famously known method is stochastic gradient descent (SGD).3 It dates back to

3The name for this method has been established even though it is not a descent method [16].

14 Chapter 2. Classical Results of Stochastic Optimization for Machine Learning

the seminal works of Robbins and Monro [122] and Kiefer and Wolfowitz [73] in the 1950’s and
is given by

xk+1 = xk − αkgk, gk ∈ ∂f(xk;Sk), (SGD)

where Sk ∈ S and αk > 0 is a step size.

In the context of training machine learning models, x denotes the set of learnable parameters.
The distribution of input data is given via S. The loss function f(x; s) for a single sample
(typically a mini-batch) is our formal notion of the function loss(forwardx(yin), yout) from the
previous section.

Notation. We denote elements of the sample space S by lowercase s; the capital letter S
denotes a (possibly multivariate) random variable mapping to S; its push-forward measure is
given by P (s). Realizations of S will be typically denoted by S0, S1, et cetera. We will write E
whenever the associated distribution is P . Moreover, for any random variable X(s) we denote
E[X(S)] :=

∫
S X(s)dP (s), i.e. the distribution of X is given implicitly by S.

Optimality and stationarity criteria. If ψ is non-convex, it is hard to prove convergence to
a global minimum, but we might desire theoretical guarantees that an optimization method
converges to a stationary point of ψ, i.e. a point such that zero is contained in the (regular)
subdifferential ∂ψ. Thus, algorithms are often analyzed in terms of the gradient mapping [48],
a quantity which we define below.

Proposition 2.1. Let f ∈ C1 and ϕ be closed, convex. For α > 0, define the gradient mapping

Gα(x) :=
1

α
(x− proxαϕ(x− α∇f(x))).

Then, 0 ∈ ∂ψ(x) if and only if Gα(x) = 0 for some α > 0. Moreover, if f is L-smooth, then Gα
is 2+αL

α -Lipschitz continuous.

Proof. For α > 0 it holds 0 ∈ ∂ψ(x) ⇐⇒ 0 ∈ α(∇f(x) + ∂ϕ(x)). Moreover, we have Gα(x) =
0⇐⇒ x = proxαϕ(x−α∇f(x))⇐⇒ 0 ∈ α∇f(x)+α∂ϕ(x) from the optimality conditions of the
proximal operator. For the second statement, using non-expansiveness of the proximal operator,
for any x, y we have

‖Gα(x)− Gα(y)‖ =
1

α
‖x− y + proxαϕ(x− α∇f(x))− proxαϕ(y − α∇f(y))‖

≤ 1

α
(‖x− y‖+ ‖x− y + α(∇f(y)−∇f(x))‖) ≤ 2 + αL

α
‖x− y‖.

For some methods, it might be more convenient to work with the gradient of the Moreau envelope
as a measure of stationarity (see e.g. [26, Sec. 2.2]). It can be related to the gradient mapping
by the following result.

Lemma 2.2 (Thm. 4.5 in [35]). Let f be L-smooth and ϕ be closed, convex. For any α > 0 and
x ∈ Rn, it holds

1
(1+αL)(1+

√
αL)
‖∇env

α
1+αL

ψ (x)‖ ≤ ‖Gα(x)‖ ≤ 1+2αL
1+αL

(√
αL

1+αL + 1
)
‖∇env

α
1+αL

ψ (x)‖.

In particular, for α = 1/L, it holds

1
4‖∇env

1/(2L)
ψ (x)‖ ≤ ‖G1/L(x)‖ ≤ 3

2(1 + 1√
2
)‖∇env

1/(2L)
ψ (x)‖ ∀x ∈ Rn.

2.3. Stochastic Oracles and Empirical Risk Minimization 15

2.3 Stochastic Oracles and Empirical Risk Minimization

Stochastic optimization is of interest when the computation of (parts of) the objective or its
derivatives are computationally infeasible or expensive. For problems of form (P), this will
typically be the case for f if the sample space S is large. Hence, we consider methods where
in each iteration only a stochastic approximation of f or its derivatives is used. We call such
a mechanism a stochastic oracle. In the setting presented in (2.1) we will assume that in the
k-th iteration we can access f(·;Sk) and gk ∈ ∂f(xk;Sk) where Sk ∈ S is drawn at random.
Under suitable assumptions (cf. Lemma 2.3) we have that gk is conditionally unbiased, i.e. it
holds

E[gk|Fk] ∈ ∂f(xk), (2.2)

where Fk is a suitable σ-algebra such that xk is Fk-measurable (cf. Assumption 1). We remark
that the concept of stochastic oracles has been introduced in more general form [16, 47, 48,
103]. However, these works typically assume the unbiasedness property (2.2) in their analysis.
Biased oracles are not presented in this thesis; we refer to [2] and references therein for an
overview.

Lemma 2.3. Let f(·; s) be ρs-weakly convex for each s ∈ S. Let f(x) = E[f(x;S)] and assume
that ρ := E[ρS] <∞. Then,

i) f is ρ-weakly convex, and

ii) it holds ∂f(x) = E[∂f(x;S)].4 In particular, for every measurable selection g(x; s) ∈
∂f(x; s) we have E[g(x;S)] ∈ ∂f(x).

Proof. The first statement follows from applying [11, Lem. 2.1] to the convex function f(·; s) +
ρs
2 ‖ · ‖2. The second statement follows from [11, Prop. 2.2] applied to f(·; s) + ρs

2 ‖ · ‖2 and
(1.2). Alternatively, one could proof this using [22, Thm. 2.7.2] and the fact that weakly convex
functions are regular.

With machine learning applications in mind, why is it efficient to compute only approximations
of the loss function or its gradient? In learning tasks, the overarching goal is to train a model
that finds patterns in a given dataset; this contains the implicit assumption that such a pat-
tern exists and hence many training samples should be similar. Stochastic methods can make
use of this redundancy within individual loss functions f(x; s) and decrease the per-iteration
complexity.5

To conclude this section, we state assumptions for stochastic oracles that will be needed for the
convergence theory later on.

Assumption 1. It is possible to generate a sequence of i.i.d. realizations S0, S1, . . . ∈ S. We
denote by Fk the filtration that is generated by {Sj | j = 0, . . . , k − 1}.
Further, we state an assumption on global boundedness of the second moment (or the variance
respectively6) of the stochastic (sub)gradient.

4See Eq. 13 in [11] for a formal definition of the expectation over a set.
5In fact, this is exactly how Yann Le Cun argues in his lecture around minute 19:15 in https://youtu.be/

d9vdh3b787Y.
6More precisely, the quantity in (O2) is the trace of the covariance matrix of the vector-valued random variable

g(x;S).

https://youtu.be/d9vdh3b787Y
https://youtu.be/d9vdh3b787Y

16 Chapter 2. Classical Results of Stochastic Optimization for Machine Learning

Assumption 2. Consider the setting from (2.1).

(O1) There exists σ > 0 such that E‖g(x;S)‖2 ≤ σ2 for every measurable selection g(x; s) ∈
∂f(x; s) and all x ∈ Rn.

(O2) There exists σ > 0 such that for all x ∈ Rn and for every measurable selection g(x; s) ∈
∂f(x; s) it holds E‖g(x;S)− E[g(x;S)]‖2 ≤ σ2 .

Due to E‖X − E[X]‖2 ≤ E‖X‖2, (O2) is (strictly) weaker than (O1). Moreover, if f(·; s) and
f are continuously differentiable then E[∇f(x;S)] = ∇f(x) in the setting of (2.1) and we can
read (O2) as

E‖∇f(x;S)−∇f(x)‖2 ≤ σ2 for all x ∈ Rn.

For the rest of this chapter, we will work under Assumption 1. In contrast, we will state explicitly
whenever we assume (O1) or (O2).

Empirical Risk Minimization. In practice, we typically are given a finite dataset of cardinality
N ∈ N and a loss function of the form

fi : Rn → R, f(x) =
1

N

N∑

i=1

fi(x). (2.3)

This is referred to as a finite-sum loss or empirical risk. In order to obtain (2.3) as a special
case of (2.1), we can formalize it as:

S = {s1, . . . , sN}, P (si) =
1

N
, f(x; si) = fi(x) i = 1, . . . , N. (ER)

Clearly, for the above choice we have E[f(x;S)] = 1
N

∑N
i=1 fi(x) where S ∼ P . However, in the

(ER) setting, sampling Sk ∈ S means that we can access only a single element of the dataset per
iteration. In practice, it might be favorable to use a small fraction of the dataset instead. This
is called mini-batching and can be formalized as follows: for b ∈ [N] , let

S = {s = (i1, . . . , ib) | ij ∈ [N] with or without replacement}, P (s) =
1

|S| ∀s ∈ S,

f(x; s) =
1

b

b∑

j=1

fij (x).

(MB-ER)

In other words, we choose uniformly from the set of b-tuples of elements of [N], where we either
allow duplicate indices or not (with or without replacement). Thus, we either have |S| = N b

(with replacement) or |S| =
(
N
b

)
(without replacement). In both cases, it is easy to show that

for (MB-ER) it again holds E[f(x;S)] = 1
N

∑N
i=1 fi(x). Fig. 2.1 illustrates the principle of noise

in stochastic optimization: we plot the actual loss f(x) (dark blue border) and the sampled loss
f(x; s) (transparent surfaces). In this example, the generated dataset contains many similar
samples and hence f(x; s) captures roughly the landscape of f(x), with the noise increasing as
the batch size decreases.

2.4 Proximal Stochastic Gradient Descent

The goal of this section is to analyze proximal stochastic gradient descent (ProxSGD), stated in
Algorithm 1, for solving problems of form (P).

2.4. Proximal Stochastic Gradient Descent 17

(a) Batch size b = 10 (b) Batch size b = 1

Figure 2.1: Surface plot of loss function f(x) = 1
2‖yout− x2(x1 · yin)+‖2 for randomly generated

input data yin ∈ RN , N = 1000, and targets yout = 1.5(0.5yin)+ + 0.1 · ε ∈ RN with ε ∼ N (0, 1).
In the spirit of the applications we have in mind, the loss resembles a simplified two-layer neural
network. The dark blue border represents f(x) while each transparent surface represents a
sampled mini-batch loss f(x; s) (cf. (MB-ER)).

Algorithm 1 ProxSGD

Require: Starting point x0 ∈ Rn, step sizes αk > 0.
1: for k = 0, . . . ,K − 1 do
2: Sample Sk and compute gk ∈ ∂f(xk;Sk).
3: Update

xk+1 = proxαkϕ(xk − αkgk).
4: end for
5: return xK

Some remarks on the above: we stated the algorithm such that it is also applicable for non-
smooth loss functions f(·; s). However, the theoretical results we present later focus on the
differentiable setting. Further, applying the definition of the proximal operator and adding the
constant f(xk;Sk), we can rewrite the ProxSGD update as follows:

xk+1 = arg min
y∈Rn

ϕ(y) +
1

2αk
‖y − (xk − αkgk)‖2

= arg min
y∈Rn

ϕ(y) + f(xk;Sk) + 〈gk, y − xk〉+
1

2αk
‖y − xk‖2. (2.4)

Thus, ProxSGD takes a proximal step of the mapping y 7→ f(xk;Sk)+〈gk, y−xk〉+ϕ(y) with step
size αk. We will come back to this fact in Section 2.7 in the context of model-based stochastic
proximal point.

2.4.1 Convergence Results

We briefly summarize some convergence results of ProxSGD. A compact, but more illustrative
overview of the following is Table 2.1.
Davis and Drusvyatskiy analyze ProxSGD for f being weakly convex and thus including the case

of f being L-smooth [26]. Their analysis is based on ∇env
1/(2L)
ψ as stationarity criterion and

the result stated in Table 2.1 is obtained using Lemma 2.2. For their result, the step sizes are

18 Chapter 2. Classical Results of Stochastic Optimization for Machine Learning

Assum. on
f ; ψ

Other αk Result Reference

L-smooth (O2)
min{ 1

2L ,O(K−1/2)} E‖G1/L(x̂)‖2 = O(1√
K

) [26, Cor. 3.6]

1
2L E‖G1/(2L)(x̂)‖2 = O(1

K) + cst.(σ2) [48, Cor. 3]

L-smooth,
convex

(O2) O(1/kβ),
β > 1/2

E[ψ(x̂)− ψ(x?)] = O(1
K1−β) [48, Thm. 2]

L-smooth;
str. convex

(O2) O(1/k) E‖xK − x?‖2 = O(1
K) [129, Thm. 3.5]

Table 2.1: An overview of convergence results for ProxSGD. Here, we denote by x? a solution to
(P) and with x̂ a point chosen randomly from the set of iterates {x0, . . . , xK} (the distribution
can be found in the respective references).

chosen constant, but depending on the maximum number of iterations K.7 It can be interpreted
to choose, a priori, a total number of iterations K in order to achieve a desired accuracy. On the
other hand, Ghadimi et al. [48] use a constant step size but their result contains a constant term
in σ2. Therefore, exact convergence8 can only be guaranteed if the variance of the stochastic
oracle would be zero.

The convex case with diminishing step sizes is also covered in [48]. The established rate in terms
of objective convergence is almost optimal (the optimal rate is 1/

√
K according to [103]). A

similar result is given in [129, Thm. 3.4].
For the strongly convex case, i.e. assuming f to be convex and ψ to be strongly convex, the
rate wrt. squared distance to the solution is still sublinear, but of order 1/K [129, Thm. 3.5].
Moreover, in this setting, and for step sizes αk = O(1/k), the iterates converge almost surely

to the optimizer [129, Thm. 3.6]. Zhao and Zhang prove a rate of O(ln(K)
K) in [166, Thm. 1]

for proximal steps with respect to general Bregman distances (however, their setting requires
additional assumptions on ϕ).

For the special case ϕ = 0, the literature on SGD is exuberant and hence we focused on results
for the regularized setting above. Having ϕ = 0 does not fundamentally improve the results or
convergence rates, but often simplifies the proofs. We refer the interested reader to [46] for an
overview of results and proof techniques. For this thesis, we confine ourselves to present one
classical convergence result of SGD for the unregularized setting: if f is L-smooth and µ-strongly
convex and under the assumption of (O2), Bottou, Curtis, and Nocedal [16, Thm. 4.6] showed
that9

E[f(xK)−min f] ≤ (1− µα)K
(
f(x0)− inf f

)
+
αLσ2

2µ
, (2.5)

for a constant step size αk = α = O(1
L). Hence, SGD converges linearly into a neighborhood of

the solution whose size can be controlled by reducing the step size α.

7We will call results where the step size αk does not depend on the maximum number of iterations anytime
results. If this condition is not met, we call it a non-anytime result. Typically, non-anytime results can improve
the rates up to a logarithmic factor.

8We will call results where convergence is shown up to a constant non-exact convergence.
9Their result is actually more general and also covers biased gradient oracles.

2.5. Variance Reduction 19

2.5 Variance Reduction

In ProxSGD, we introduce variance in each iteration by using gk instead of ∇f(xk). Thus, for
constant step sizes αk = α the algorithm naturally can converge only to a neighbourhood of the
minimizer (cf. (2.5)). As gk is multiplied with αk in each step, we can compensate for this with
diminishing step sizes. For example, step sizes are often assumed to satisfy the Robbins-Monro
condition (cf. [122] and [16, Thm. 4.7]) given by

∞∑

k=0

αk =∞,
∞∑

k=0

α2
k <∞.

The above is fulfilled for the choice αk = O(1/kβ), β > 1/2. However, this has the drawback of
taking progressively smaller steps and slow convergence as a consequence. Recent developments
have tried to overcome this issue by variance reduction (VR). Conceptually, this comprises meth-
ods for which the variance of the gradient estimator diminishes when approaching the solution.
A thorough review of these methods is given in [53]. The respective article also explains how SGD

with momentum or increasing batch size can be interpreted as variance-reduced methods. In
this section we first present a conceptual method for the purpose of illustrating the mechanism
of variance reduction, and then introduce in detail two popular and practical VR schemes.

2.5.1 An Illustrative Variance-Reduced Method

In this section, let the loss be given in finite-sum structure (2.3), consider (ER) and let ϕ = 0.
Assume that all fi are differentiable and let x? ∈ arg minx∈Rn f(x). For this setting, the method
SGD? proposed in [50] is given by

xk+1 = xk − α
(
∇fik(xk)−∇fik(x?)

)
, (SGD?)

where α > 0 and ik ∈ [N] is drawn uniformly at random in each iteration. As we do not know
∇fi(x?) in general, the above method is clearly not practicable. However, it nicely illustrates
the principal idea of VR methods. The following considerations are taken from [53, Sec. E]. If
all fi are Li-Lipschitz-smooth and Lmax := maxi=1,...,N Li, the second moment of the update
direction (and hence its variance) satisfies E‖∇fik(xk)−∇fik(x?)‖2 ≤ L2

maxE‖xk − x?‖2 → 0 if
E‖xk − x?‖2 → 0. This reasoning motivates why SGD? can be considered a VR-method.

Moreover, if f is strongly convex, then the iterates of SGD? converge linearly to the solution
for a constant step size α ≤ 1

Lmax
[53, Thm. 1]. This improves the results we presented for

ProxSGD: the convergence rate is linear instead of sublinear and constant step sizes are allowed (or
alternatively, it is an exact convergence result in contrast to (2.5)). In the next section, we show
that such improved convergence results can indeed be obtained for practical VR-methods.

2.5.2 SVRG and SAGA

Supposedly the first VR method is SAG which came out in 2013 [136], followed by SVRG [71]
and SDCA [140] in 2013 as well and SAGA (SAG “amélioré”) in 2014 [27, 53]. In this section, we
will focus on SVRG and SAGA and summarize their theoretical contributions. Both methods, by
construction, only work for finite-sum loss functions. Hence, for this section let us assume that
we aim to solve problem (P) with the loss given as in (2.3), i.e. f(x) = 1

N

∑N
i=1 fi(x). We assume

that each fi : Rn → R is differentiable.

20 Chapter 2. Classical Results of Stochastic Optimization for Machine Learning

Algorithm 2 SVRG

Require: Starting point x̃0 ∈ Rn, step size α > 0, batch size b ∈ [N], m ∈ N.
1: for s = 0, 1, . . . ,S− 1 do
2: Set xs,0 = x̃ = x̃s

3: for k = 0, . . . ,m− 1 do
4: Draw a b-tuple Sk = {i1, . . . , ib} of elements of {1, . . . , N} and compute vk =(

1
b

∑b
l=1∇fil(xs,k)−∇fil(x̃)

)
+∇f(x̃).

5: Update
xs,k+1 = proxαϕ(xs,k − αvk).

6: end for
7: Option I: Set x̃s+1 = 1

m

∑m
j=1 x

s,j .

8: Option II: Set x̃s+1 = xs,m.
9: end for

10: return x̃S

Algorithm 3 SAGA

Require: Starting point x0 ∈ Rn, step size α > 0, batch size b ∈ [N].
1: Set φ0

i = x0 for i ∈ [N] and g0 = 1
N

∑N
i=1∇fi(φ0

i).
2: for k = 0, 1 . . . ,K − 1 do
3: Draw b-tuple Sk = {i1, . . . , ib} of elements of {1, . . . , N} and compute vk =(

1
b

∑b
l=1∇fil(xk)−∇fil(φkil)

)
+ gk.

4: Set xk+1 = proxαϕ(xk − αvk).
5: Update φk+1

i = xk for i ∈ Sk and φk+1
i = φki else.

6: Set gk+1 = gk − 1
N

∑b
l=1

(
∇fil(φkil)−∇fil(φ

k+1
il

)
)
.

7: end for
8: return xK

The core idea of both SVRG and SAGA is the following: consider the setting (MB-ER) and fix x ∈ Rn.
Instead of approximating ∇f(x) with the mini-batch gradient ∇f(x; s), for any random variable
Z(s) we can use instead

v(s) := ∇f(x; s)− Z(s) + E[Z(S)].

Clearly, in the setting (MB-ER) we have E[v(S)] = E[∇f(x;S)] = ∇f(x). In iteration k, setting
x = xk and S = Sk, we can apply the same reasoning for the conditional expectation (conditioned
on the history Fk) as long as Z(Sk) is Fk-measurable. In this case, we have the (random) gradient
estimator v(Sk) = ∇f(xk;Sk) − Z(Sk) + E[Z(Sk)|Fk]. Both SAGA and SVRG use this trick and
only differ in their choice of Z. We present the full algorithms in Algorithms 2 and 3.

Let us make some bibliographic remarks on Algorithm 2 and Algorithm 3:

• SVRG has been initially proposed in [71] for b = 1 and ϕ = 0 and was extended to the
convex, composite case later in [157]. Some articles refer to Algorithm 2 and Algorithm 3
as ProxSVRG and ProxSAGA. However, we always mean the proximal versions when we
write SVRG/SAGA.

• For both SVRG and SAGA, a mini-batch version for the non-convex case is analyzed in [68].
Both algorithms are typically used with constant step size and batch size, but clearly are
a priori not restricted to this.

2.5. Variance Reduction 21

• In the original paper [27], SAGA was proposed for single-batch b = 1. In practice, the
φki ∈ Rn in SAGA are never actually stored. It is sufficient to keep track of a gradient table
of size N × n containing ∇fi(φi) for i = 1, . . . , N . In many practical situations this can
even further be reduced to only store a vector of length N . We refer to [27] for further
considerations on implementation.

Next, we present two convergence results for SVRG that have been established in the literature:
linear convergence for the smooth, strongly convex setting (Theorem 2.4) and a sublinear rate
of O(1/(mS)) in the non-convex, smooth setting (Theorem 2.5). Notably, both results hold for
constant step size. Similar results can be found for SAGA in [27] and [68, Thm. 4].

For the following results, we assume that, in each iteration of Algorithm 2, each element of the
tuple Sk is drawn from [N] with uniform distribution and with replacement.

Theorem 2.4 (Thm. 3.1 in [157]). Let ϕ be proper, closed, and convex and let each fi be convex
and Li-smooth.10 Furher, assume that ψ = f + ϕ is µ-strongly convex and let x? = arg minψ.
Assume that x̃S is generated by Algorithm 2 with Option I, step size α, batch size b = 1 and
inner loop length m. Let Lmax := maxi=1,...,N Li and assume that 0 < α < 1

4Lmax
and m is

sufficiently large such that

ρ :=
1

µα(1− 4Lmaxα)m
+

4Lmaxα(m+ 1)

(1− 4Lmaxα)m
< 1,

then it holds

E[ψ(x̃S)]− ψ(x?) ≤ ρS
(
ψ(x̃0)− ψ(x?)

)
.

Theorem 2.5 (Thm. 2 in [68]). Let ϕ be closed, and convex with closed domain and let each fi
be Li-smooth. Let Lmax := maxi=1,...,N Li and x? ∈ arg minψ. Assume that we run Algorithm 2
with Option II, step size α = 1

3Lmax
, batch size b = N2/3 (assumed to be integer) and inner loop

length m = bN1/3c. Let xS∼ be chosen uniformly from the iterates {{xs,k}m−1
k=0 }S−1

s=0 of Algorithm 2.
Then, it holds

E‖Gα(xS∼)‖2 ≤ 18Lmax(ψ(x̃0)− ψ(x?))

mS
.

2.5.3 Interpolation

To conclude this section, we want to connect variance reduction to an analysis of SGD with
interpolation. Consider problem (P) with ϕ = 0. We say that perfect interpolation holds at
x? ∈ arg minx∈Rn f(x) if x? is also a minimizer of f(·; s) for all s ∈ S. It is useful to quantify
interpolation by the following constants:

σ2
? := E‖∇f(x?;S)‖2, σ2

I := f(x?)− E[inf
z
f(z;S)].

Clearly, σ2
I ≥ 0 and perfect interpolation holds if and only if σ2

I = 0. Further, if all f(·; s) are Ls-
smooth and lower bounded, applying Lemma 1.6 to f(·; s) and applying expectation yields σ2

? ≤
2(sups∈S Ls)σ

2
I (cf. [46, Lem. 4.18]). It has been shown empirically that highly overparameterized

machine learning models still generalize well even if the model (approximately) interpolates the
training set, i.e. the loss is minimized at every single training sample [52, 91]. This led to a

10The paper [157] does not list the assumption that fi is convex, but it is actually used in the beginning of the
proof of [157, Lem. 3.4].

22 Chapter 2. Classical Results of Stochastic Optimization for Machine Learning

resurgence of interest in theoretical analysis of SGD in the interpolation regime. We state a
classical result by Needell et al. [102, Thm. 2.1]: if all f(·; s) are Ls-smooth, f is µ-strongly
convex, then SGD with constant step size α < 1

sups∈S Ls
satisfies

E‖xK − x?‖2 ≤
(
1− 2αµ(1− α sup

s∈S
Ls)
)K‖x0 − x?‖2 +

ασ2
?

µ(1− α sups∈S Ls)
.

In particular, we obtain a linear rate for constant step size if σ2
? = 0 which improves the

convergence result (2.5) of SGD presented above. We point out that the work by Needell et
al. above was preceded by a similar result by Bach and Moulines [101, Thm. 1] which had a
suboptimal dependence on the condition number. A subsequent work relaxes the condition on
the step size from sups∈S Ls to an expected smoothness constant in the (ER) setting [52, Ass. 2.1,
Thm. 3.1].

For perfect interpolation we have σ2
? = 0 which is equivalent to ∇fi(x?) = 0 for all i ∈ [N] in

the (ER) setting. Thus, perfect interpolation implies that running SGD is the same as running
SGD?. Combining this perspective with the results in Section 2.5.1, it is not surprising that SGD
achieves linear convergence in the setting of perfect interpolation, as in this case SGD is the same
as SGD? and hence is effectively a variance-reduced method.

2.6 Adaptive Methods

In this section, we discuss a different modification of ProxSGD, namely the family of adaptive
methods, and focus on its two most prominent members AdaGrad [36, 94] and Adam [74]. The
term adaptivity is certainly ambiguous, but in this section it describes methods that adapt
the step size to each coordinate based on the training trajectory. We will later also use the
term preconditioning for this type of adaptivity. AdaGrad has been very influential for machine
learning since the early 2010’s; Adam is presumably the most used optimization algorithm in
modern deep learning. Many closely related adaptive methods exist but will not be discussed
here in detail. For convergence results of Adam and AdaGrad, we refer the interested reader to [29]
and references therein. It should also be pointed out that Adam does not necessarily converge
for simple convex problems [120].

We present AdaGrad for regularized problems of form (P) in Algorithm 4 and remark that to the
best of our knowledge there is no clear proximal version of AdaGrad – the algorithm presented
here is taken from [99, sec. 4]. However, depending on ϕ it might be hard to compute proxΛk

ϕ ,
and other versions are possible. Further, ε is typically chosen small in order to avoid division
by zero, e.g. ε = 10−10 is the Pytorch default. The operations � and

√· in line 4 are done
elementwise.

The main difference between ProxSGD and AdaGrad is the norm of the proximal step. This
becomes clear when rewriting the AdaGrad update as

xk+1 = proxΛk
ϕ (xk − Λ−1

k gk)

= arg min
y∈Rn

ϕ(y) + 1
2‖y − (xk − Λ−1

k gk)‖2Λk

= arg min
y∈Rn

ϕ(y) + f(xk;Sk) + 〈gk, y − xk〉+ 1
2‖y − xk‖2Λk .

Comparing the above to (2.4), we observe that in fact the only difference is the norm ‖ · ‖2Λk
instead of 1

αk
‖·‖2. With Λk being diagonal, it can be interpreted as the inverse of a coordinatewise

2.6. Adaptive Methods 23

Algorithm 4 AdaGrad

Require: Starting point x0 ∈ Rn, step sizes αk > 0, parameter ε > 0.
1: Initialize v−1 = 0.
2: for k = 0, . . . ,K − 1 do
3: Sample Sk and compute gk ∈ ∂f(xk;Sk).
4: Set vk = vk−1 + gk � gk and Λk = α−1

k Diag(ε1n +
√
vk).

5: Update
xk+1 = proxΛk

ϕ (xk − Λ−1
k gk).

6: end for
7: return xK

Algorithm 5 Adam

Require: Starting point x0 ∈ Rn, step sizes αk > 0, parameter ε > 0, β1, β2 ∈ [0, 1).
1: Initialize m−1 = v−1 = 0.
2: for k = 0, . . . ,K − 1 do
3: Sample Sk and compute gk ∈ ∂f(xk;Sk).
4: Set mk = β1mk−1 + (1− β1)gk and vk = β2vk−1 + (1− β2)(gk � gk).
5: Set m̂k = mk

1−βk+1
1

and v̂k = vk
1−βk+1

2

.

6: Set Λk = α−1
k Diag(ε1n +

√
v̂k).

7: Update
xk+1 = xk − Λ−1

k mk.

8: end for
9: return xK

step size, or similarly as a preconditioning matrix. One key observation is that AdaGrad uses
larger step sizes for coordinates where vk is small, i.e. where the past gradients have been small
in absolute value.

For Adam, the main difference is that it introduces (heavy-ball) momentum for the update di-
rection as well as for vk. We remark that Adam in most literature (in particular in the original
article [74]) and also in this thesis is stated for unregularized problems, i.e. ϕ = 0. Given that
its main field of application is deep learning, squared `2-regularization (weight decay) is often
sufficient, and proximal versions for this specific regularization have been proposed (see [89,169]
and Chapter 4 for more details).

One property of AdaGrad and Adam which we like to emphasize is that – in contrast to ProxSGD

– they are approximately scale-free: this means that, if ε = 0, the step size αk does not need to
be rescaled if the objective function f would be scaled by a positive factor. The reason for this
is that scaling f affects gk and

√
vk by the same factor and hence cancels out in Λ−1

k gk if ε = 0.
For a detailled discussion we refer the reader to [169]. In practice, this is an advantage as the
scale of the objective function is typically unknown. For each dataset/model/... configuration,
the step size of ProxSGD needs to be re-tuned and the optimal value can lie in different intervals.
For AdaGrad or Adam this is not the case and their default step size (e.g. αk = 0.001 for Adam in
Pytorch) often yields good results.

24 Chapter 2. Classical Results of Stochastic Optimization for Machine Learning

Algorithm 6 Model-based Stochastic Proximal Point

Require: Starting point x0 ∈ Rn, step sizes αk > 0.
1: for k = 0, . . . ,K − 1 do
2: Sample Sk and update

xk+1 = arg min
y∈Rn

fxk(y;Sk) + ϕ(y) +
1

2αk
‖y − xk‖2.

3: end for
4: return xK

2.7 Model-based Stochastic Optimization

In this section we will present a more general approach to stochastic optimization, namely
model-based stochastic proximal point. In particular, we will see that this framework comprises
an entire family of methods including ProxSGD.

The theoretical foundations for this framework have been established by Duchi and Ruan [37],
Asi and Duchi [5, 6], and Davis and Drusvyatskiy [26]. The main difference between the latter
two concurrent works is that [6] considers convex models and loss functions and set-constraint
regularization functions ϕ = δX with X ⊂ Rn closed, convex; the setting of [26] uses weakly
convex models and allows for more general regularization functions.

Fix x ∈ Rn and s ∈ S. The core idea of model-based stochastic optimization is to construct an
approximation of the loss f(·; s) around x, the model, which is denoted by fx(·; s). For a step
size α > 0, we compute the update as

x+ = arg min
y∈Rn

fx(y; s) + ϕ(y) +
1

2α
‖y − x‖2. (2.6)

Doing the above procedure iteratively, with step sizes αk > 0 and samples Sk ∈ S results in
Algorithm 6. Clearly, this algorithm is so far only conceptual as we haven’t specified the model
fx(·; s) yet. We will give three examples for a model; all of them have been discussed in [6].

Full model. If we choose fx(y; s) = f(y; s), we obtain stochastic proximal point. If f(·; s) ∈ C1

and using (1.7) for f(·; s) + ϕ, update (2.6) can be written as the implicit equation x+ =
proxαϕ(x − α∇f(x+; s)). We will refer to this method as SPP and will discuss it in detail in
Chapter 3.

Linear model. Consider the choice fx(y; s) = f(x; s)+〈g, y−x〉 with g ∈ ∂f(x; s). As shown in
(2.4), update (2.6) results in x+ = proxαϕ(x−αg). Hence, Algorithm 6 is equal to ProxSGD.

Truncated model. In many applications, the quantity infz f(z; s) is known or can be estimated;
for example, many commonly used loss functions are non-negative. Hence, we can truncate the
linearization at a lower bound C(s) ≤ infz f(z; s) and set fx(y; s) = max{f(x; s) + 〈g, y −
x〉, C(s)} with g ∈ ∂f(x; s). If g 6= 0 and ϕ = 0, update (2.6) can then be computed as

2.7. Model-based Stochastic Optimization 25

−4 −2 0 2
y

0

2

4

6

x

f(y; s)

fx(y; s)

fx(y; s) + 1
2α‖y − x‖2

(a) Linear model

−4 −2 0 2
y

0

2

4

6

x

f(y; s)

fx(y; s)

fx(y; s) + 1
2α‖y − x‖2

(b) Truncated model

Figure 2.2: Illustration of stochastic loss function (dark blue), model (solid light blue), and
objective function (dashed light blue) of (2.6), setting ϕ = 0, α = 1. All curves are plotted as
function of y with the dot marking y = x. Left: Linear model fx(y; s) = f(x; s) + 〈g, y−x〉 with
g ∈ ∂f(x; s). Right: Truncated model fx(y; s) = max{f(x; s) + 〈g, y − x〉, C(s) with C(s) = 0.

x+ = x − min{α, f(x;s)−C(s)
‖g‖2 }g. This has been shown in [6] for C(s) = infz f(z; s) and we will

give a formal proof later (cf. Section 4.3).

The difference between linear and truncated model is illustrated in Fig. 2.2. Clearly, the trun-
cated model yields a tighter approximation of the original function f(y; s); the truncated model
is practical especially when a tight estimate for the lower bound C(s) is available. This in-
sight will be fundamental for the contents of Chapter 4 and Chapter 5 and methods developed
therein.

Next, we present a selection of the theoretical results from [6, 26]. For this, let us make the
technical assumption that fx(y; s) is measurable with respect to P (s) for any x, y ∈ Rn.

2.7.1 Almost Sure Convergence for SPP

In this subsection, let X ⊂ Rn be closed, convex and let ϕ = δX . Further, suppose that f(·; s) is
convex on X for all s ∈ S. We state the properties of a stochastic model presented in [6]:

Assumption 3 (cf. [6], (C.i)-(C.iv)).

(C1) We have fx(x; s) = f(x; s) and fx(y; s) ≤ f(y; s) for all x, y ∈ X .

(C2) The mapping y 7→ fx(y, s) is convex for all x ∈ X , s ∈ S.

(C3) It holds fx(y; s) ≥ infz∈X f(z; s) for all x, y ∈ X , s ∈ S.

(C4) There exists ε > 0 and Hs ∈ R+ with E[HS] < ∞ such that for all x ∈ X , the point x+

given by (2.6) and the model fx(·; s) satisfy

f(x+; s) ≤ fx(x+; s) +
1− ε
2α
‖x+ − x‖2 +Hsα.

It is easy to see that the full model fx(y; s) = f(y; s) satisfies all of the properties above, in
particular (C4) holds with ε = 1 and Hs = 0.

26 Chapter 2. Classical Results of Stochastic Optimization for Machine Learning

The next theorem combines two statements on boundedness [6, Thm. 1] and almost sure con-
vergence [6, Prop. 1] of stochastic model-based methods, in particular SPP.

Theorem 2.6 (cf. Thm. 1 and Prop. 1 in [6]). Suppose that (C1), (C2) and (C4) of Assumption 3
hold. Let (xk)k∈N be the sequence generated by Algorithm 6 with step sizes that satisfy

∑∞
k=0 αk =

∞, ∑∞k=0 α
2
k <∞. Under mild assumptions on the gradient noise (cf. [6, Ass. A1 and A2]) the

sequence (xk) is bounded with probability one and there exists x? ∈ arg minx∈X f(x) such that
‖xk − x?‖ → 0 almost surely.

2.7.2 The Weakly Convex Case

We now summarize the main results of [26] which are established in the weakly convex setting.
The following assumption describes stochastic one-sided models as introduced in [26].

Assumption 4 (cf. [26], Assum. B). Let τ, η ≥ 0.

(B1) There exists an open convex set U ⊂ Rn containing dom(ϕ) and we have E[fx(x;S)] = f(x)
and

E[fx(y;S)− f(y)] ≤ τ

2
‖y − x‖2 for all x, y ∈ U.

(B2) The mapping y 7→ fx(y; s) + ϕ(y) is η-weakly convex for all x ∈ U and all s ∈ S.

(B3) There exists Gs ≥ 0 for all s ∈ S and G ∈ R such that E[G2
S] ≤ G2 and

fx(x; s)− fx(y; s) ≤ Gs‖x− y‖ ∀x, y ∈ U, s ∈ S.

Remark 1. We did not list Assumption 1 which is part of [26, Assum. B] but we have already
assumed this throughout the chapter.

The properties of Assumption 4 imply that ψ = f + ϕ is (τ + η)-weakly convex and that f is
G-Lipschitz continuous [26, Lem. 4.1]. Clearly, (B1) and (B2) are similar but more general than
(C1) and (C2).

The main non-convex convergence result for Algorithm 6 is the following:

Theorem 2.7 (Thm. 4.3 in [26]). Let Assumption 4 hold and assume that minψ > −∞.

Set ρ̄ = 2(τ + η) and let {xk} be generated by Algorithm 6 with αk =
(
ρ̄ +

√
2ρ̄G2K

∆

)−1
for

∆ ≥ env
1/ρ̄
ψ (x0)−minψ. Then, for xK∼ drawn uniformly at random from {x0, . . . , xK−1} it holds

E‖∇env
1/ρ̄
ψ (xK∼)‖2 ≤ 4ρ̄∆

K
+ 8G

√
2ρ̄∆

K
.

Chapter 3

A Semismooth Newton Stochastic Prox-
imal Point Algorithm With Variance Re-
duction

The chapter is mainly based on the article

[98] A. Milzarek, F. Schaipp, and M. Ulbrich, A Semismooth Newton Stochastic Proxi-
mal Point Algorithm with Variance Reduction, SIAM Journal on Optimization, 34 (2024),
pp. 1157–1185, https://epubs.siam.org/doi/10.1137/22M1488181.

A preprint version of the article is available at https://arxiv.org/abs/2204.00406. The
initial idea for this project was proposed by Andre Milzarek and Michael Ulbrich. The proof
technique for the weakly convex case was initially developped by Andre Milzarek. For the
strongly convex case, a first proof, based on the technique in [157], was later substituted by a
proof technique more coherent with proximal point at the proposal of Andre Milzarek.

The contents of Sections 3.9 and 3.10 are not part of the article [98]. They have been devel-
oped independently for this thesis outlining possible extensions and providing supplementary
material.

3.1 Introduction

The proximal point algorithm has been established by Martinet [92,93] and mainly Rockafellar
in his seminal work [124,125]. In each iteration, the proximal point algorithm for minimizing a
closed, convex function ψ : Rn → R, computes the next iterate as

xk+1 = arg min
x∈Rn

ψ(x) +
1

2αk
‖x− xk‖2, (3.1)

where αk is a sequence of positive step sizes.

Rockafellar established convergence to a minimizer of ψ even if the subproblem is solved inex-
actly, that is if it holds

‖xk+1 − zk+1‖ ≤ εk, ‖xk+1 − zk+1‖ ≤ δk‖xk+1 − xk‖,
∞∑

k=0

εk <∞,
∞∑

k=0

δk <∞,

27

https://epubs.siam.org/doi/10.1137/22M1488181
https://arxiv.org/abs/2204.00406

28 Chapter 3. A Semismooth Newton Stochastic Proximal Point Algorithm With Variance
Reduction

where zk+1 := arg minx∈Rn ψ(x) + 1
2αk
‖x − xk‖2 is the exact minimizer. For details, we refer

to [124, Thm. 1] and [125, Thm. 1, Thm. 4]. In fact, [125] covers a very general setting where
ψ is defined on a possibly infinite-dimensional Hilbert space. Proximal point is connected to
several other fundamental concepts within optimization, such as augmented Lagrangian [124] or
Douglas-Rachford splitting [39]. Its convergence theory is widely established, for example due
to the work of Güler [54].

At first glance, update (3.1) looks equally difficult to compute than solving the original problem
minx∈Rn ψ(x). As a consequence, the proximal point algorithm is often considered a conceptual
method only [33]. However, in past decades, many efficient practical versions of the proximal
point method have been proposed, for example for semidefinite programming [167], Lasso prob-
lems [84], or Graphical Lasso [165]. We remark that the connection between the augmented
Lagrangian method and proximal point applied to the dual is fundamentally important to many
of these works. In particular for Lasso problems, where the number of data points is much smaller
compared to the number of features, the SSNAL method presented in [84] excels because each
subproblem is solved in a dual space where the dimension is the number of data points.

Even though the groundwork of proximal point was established at least since the 1970’s, stochas-
tic versions have been explored only recently [6,12,17,26,114,152]. These papers investigate the
theoretical convergence of stochastic proximal point (SPP) in different convex and non-convex
settings. However, they do not answer the question how to obtain a practical version of SPP.
In the experiments of the above references, the update of SPP is computed only for restricted
settings, for example with a batch size of one and no regularization. Proposing a general frame-
work for efficiently computing the SPP update will be one of the core contributions of this
chapter.

As we will see, the derivation of our method is not particularly related to SSNAL, however one
consistent feature is that we will formulate the subproblem, solved in each iteration, in a dual
space. As a consequence of our stochastic setup, the dimensionality of this dual space will be
equal to the batch size. By construction, this makes the proposed method well suited for problems
where the number of feature is very high, because only a minor part of the computations will
be performed in the feature space.

Problem setup. In this work, we consider optimization problems of the form

min
x∈Rn

ψ(x) := f(x) + ϕ(x), f(x) :=
1

N

∑N

i=1
fi(Aix), (3.2)

where Ai ∈ Rmi×n is given and the functions fi : Rmi → R, mi ∈ N, i ∈ {1, . . . , N}, are supposed
to be continuously differentiable. The mapping ϕ : Rn → R is assumed to be convex, proper,
and lower semicontinuous.

This is the same finite-sum structure as in (ER), just that here we explicitly introduce the linear
mappings Ai. Even though the method we will present is not restricted to this application, the
context we have in mind are classical statistical learning problems for generalized linear models
with regularization, for example sparse (logistic) regression. In this case, Ai is a matrix of one
row (mi = 1) and fi is a scalar function. For more details, see the experiments in Section 3.7.2
below; we also refer to Section 3.10 where the approach is extended beyond linear models.

3.2. Background and Contributions 29

3.2 Background and Contributions

Our main contributions and the core challenges addressed in this article are as follows:

• We introduce SNSPP, a semismooth Newton stochastic proximal point method with vari-
ance reduction for the composite problem (3.2). We prove linear convergence in the
strongly convex case and a sublinear rate is established in the weakly convex case. Our
results hold for constant step sizes and match the rates of SVRG [68, 157].

• Semismooth Newton-based proximal point algorithms have been shown to be highly ef-
ficient in deterministic problems [84, 158, 164, 167]. Our proposed algorithmic strategy
benefits from the fast local convergence properties of the semismooth Newton method; it
further allows to reduce the computational complexity of the occurring subproblems which
can be directly controlled through the batch size. Further, our technique for approximately
solving the SPP subproblem can be immediately used for standard SPP without variance
reduction (or for other VR schemes).

• We present a unified analysis that takes into account the inexactness of each stochastic
proximal step. This closely ties together theory and practice, thereby allowing for broader
applicability of the SPP method and SNSPP in particular.

• Numerical experiments suggest that SNSPP performs on-par or better in comparison to
state-of-the-art algorithms SAGA, SVRG and AdaGrad, and is more robust to step-size selec-
tion.

3.3 The Stochastic Proximal Point Method

3.3.1 Preliminaries and Assumptions

As we will later allow fi to be weakly-convex, we will need to “convexify” the proximal point
update appropriately. From the derivation of (1.5), we have that for g : Rn → R weakly convex
and M ∈ S+, as long as the mapping g(·) + 1

2‖ · −x‖2M is convex for any x ∈ Rn, the proximal
operator proxId+M

g is well-defined (cf. also [126, Def. 8.45, Prop. 8.46]) and can be characterized
by

p = proxId+M
g (x) ⇐⇒ p ∈ x−M(p− x)− ∂g(p). (3.3)

For problem (3.2), we introduce the proximal gradient mapping as a measure of stationarity,
i.e., for α > 0, we define

Fαnat : Rn → Rn, Fαnat(x) := x− proxαϕ(x− α∇f(x))

and Fnat(x) := F 1
nat(x) (cf. [48,105] and note that Fαnat is similar to the gradient mapping Gα in

Proposition 2.1). If f is L-smooth, then the function Fnat is Lipschitz continuous with constant
2 + L.

We now specify the basic assumptions under which we construct and study our stochastic proxi-
mal point method. Throughout this chapter, we assume that the functions fi : Rmi → R, i ∈ [N],
are continuously differentiable and ϕ : Rn → R is a proper, closed, and convex mapping. Further
conditions on f and ϕ are stated below.

Assumption 5. Let f be defined as in (3.2). We assume:

30 Chapter 3. A Semismooth Newton Stochastic Proximal Point Algorithm With Variance
Reduction

(A1) The functions fi : Rmi → R are Li-smooth and γi-weakly convex for all i.

(A2) The objective function ψ is bounded from below by ψ? := infx ψ(x).

(A3) The mapping x 7→ proxαϕ(x) is semismooth for all α > 0 and all x ∈ Rn.

We note that Li-smoothness already ensures weak convexity of fi, i ∈ [N] (but with a potentially
different constant). Let us also set f̂i(z) := fi(z) + (γi/2)‖z‖2. We work with the following
assumptions for the conjugates f̂∗i :

Assumption 6.

(A4) The functions f̂∗i are essentially differentiable with locally Lipschitz continuous gradients
on the sets Di := int(dom(f̂∗i)) 6= ∅, i ∈ [N].

(A5) The mappings ∇f̂∗i are semismooth on Di for all i.

By [8, Thm. 18.15], condition (A1) guarantees that the mappings f̂∗i are 1/(Li + γi)-strongly
convex on dom(f̂∗i). This, together with (A4), ensures that each f̂∗i has uniformly positive
definite second derivatives, i.e., there exists µ∗ ≥ mini∈[N] 1/(Li + γi) > 0 such that for all
i ∈ [N]

〈h,Mi(z)h〉 ≥ µ∗‖h‖2 ∀ h ∈ Rmi , ∀ Mi(z) ∈ ∂(∇f̂∗i)(z), ∀ z ∈ Di, (3.4)

see [62, Ex. 2.2]. Moreover, (A4) implies that each f̂i is essentially locally strongly convex [49,
Cor. 4.3]. Next, we state two stronger versions of (A3) and (A5):

Assumption 7.

(Ã3) For every α > 0 the proximal operator x 7→ proxαϕ(x) is ν-order semismooth on Rn with
0 < ν ≤ 1.

(Ã5) The mappings z 7→ ∇f̂∗i (z) are ν-order semismooth on Di with 0 < ν ≤ 1 for all i.

In the stochastic optimization literature, convexity and/or L-smoothness are standard assump-
tions for the component functions fi (see [6, 27, 48, 68, 157]). In contrast to other recent works
on stochastic proximal point methods, we neither assume convexity of ψ (as in, e.g., [6]) nor
Lipschitz continuity of f (as in, e.g., [26]).
The additional condition (A4) and the semismoothness properties (A3) and (A5) (or (Ã3) and
(Ã5), respectively) hold for many classical loss functions and regularizers. In fact, assumption
(A3) is satisfied for (group) sparse regularizations based on `1- or `2-norms or low rank terms
such as the nuclear norm. More generally, semismoothness of the proximal operator can be
guaranteed when ϕ is semialgebraic or tame. We refer to [13,97] for a detailed discussion of this
observation. Strong semismoothness of proxαϕ can be ensured whenever proxαϕ is a piecewise
C2-function (see [153, Prop. 2.26]). For instance, if ϕ(x) = λ‖x‖1 is an `1-regularization with
λ > 0, then the associated proximal operator is the well-known soft-thresholding operator which
is piecewise affine. If every mapping ∇f̂∗i is piecewise C1, then assumption (A5) holds and (Ã5)
is satisfied with ν = 1 if all ∇f̂∗i , i ∈ [N], are piecewise C2.

3.3.2 Algorithmic Framework

We now motivate and develop our algorithmic approach in detail.

3.3. The Stochastic Proximal Point Method 31

Stochastic Proximal Point Steps. Our core idea is to perform stochastic proximal point up-
dates that mimic the classical proximal point iterations, [92, 93,124], for minimizing the poten-
tially nonconvex and nonsmooth objective function ψ in (3.2):

xk+1 = proxαkψ(xk),

where αk > 0 is a suitable step size. While f is possibly nonconvex, we can conclude from
(A1) that x 7→ fi(Aix) + γi

2 ‖Ai(x − z)‖2 is a convex mapping for every z ∈ Rn. Hence, setting

MN := 1
N

∑N
i=1 γiA

>
i Ai, the step

xk+1 = proxId+αkMN
αkψ

(xk)

= arg min
x

ψ(x) +
1

2N

∑N

i=1
γi‖Ai(x− xk)‖2 +

1

2αk
‖x− xk‖2

is well-defined. Utilizing (3.3), we have p = xk+1 if and only if p ∈ [xk − αk∇f(p)− αkMN (p−
xk)] − αk∂ϕ(p) and, hence, the proximal point update can be equivalently rewritten as the
following implicit proximal gradient-type step

xk+1 = proxαkϕ(xk − αk∇f(xk+1)− αkMN (xk+1 − xk)). (3.5)

This implicit iteration forms the conceptual basis of our method. However, as our aim is to solve
the finite-sum problem (3.2) in a stochastic fashion, we will use stochastic oracles to approximate
the full gradient ∇f in each iteration [47, 48, 99]. In our case, the function f corresponds to
an empirical expectation and thus, sampling a random subset of summands fi(Ai·) can be
understood as a possible stochastic oracle for f and ∇f . Specifically, for some given tuple
S ⊆ [N], we can consider the following stochastic variants of f , ∇f , and ψ:

fS(x) :=
1

|S|
∑

i∈S
fi(Aix), ∇fS(x) :=

1

|S|
∑

i∈S
A>i ∇fi(Aix),

and ψS(x) := fS(x) + ϕ(x). Let Sk ⊆ [N] be the tuple drawn randomly at iteration k. The
stochastic counterpart of the update (3.5) is then obtained by replacing the gradient ∇f with
the estimator ∇fSk and MN with MSk := |Sk|−1

∑
i∈Sk γiA

>
i Ai. This yields

xk+1 = proxαkϕ(xk − αk∇fSk(xk+1)− αkMSk(xk+1 − xk)). (3.6)

This step can also be interpreted as a stochastic proximal point iteration

xk+1 = prox
Id+αkMSk
αkψSk

(xk)

for the sampled objective function ψSk . Consequently, the update (3.6) can be seen as a combi-
nation of the stochastic model-based proximal point frameworks derived in [6,26] and of variable
metric proximal point techniques [14,112].

Incorporating Variance Reduction. Variance reduction has proven to be a powerful tool in
order to accelerate stochastic optimization algorithms (cf. Section 2.5 and [27,56,68,157]). Sim-
ilar to [68], we consider SRVG-type stochastic oracles that additionally incorporate the following
gradient information in each iteration

vk := ∇f(x̃)−∇fSk(x̃), (3.7)

where x̃ ∈ Rn is a reference point that is generated in an outer loop. This leads to stochastic
proximal point-type updates of the form

xk+1 = proxαkϕ(xk − αk[∇fSk(xk+1) + vk]− αkMSk(xk+1 − xk)). (3.8)

Our subsequent analysis and discussion focuses on this general formulation.

32 Chapter 3. A Semismooth Newton Stochastic Proximal Point Algorithm With Variance
Reduction

An Implementable Strategy for the Implicit Update. We now introduce an alternative equation-
based characterization of the implicit update (3.8). Let us set bk := |Sk| and let (κk(1), . . . , κk(bk))
enumerate the elements of the tuple Sk. We will often abbreviate κk by κ. We now define
ξk+1 = (ξk+1

1 , . . . , ξk+1
bk

) by

ξk+1
i := ∇f̂κ(i)(Aκ(i)x

k+1) = ∇fκ(i)(Aκ(i)x
k+1) + γκ(i)Aκ(i)x

k+1 i ∈ [bk]. (3.9)

Under assumption (A1), [9, Thm. 4.20] yields

ξk+1
i = ∇f̂κ(i)(Aκ(i)x

k+1) ⇐⇒ ∇f̂∗κ(i)(ξ
k+1
i) = Aκ(i)x

k+1. (3.10)

Thus, setting v̂k := αk(v
k −MSkx

k), the step (3.8) is equivalent to the system

 xk+1 = proxαkϕ

(
xk − αk

bk

∑bk
i=1A

>
κ(i)ξ

k+1
i − v̂k

)
,

∇f̂∗κ(i)(ξ
k+1
i) = Aκ(i)proxαkϕ

(
xk − αk

bk

∑bk
i=1A

>
κ(i)ξ

k+1
i − v̂k

)
∀ i ∈ [bk].

(3.11)

Similar to [84, 167], we use a semismooth Newton method to solve the system of nonsmooth
equations defining ξk+1 in an efficient way. Importantly, the dimension of this system and of
ξk+1 is controlled by the batch size bk which is an advantage if bk � n. We allow approximate
solutions of the system (3.11) which results in inexact proximal steps. This potential inexactness
is an important component of our algorithmic design and convergence analysis that has not
been considered in other stochastic proximal point methods [6, 26]. The full method is shown
in Algorithm 7. The semismooth Newton method for (3.11) is specified and discussed in the
next section. In this article, we primarily focus on the variance-reduced update (3.8), yet the
technique and results presented in Section 3.4 also hold true for the general update (3.6).

Sampling Assumptions. We now formally specify the notion of admissible stochastic oracles
for our problem.

Definition 3.1. Let S ∼ P be a b-tuple of elements of [N], where b ∈ [N] is fixed. Let
κ(i) ∈ [N] denote the random number in the i-th position of S. We call S ∼ P an admissible
sampling procedure if, for all zi ∈ R`, i ∈ [N], ` ∈ N, it holds that EP [zS] = 1

N

∑N
i=1 zi where

zS := 1
b

∑b
i=1 zκ(i).

If S ∼ P is an admissible sampling procedure, then we have EP [fS(x)] = f(x) and EP [∇fS(x)] =
∇f(x) for all x ∈ Rn. In the simplest case, we can choose S by drawing b elements from [N] under
a uniform distribution (cf. [157] for a similar setting). This is an admissible sampling procedure
in the sense of Definition 3.1, regardless of whether we draw with or without replacement (cf. [87,
§2.8]).

Remark 2. Note that xk, αk, etc., serve as abbreviations when the value of s is clear. The
notation xs,k, αsk, etc., can be used to highlight the full (s, k)-dependence.

3.4 A Semismooth Newton Method for Solving the Subproblem

In the following, we assume that we are given a b-tuple S = (κ(1), . . . , κ(b)) of elements of [N],
a step size α > 0, and vectors x, v ∈ Rn. Let mS :=

∑b
i=1mκ(i) denote the dimension of the

subproblem and let D =
∏
i∈S Di ⊆ RmS . Now, the second line in (3.11) corresponds to a system

of nonlinear equations which can be reformulated as

V(ξ) = 0, (3.12)

3.4. A Semismooth Newton Method for Solving the Subproblem 33

Algorithm 7 SNSPP

Require: x̃0 ∈ Rn, m,S ∈ N, and, for s = 0, . . . ,S, k = 0, . . . ,m − 1, step sizes αsk > 0, batch
sizes bsk ∈ N, and tolerances εsk ≥ 0.

1: for s = 0, 1, 2, . . . ,S do
2: Set x0 := xs,0 := x̃ := x̃s, and, for 0 ≤ k < m, αk := αsk, bk := bsk, and εk := εsk.
3: for k = 0, 1, 2, . . . ,m− 1 do
4: (Sampling) Sample Sk = Ssk with |Sk| = bk and set

vk := vs,k := ∇f(x̃)−∇fSk(x̃), v̂k := v̂s,k := αk(v
k −MSkx

k).

5: (Solve subproblem) Compute ξk+1 = ξs,k+1 by invoking Algorithm 8 with input
xk, αk, Sk,−v̂k and εk.

6: (Update) Set xk+1 := xs,k+1 := proxαkϕ

(
xk − αk

bk

∑bk
i=1A

>
κ(i)ξ

k+1
i − v̂k

)
.

7: end for
8: Option I: Set x̃s+1 := xm.
9: Option II: Set x̃s+1 := 1

m

∑m
k=1 x

k.
10: end for
11: return x̃S+1; xπ drawn uniformly from {xs,k}0≤s≤S0≤k<m.

where V : D → RmS , V(ξ) := (V1(ξ)>, . . . ,Vb(ξ)>)>, and ξ := (ξ>1 , . . . , ξ
>
b)>. Setting AS :=

1
b (A

>
κ(1), . . . , A

>
κ(b))

> ∈ RmS×n, each Vi is defined via

Vi : D → Rmκ(i) , Vi(ξ) = ∇f̂∗κ(i)(ξi)−Aκ(i)proxαϕ

(
x− αA>S ξ + v

)
. (3.13)

The Newton step of this system is given by

W(ξ)d = −V(ξ), (3.14)

where W(ξ) ∈ ∂̂V(ξ) is an element of the surrogate differential ∂̂V defined via

∂̂V(ξ) :=
{

Diag (Hi(ξi)i=1,...,b) + αbASU(ξ)A>S
∣∣

U(ξ) ∈ ∂proxαϕ
(
x− αA>S ξ + v

)
, Hi(ξi) ∈ ∂(∇f̂∗κ(i))(ξi) ∀ i ∈ [b]

}
.

We first present several basic properties of the operators and functions involved in the Newton
step (3.14). The nonexpansiveness of the proximal operator (1.8) and [70, Prop. 2.3] imply the
next result (see also [97, Lem. 3.3.5]).

Proposition 3.2. Let α > 0 and x ∈ Rn be given. Each element U ∈ ∂proxαϕ(x) is a symmetric
and positive semidefinite n× n matrix.

Proposition 3.3. Suppose that the conditions (A3), (A4), and (A5) are satisfied. Let S be
a b-tuple of elements of [N], and let α > 0 and x, v ∈ Rn be given. Then, the function V is
semismooth on D w.r.t. ∂̂V. If (Ã3) and (Ã5) hold instead of (A3) and (A5), V is ν-order
semismooth w.r.t. ∂̂V.

Proof. The first claim follows using the chain rule for semismooth functions [43, Thm. 7.5.17].
If we assume (Ã3) and (Ã5) instead, the claim follows from [153, Prop. 3.8] and [141, Prop.
3.6].

In the following, we show that the function V can be interpreted as a gradient mapping. Thus,
finding a root of V is equivalent to finding a stationary point.

34 Chapter 3. A Semismooth Newton Stochastic Proximal Point Algorithm With Variance
Reduction

Proposition 3.4. Let the assumptions (A1) and (A4) hold. Let α > 0 and x, d ∈ Rn be given
and let S be a b-tuple of elements of [N]. For ξ ∈ RmS , we define

U(ξ) :=
∑b

i=1
f̂∗κ(i)(ξi) +

b

2α
‖z(ξ)‖2 − b

α
envαϕ(z(ξ)), z(ξ) := x− αA>S ξ + v.

Then, U is µ∗-strongly convex on the set E :=
∏b
i=1 dom(f̂∗κ(i)) and we have ∇U(ξ) = V(ξ) for

all ξ ∈ D where V is defined in (3.13).

Proof. For every ξ ∈ D and i ∈ [b], we have ∂z
∂ξi

(ξ) = −α
bA
>
κ(i) and

∇ξiU(ξ) = ∇f̂∗κ(i)(ξi) +
b

α

∂z

∂ξi
(ξ)>

(
z(ξ)−

(
z(ξ)− proxαϕ(z(ξ))

))

= ∇f̂∗κ(i)(ξi)−Aκ(i)proxαϕ(z(ξ)) = Vi(ξ),

where we used (1.10) and envαϕ = αenvαϕ. For the first statement, note that (A1) implies strong

convexity of f̂∗i on dom(f̂∗i) for i = 1, . . . , N . Applying Moreau’s identity, [9, Thm. 6.67],

1

2
‖z‖2 − envαϕ(z) = α2envα−1ϕ∗(z/α), (3.15)

we can use the fact that the Moreau envelope of a proper, closed, and convex function is convex [9,
Thm. 6.55]. Hence, the mapping ξ 7→ b

2α‖z(ξ)‖2 − b
αenvαϕ(z(ξ)) is convex as ξ 7→ z(ξ) is affine.

Altogether, U is µ∗-strongly convex on E (cf. (3.4)).

In Algorithm 8, we formulate a globalized semismooth Newton method for solving the nonsmooth
system (3.12). Specifically, the result in Proposition 3.4 enables us to measure descent properties
of a semismooth Newton step using U and to apply Armijo line search-based globalization
techniques. Based on the results on SC1 minimization (cf. [41,153,167]), we obtain the following
convergence result.

Theorem 3.5. Let the assumptions (A1)–(A5) be satisfied and let the sequence {ξj} be generated
by Algorithm 8. Then, {ξj} converges q-superlinearly to the unique solution ξ̂ ∈ D of (3.12),
i.e., ‖ξj+1 − ξ̂‖ = o(‖ξj − ξ̂‖) as j →∞. Moreover, under (Ã3) and (Ã5), we obtain

‖ξj+1 − ξ̂‖ = O(‖ξj − ξ̂‖1+min{τ,ν}) for all j sufficiently large.

Proof. By construction, we have {ξj} ⊂ D and the set D is open. Proposition 3.4 and (A4) imply
that U is strongly convex (on E) and essentially differentiable. Hence, U has a unique minimizer
ξ̂ ∈ D which is also the unique solution to (3.12). For every ξ ∈ D, the matrices W(ξ) ∈ ∂̂V(ξ)
are positive definite by (3.4) and Proposition 3.2. Using standard arguments (see [167, Thm.
3.4] and [84, Thm. 3.6]), it can be shown that the sequence {ξj} generated by Algorithm 8
converges to ξ̂. Under (A1)–(A5), we conclude from equation (67) in the proof of [167, Thm.
3.5] that ‖ξj + dj − ξ̂‖ ≤ o(‖ξj − ξ̂‖) holds for all j sufficiently large. If assumptions (Ã3) and
(Ã5) are satisfied instead of (A3) and (A5), then we have ‖ξj + dj − ξ̂‖ ≤ O(‖ξj − ξ̂‖1+min{τ,ν}).
Finally, let us show that in a neighborhood of the limit point the unit step size is accepted by
the Armijo line search. Setting W̃j :=W + ηjI and using V(ξj)→ 0, we can infer

‖dj‖ = ‖W̃−1
j (rj − V(ξj))‖ ≤ ‖W̃−1

j ‖(‖rj‖+ ‖V(ξj)‖) ≤ 2λmin(W̃j)
−1‖V(ξj)‖,

for all j sufficiently large. Thus, we have

−〈∇U(ξj), dj〉
‖dj‖2 ≥ λmin(W̃j)

2

4

〈−∇U(ξj), dj〉
‖∇U(ξj)‖2 ≥ λmin(W̃j)

2

4λmax(W̃j)
,

3.5. Controlling the Inexactness of the Update 35

Algorithm 8 Semismooth Newton Method for Solving Eq. (3.12)

Require: x, v ∈ Rn, α > 0, a b-tuple S of elements of [N], and a tolerance εsub.
Choose an initial point ξ0 such that ξ0

i ∈ Di for all i = 1, . . . , b. Choose parameters γ̂ ∈ (0, 1
2),

η ∈ (0, 1), ρ ∈ (0, 1), τ ∈ (0, 1], and τ1, τ2 ∈ (0, 1). Set j = 0.
1: while ‖∇U(ξj)‖ > εsub do
2: (Newton direction) Choose W ∈ ∂̂V(ξj), set ηj := τ1 min{τ2, ‖V(ξj)‖}, and approxi-

mately solve the linear system

(W + ηjI)dj = −V(ξj)

via the conjugate gradient method such that ‖rj‖ ≤ min{η, ‖V(ξj)‖1+τ} with rj := (W +
ηjI)dj + V(ξj).

3: (Armijo line search) Find the smallest non-negative integer `j such that

U(ξj + ρ`jdj) ≤ U(ξj) + γ̂ρ`j 〈∇U(ξj), dj〉

and ξji + ρ`jdji ∈ Di for all i = 1, . . . , b. Set βj := ρ`j .
4: (Update) Compute the new iterate ξj+1 = ξj + βjd

j and set j ← j + 1.
5: end while
6: return ξj

where the second inequality comes from [167, Prop. 3.3]. Due to strong convexity, there exists

ρ̃ > 0 such that
λmin(W̃j)

2

4λmax(W̃j)
≥ ρ̃ > 0 for all j. Due to [41, Thm. 3.3], βj = 1 then fulfills the

Armijo condition for j sufficiently large which concludes the proof.

3.5 Controlling the Inexactness of the Update

In this section, we will discuss the stopping criterion of Algorithm 8. Let x ∈ Rn, α > 0, and
a tuple S of elements of [N] be given. By Proposition 3.4, U is µ∗-strongly convex on D ⊂ E .
Thus, the gradient ∇U is a µ∗-strongly monotone operator on D. Let ξ̂ := arg minξ U(ξ) ∈ D
again denote the unique minimizer of U . Then, we have

‖ξ − ξ̂‖ ≤ µ∗−1‖∇U(ξ)‖ ∀ ξ ∈ D, (3.16)

Hence, the stopping criterion of Algorithm 8 – ‖∇U(ξj)‖ ≤ εsub – allows to control the error
‖ξj − ξ̂‖. As we solve each subproblem inexactly, the updates (xk+1, ξk+1) in Algorithm 7 are
not an exact solution to (3.8). It is desirable to control the error ‖xk+1− x̂k+1‖ in each iteration,
where x̂k+1 is the exact solution to (3.8). This is addressed in the following result.

Proposition 3.6. Let us define Ā := maxi∈[N] ‖Ai‖ and let x, v ∈ Rn, α > 0, and a b-tuple S
of elements of [N] be given. Suppose that U , defined in Proposition 3.4, is µ∗-strongly convex
on E and let ξ̂ = arg minξ U(ξ) ∈ D be the unique minimizer of U . Suppose that Algorithm 8 –
run with tolerance εsub – returns ξ. Then, setting

x̂+ := proxαϕ(x− αA>S ξ̂ + v) and x+ := proxαϕ(x− αA>S ξ + v),

it holds that ‖ξ − ξ̂‖ ≤ εsub
µ∗

and ‖x+ − x̂+‖ ≤ α‖A>S (ξ − ξ̂)‖ ≤ αĀ
µ∗
√
b
εsub.

36 Chapter 3. A Semismooth Newton Stochastic Proximal Point Algorithm With Variance
Reduction

Proof. The bound on ‖ξ− ξ̂‖ follows directly from (3.16). Utilizing the nonexpansiveness of the
proximity operator, we can estimate

‖x+ − x̂+‖ = ‖proxαϕ
(
x− αA>S ξ + v

)
− proxαϕ

(
x− αA>S ξ̂ + v

)
‖

≤ α‖A>S (ξ − ξ̂)‖ ≤ αĀ√
b
‖ξ − ξ̂‖ ≤ αĀ

µ∗
√
b
εsub.

3.6 Convergence Analysis

We first introduce several important constants. Let (A1) of Assumption 5 be satisfied. We denote
the Lipschitz constant of ∇f by L and we set L̄ := maxi Li‖Ai‖2. For b ∈ [N], let us define
L̄b := maxS,|S|=b LS where LS is the Lipschitz constant of ∇fS , and MS := 1

b

∑
i∈S γiA

>
i Ai.

Then, for any tuple S it holds that

L ≤ 1

N

∑N

i=1
Li‖Ai‖2 ≤ L̄, L̄b ≤ L̄, ‖MS‖ ≤ max

i=1,...,N
γi · Ā2 =: M̄. (3.17)

We now formulate the main convergence results for Algorithm 7. For simplicity, we assume that
each element of Sk is drawn uniformly from [N] with replacement for all s and k.1

3.6.1 Weakly Convex Case

Theorem 3.7. Let the iterates {xs,k} be generated by Algorithm 7 with S =∞, constant batch
sizes bsk = b, and using Option I. Let Assumption 5 and Assumption 6 be satisfied and assume

∞∑

s=0

m−1∑

k=0

αsk =∞,
∞∑

s=0

m−1∑

k=0

αsk(ε
s
k)

2 <∞, αsk ≤ min{1, α̂} ∀ s, k, (3.18)

where α̂ := η̄max{2L + M̄, [1 + m/
√

2b]L̄ + max{L, M̄}}−1 and η̄ ∈ (0, 1). Then, for all
0 ≤ k < m, {E‖Fnat(x

s,k)‖}s∈N0 converges to zero and {Fnat(x
s,k)}s∈N0 converges to zero almost

surely as s→∞.

Similar to [68, Thm. 1], we obtain the following rate of convergence.

Corollary 3.8. Let the iterates {xs,k} be generated by Algorithm 7 with S ∈ N, constant step
sizes αsk = α, constant batch sizes bsk = b, and using Option I. Let Assumption 5 and As-
sumption 6 be satisfied. Let η̄ ∈ (0, 1) be given and assume α ≤ α̂, where α̂ is defined as in
Theorem 3.7. Then, it holds that

E‖Fαnat(xπ)‖2 ≤ 2α[ψ(x̃0)− ψ? + α · O(
∑S

s=0

∑m−1
k=0 (εsk)

2)]

(1− η̄)3 ·m(S + 1)
.

The proofs are given in Section 3.8.2.

1Without replacement, only some of the constants change, see Corollary 3.14 for details.

3.7. Numerical Experiments 37

3.6.2 Strongly Convex Case

In this section, we establish q-linear convergence of Algorithm 7 if ψ is strongly convex. We
derive – similar to Thm. 3.1 in [157] – convergence in terms of the objective function if we assume
each fi to be convex. We present an additional result for weakly convex f and strongly convex
ϕ. The proofs are given in Section 3.8.3. In the following, we suppose that in iteration s of the
outer and iteration k of the inner loop of Algorithm 7, the tolerances εsk satisfy the bound

εsk ≤ δs‖Fnat(x̃
s)‖ (3.19)

for all k ∈ {0, . . . ,m− 1}, s ∈ N, and for some sequence R++ 3 δs → 0. Notice, since ∇f(x̃s) is
known, ‖Fnat(x̃

s)‖ can be computed without additional costs.

Theorem 3.9. Let Assumption 5 and Assumption 6 be satisfied and suppose that each function
fi is convex and ψ = f + ϕ is µ-strongly convex with µ > 0. Consider Algorithm 7 with S =∞
and Option II using constant step sizes αsk = α > 0, and constant batch sizes bsk = b. For
θ ∈ (0, 1/2), let the step size α satisfy

α ≤
[
L+ L̄

b (4
1−2θ + 3)

]−1
(3.20)

and let condition (3.19) hold for a given sequence {δs}. If δs is sufficiently small and the inner
loop length m sufficiently large, then {ψ(x̃s)} converges q-linearly in expectation to ψ? with rate
at least 1− θ, i.e., for all s, we have

E[ψ(x̃s+1)− ψ?] ≤ (1− θ)E[ψ(x̃s)− ψ?].

More formal and explicit conditions on δs and m can be found in the proof of Theorem 3.9 in
Section 3.8.3.

Theorem 3.10. Let Assumption 5 and Assumption 6 be satisfied and let ϕ and ψ = f + ϕ be
µϕ- and µ-strongly convex, respectively, with

µϕI −MN � µI.
Consider Algorithm 7 with S = ∞ and Option I, using constant step sizes αsk = α > 0 and
constant batch sizes bsk = b. Assume that α ≤ [L+

√
2/b ·mL̄]−1 and let (3.19) hold for a given

sequence {δs} satisfying δs < min{ 2αµ
1+αµϕ

,
1+α(µ+µϕ)

1+αµϕ
} for all s. Then, the iterates {x̃s} converge

q-linearly in expectation to the unique solution x? of problem (3.2), i.e., as s→∞, we have

E‖x̃s+1 − x?‖2 ≤
[
1− 2αµ

1+α(µϕ+µ) +O(δs)
]
E‖x̃s − x?‖2.

Theorem 3.9 and Theorem 3.10 are only slightly different in their assumptions and statements.
For example, the guarantee is given either in terms of the objective or of the distance to the
solution. However, for both results the convergence rate is linear.

3.7 Numerical Experiments

In the following, we investigate the practical performance of Algorithm 7 which we will refer to
as SNSPP. Specifically, we compare SNSPP with three state-of-the-art and benchmark stochastic
algorithms – namely SVRG, SAGA, and AdaGrad for all of which we use their proximal versions.
For a detailled description and bibliographic notes regarding the benchmark methods, we refer
the reader to Section 2.5.2 and Section 2.6 as well as to Algorithms 2 to 4.

38 Chapter 3. A Semismooth Newton Stochastic Proximal Point Algorithm With Variance
Reduction

3.7.1 General Setting

For all experiments, we set the parameter m in Algorithm 7 to m = 10. For Algorithm 8, we use
γ̂ = 0.4, η = 10−5, ρ = 0.5, τ = 0.9, τ1 = 0.5, τ2 = 2 · 10−4 and terminate if ‖∇U(ξj)‖ ≤ 10−3.
Typically, Algorithm 8 reaches the desired accuracy within less than 10 iterations. We also
ran the experiments with the adaptive accuracy εsk = δs‖Fnat(x̃

s)‖, δs = 0.1, introduced in
(3.19) but did not observe any significant effects on the results. We precompute an estimate for
ψ? by running a solver for a large number of iterations: for the experiments in Section 3.7.2,
we use scikit-learn [115] for this step; for the experiments in Section 3.7.3 we use our own
implementation of SAGA. We use constant batch and step sizes throughout all experiments. The
experiments were performed in Python 3.8.2

3.7.2 Logistic Regression with `1-Regularization

Sparse logistic regression is a classical model for binary classification [57,75]. Let the coefficient
matrix A = (a>1 , . . . , a

>
N)> ∈ RN×n and the binary labels bi ∈ {−1, 1}, i = 1, . . . , N be given.

The associated sparse regression problem can then be formulated as follows:

min
x

1

N

N∑

i=1

ln(1 + exp(−bi〈ai, x〉)) + λ‖x‖1, λ > 0.

This problem is of the form Eq. (3.2) with mi = 1, Ai = biai, and fi(z) = flog(z) := ln(1 +
exp(−z)) for all i = 1, . . . , N . The nonsmooth part is given by ϕ(x) = λ‖x‖1.

Since flog is convex, we can set γi = 0 for all i. The conjugate f∗log of the logistic loss function
is given by [75] (see also Section 3.9.1):

f∗log(z) =

{
−z ln(−z) + (1 + z) ln(1 + z) −1 < z < 0

+∞ otherwise.
(3.21)

The mapping f∗log is C∞ on (−1, 0) and locally Lipschitz. For all z ∈ (−1, 0), we have (f∗log)′(z) =

ln(1+z)− ln(−z) and (f∗log)′′(z) = − 1
z2+z

≥ 4. We conclude that f∗log is essentially differentiable
and strongly convex on (−1, 0).

The proximity operator of ϕ and its Clarke differential are discussed in, e.g., [164]. The proximity
operator is the well-known soft-thresholding operator proxλ‖·‖1(x) = sign(x)�max{|x| − λ1, 0}
where all operations are component-wise. We can choose the generalized derivative D ∈
∂proxλ‖·‖1(x) as follows: D = Diag(di)i=1,...,n and di = 0 if |xi| ≤ λ and di = 1 if |xi| > λ.
Lem. 2.1 in [164] ensures that proxλ‖·‖1 is strongly semismooth. Altogether, Assumption 5 and
6 are satisfied (due to strong semismoothness of proxλ‖·‖1 , Assumption 7 holds as well).

Description of Datasets. We use several standard datasets for our experiments, listed in Ta-
ble 3.1.3 The dataset mnist contains 28 × 28 pixel pictures of hand-written digits [82]. In
order to obtain binary labels, we classify the two sets of digits {0, 3, 6, 8, 9} and {1, 2, 4, 5, 7}.

2Code is available at https://github.com/fabian-sp/snspp.
3Dataset sido0 is downloaded from http://www.causality.inf.ethz.ch/challenge.php?page=datasets#

cont, higgs from https://archive.ics.uci.edu/ml/datasets/HIGGS, and mnist from openml.org using the
scikit-learn API. All other datasets are downloaded from LIBSVM, https://www.csie.ntu.edu.tw/~cjlin/
libsvmtools/datasets/binary.html.

https://github.com/fabian-sp/snspp
http://www.causality.inf.ethz.ch/challenge.php?page=datasets#cont
http://www.causality.inf.ethz.ch/challenge.php?page=datasets#cont
https://archive.ics.uci.edu/ml/datasets/HIGGS
openml.org
https://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/binary.html
https://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/binary.html

3.7. Numerical Experiments 39

Dataset N n ψ? λ

mnist 56000 784 0.552 0.02
gisette 4800 4955 0.476 0.05
sido0 10142 4932 0.146 0.01
covtype 581012 54 0.642 0.005
higgs 11 · 106 28 0.657 0.005
madelon.2 2000 125751 0.568 0.02
news20 15996 1355191 0.653 0.001

Table 3.1: Information of the different datasets for sparse logistic regression. The optimal
objective function value ψ? is rounded to 3 digits.

gisette is derived from mnist but with additional higher-order and distractor features [55].
The madelon.2 dataset is obtained as follows: we first scale the original madelon dataset (from
LIBVSM) having 500 features and 2000 samples obtaining mean-zero and unit-variance features.
Then, we apply a polynomial feature expansion of degree two, i.e., we add all pairwise products
of features and a constant feature, resulting in n = 125751. For mnist and higgs, we apply
standard preprocessing to obtain mean-zero and unit-variance features. The other datasets are
already suitably scaled and therefore not preprocessed. For mnist, gisette, sido0, covtype,
and news20, we use 80% of the dataset samples for training and the remaining 20% are used
as validation set. Note that SNSPP and SVRG compute the full gradient for the first time at the
starting point x̃0. In contrast to SVRG, the first iterate of SNSPP is not deterministic and there-
fore high variance in the gradient at the starting point could lead to unfavorable performance.
In particular, we observe such effect for the sido0 dataset. We find that this behavior can be
easily prevented by running one iteration of SNSPP without variance reduction before computing
the full gradient. However, for better comparability, for sido0 we run one epoch of SAGA and
use the final iterate as starting point for all methods. For all other datasets, we use x̃0 = 0 as
initial point for all algorithms.

Subproblem Complexity. We first illustrate the impact of solving the subproblems, i.e., invok-
ing Algorithm 8, on the overall performance of SNSPP. Fig. 3.1 depicts the subproblem complexity
(in terms of runtime) and the overall progress of SNSPP for different choices of batch sizes using
the news20 dataset. As the batch size b determines the dimension of the subproblem, we see
a sharp increase in the runtime for larger choices of b (bottom right). However, a larger batch
size also allows to take larger steps and therefore more progress per iteration can be made as
demonstrated in the left plot of Fig. 3.1. In our experiments, we typically observe that the
subproblems can be solved very efficiently for batch sizes up to the order of few hundreds. For
much larger batch sizes, the resulting higher computational costs of the subproblem will start
to outweigh the benefits of reducing the variance of ∇fS .

Stability Analysis. The main focus of our numerical test is put on stability experiments with
respect to hyperparameter selection, in particular, the step size. In practical scenarios, it is
unlikely that a solver is executed with an intensively tuned step size due to tuning budgets.
Hence, it is important to evaluate optimization methods considering the amount of step size
tuning needed to reach optimal performance/runtime [137]. A similar comparison of SPP and
SGD was conducted in [6,26], but without variance reduction, on a single batch, and with synthetic

40 Chapter 3. A Semismooth Newton Stochastic Proximal Point Algorithm With Variance
Reduction

0 1 2 3 4 5

Runtime [sec]

10−4

10−3

10−2

10−1

100
ψ

(x
k
)
−
ψ
?

b/N = 0.001

b/N = 0.005

b/N = 0.01

b/N = 0.02

α = 100.0

α = 500.0

α = 1000.0

Subproblem Compute ∇f(x̃)
0.00

0.02

0.04

0.06

R
u

n
ti

m
e

[s
ec

]

10−3 10−2

b/N

0.0625

0.0650

0.0675

0.0700

S
u

b
p

ro
b

le
m

ru
n
ti

m
e

[s
ec

]

Figure 3.1: Sparse logistic regression for news20. Left: Objective function gap for different batch
and step sizes. Top Right: average runtime for solving the subproblem once (with Algorithm 8)
and for computing ∇f(x̃). Displayed for α = 1000, b = 0.005 ·N . Bottom Right: Mean runtime
(per iteration index k in SNSPP) for solving the subproblem.

data only. We compare SNSPP to the other variance-reduced methods SAGA and SVRG. We solve
the `1-regularized logistic regression problem for several datasets, for a range of step sizes α and
different batch sizes b.4 For SVRG, we set the inner loop length to bN/bc.
The tested algorithms terminate at iteration k, if the criterion

ψ(xk) ≤ 1.0001ψ? (3.22)

is satisfied. The runtime elapsed until fulfilling (3.22), averaged over five independent runs, is
plotted in Fig. 3.2. The shaded area depicts the bandwidth of two standard deviations (over
the five independent runs). If a method does not satisfy (3.22) within some maximum number
of iterations or if it diverges, it is marked as no convergence.

Discussion. First, we observe that for all instances, SNSPP converges for much larger step
sizes than SAGA and SVRG. The elapsed runtime until convergence of SNSPP is robust to step
size selection across all datasets. For mnist, covtype and higgs, the robustness of SNSPP is
comparable to SAGA and slightly better than SVRG. For gisette, sido0, and madelon.2 (all
of which are datasets where n is large(r)) the advantage of SNSPP is most pronounced: for
madelon.2, the runtimes of the best parameter settings are: SNSPP: 73 sec, SAGA: 132 sec,
SVRG: 413 sec. SNSPP further converges in less than 300 seconds for a large range of step
sizes (i.e., without extensive tuning) while for SAGA and SVRG the runtime steeply increases
beyond 500 seconds if the step size is chosen too small (see Fig. 3.7 for a convergence plot). Our
results underpin the numerical evidence in [6,26] that implicit stochastic proximal point methods
tend to be more robust with respect to step size choices than stochastic gradient descent-type
approaches.

Speed of Convergence. Based on the stability results depicted in Fig. 3.2, we now illustrate
the speed of convergence of SNSPP compared to SAGA, SVRG and AdaGrad. For the experiments

4We always include results for SAGA with b = 1 as this setting is widely adopted, for example in scikit-learn.

3.7. Numerical Experiments 41

10−5 10−4 10−3 10−2 10−1 100 101 102

Step size α

0

5

10

15

20

R
u

n
ti

m
e

u
n
ti

l
co

n
ve

rg
en

ce
[s

ec
]

no convergence

Convergence = objective less than 1.0001ψ?

snspp, b = N ·0.005

snspp, b = N ·0.01

svrg, b = N ·0.005

svrg, b = N ·0.01

saga, b = 1

saga, b = N ·0.001

(a) mnist

10−4 10−3 10−2 10−1 100 101 102

Step size α

0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

20.0

R
u

n
ti

m
e

u
n
ti

l
co

n
ve

rg
en

ce
[s

ec
]

no convergence

Convergence = objective less than 1.0001ψ?

snspp, b = N ·0.005

snspp, b = N ·0.01

snspp, b = N ·0.05

svrg, b = N ·0.005

svrg, b = N ·0.01

svrg, b = N ·0.05

saga, b = 1

saga, b = N ·0.005

saga, b = N ·0.01

(b) gisette

10−3 10−2 10−1 100 101 102 103

Step size α

0

1

2

3

4

5

6

7

R
u

n
ti

m
e

u
n
ti

l
co

n
ve

rg
en

ce
[s

ec
]

no convergence

Convergence = objective less than 1.0001ψ?

snspp, b = N ·0.005

snspp, b = N ·0.01

svrg, b = N ·0.005

svrg, b = N ·0.01

saga, b = 1

saga, b = N ·0.001

(c) sido0

10−3 10−1 101 103

Step size α

0

2

4

6

8

10

12

R
u

n
ti

m
e

u
n
ti

l
co

n
ve

rg
en

ce
[s

ec
]

no convergence

Convergence = objective less than 1.0001ψ?

snspp, b = N ·0.0001

snspp, b = N ·0.0005

snspp, b = N ·0.001

svrg, b = N ·0.0001

svrg, b = N ·0.0005

svrg, b = N ·0.001

saga, b = 1

saga, b = N ·0.0001

saga, b = N ·0.0005

(d) covtype

10−4 10−2 100 102

Step size α

0

5

10

15

20

25

30

R
u

n
ti

m
e

u
n
ti

l
co

n
ve

rg
en

ce
[s

ec
]

no convergence

Convergence = objective less than 1.0001ψ?

snspp, b = N ·1e-05

snspp, b = N ·5e-05

svrg, b = N ·1e-05

svrg, b = N ·5e-05

saga, b = 1

saga, b = N ·1e-05

(e) higgs

10−5 10−4 10−3 10−2 10−1 100

Step size α

0

500

1000

1500

2000

2500

R
u

n
ti

m
e

u
n
ti

l
co

n
ve

rg
en

ce
[s

ec
]

no convergence

Convergence = objective less than 1.0001ψ?

snspp, b = N ·0.01

snspp, b = N ·0.05

svrg, b = N ·0.01

svrg, b = N ·0.05

saga, b = 1

saga, b = N ·0.005

(f) madelon.2

Figure 3.2: Runtime until convergence for different choices of step and batch sizes.

in this section, we choose a manually tuned (constant) batch and step size for all methods in
order to allow a fair comparison. Details on the tuning procedure and the specific batch and
step sizes values are reported in Table 3.2 in Section 3.8.4.

We plot the objective function value – averaged over 20 independent runs – over the (average)

42 Chapter 3. A Semismooth Newton Stochastic Proximal Point Algorithm With Variance
Reduction

0.0 0.5 1.0 1.5 2.0 2.5 3.0

Runtime [sec]

10−7

10−6

10−5

10−4

10−3

10−2

10−1

ψ
(x

k
)
−
ψ
?

saga

adagrad

svrg

snspp

(a) mnist

0 1 2 3 4

Runtime [sec]

10−7

10−6

10−5

10−4

10−3

10−2

10−1

ψ
(x

k
)
−
ψ
?

saga

adagrad

svrg

snspp

(b) gisette

0.0 0.5 1.0 1.5 2.0 2.5 3.0

Runtime [sec]

10−7

10−6

10−5

10−4

10−3

10−2

10−1

ψ
(x

k
)
−
ψ
?

saga

adagrad

svrg

snspp

(c) sido0

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

Runtime [sec]

10−7

10−6

10−5

10−4

10−3

10−2

10−1

ψ
(x

k
)
−
ψ
?

saga

adagrad

svrg

snspp

(d) covtype

Figure 3.3: Objective function convergence for the logistic regression datasets. For SAGA and
AdaGrad, one marker denotes one epoch. For SVRG one marker denotes one outer-loop iteration
while for SNSPP it denotes one (inner-loop) iteration.

cumulative runtime in Fig. 3.3. Due to the incorporated variance reduction, SNSPP converges
to the optimal value and requires a relatively low number of iterations (compared to the other
methods) in order to reach a high accuracy solution. However, in each iteration we need to
run Algorithm 8 instead of having a closed-form update. Overall in terms of runtime, for
mnist and covtype, SNSPP is slightly slower than SAGA/SVRG but still competitive. For sido0

and gisette, SNSPP is the fastest method. We also plot the convergence in terms of gradient
evaluations, ignoring all other computational costs, in Fig. 3.6.

3.7.3 Sparse Student-t Regression

Next, for a given matrix A ∈ RN×n (with rows ai) and measurements b = (b1, . . . , bN) ∈ RN , we
consider sparse regression problems of the form

min
x
L(Ax− b) + λ‖x‖1. (3.23)

where λ > 0 is a regularization parameter and L : Rm → R is a loss function. In statistical
learning, problem (3.23) with the squared loss L(r) = 1

N ‖r‖2 is known as the Lasso [150].

3.7. Numerical Experiments 43

Other regularization terms have been proposed in order to model group sparsity or ordered
features [143]. While the squared loss is suitable when b is contaminated by Gaussian noise,
more heavy-tailed distributions have been studied in the presence of large outliers [64]. For
instance, using the Student-t distribution [4, 79] and the respective maximum-likelihood loss,
problem (3.23) becomes

min
x

1

N

N∑

i=1

ln
(
1 + ν̂−1(〈ai, x〉 − bi)2

)
+ λ‖x‖1. (3.24)

where ν̂ > 0 is the degrees of freedom-parameter of the Student-t distribution. Problem (3.24)
is of the form (3.2) with fi(z) = ln(1 + ν̂−1(z − bi)2).

We now fix b ∈ R and consider the scalar function fstd : R→ R, fstd(x) := ln(1 + ν̂−1(x− b)2);

we have f ′std(x) = 2(x−b)
ν̂+(b−x)2

and f ′′std(x) = 2(ν̂−(b−x)2)
(ν̂+(b−x)2)2

. The minimum of f ′′std is attained at

x ∈ {b +
√

3ν̂, b −
√

3ν̂} and we can conclude infx f
′′
std(x) = − 1

4ν̂ . Consequently, fstd is 1
4ν̂ -

weakly convex. Next, we compute the convex conjugate of x 7→ f̂std(x) := fstd(x) + γ
2x

2 which
is strongly convex for γ > 1

4ν̂ . For fixed x ∈ R, it holds that

z = arg supy xy − f̂std(y) ⇐⇒ x− f ′std(z)− γz = 0

⇐⇒ − γz3 + z2 (x+ 2γb) + z
(
−2bx− 2− γν̂ − γb2

)
+
(
xν̂ + xb2 + 2b

)
= 0.

(3.25)

Choosing γ > 1
4ν̂ , (3.25) has a unique real solution z∗ for any x, b ∈ R due to strong convexity.

Applying Lemma 3.11 yields

f̂∗std(x) = xz∗ − f̂std(z∗), (f̂∗std)′(x) = z∗, (f̂∗std)′′(x) = (f̂ ′′std(z∗))−1.

We solve the cubic polynomial equation in (3.25) using Halley’s method [30]. We run two
different settings: First, we use a synthetic dataset with n = 5000, N = 4000, Ntest = 400,
λ = 0.001, and ν̂ ∈ {0.5, 1, 2}. We generate x̂ ∈ Rn with 20 non-zero entries. To obtain A and
b, we first perform a SVD of a (N +Ntest)× n-matrix with entries drawn uniformly at random
from [−1, 1] and rescale its non-zero singular values to lie in the interval [1, 15]. We use Ã to
denote the resulting larger matrix and we compute b̃ via b̃ = Ãx̂+ 0.1 · ε̄ where ε̄ ∈ RN+Ntest is
generated from a Student-t distribution with degrees of freedom ν̂. A and b are then given as the
first N rows/entries of Ã and b̃. The remaining rows/entries are used as a test set. Secondly, we
consider problem (3.24) using the feature matrix A from the sido0 dataset. We generate x̂ with
50 non-zero entries and compute b = Ax̂ + 0.1 · ε̄ where ε̄ ∈ RN is generated from a Student-t
distribution with degrees of freedom ν̂ = 2. As in the previous test, 20% of the samples are
used as test set (applying the same procedure) and we set λ = 0.01. We follow the same tuning
strategy as described in Section 3.7.2. The objective function and test loss are averaged over 20
independent runs.

Discussion. For the synthetic data (Fig. 3.4), we observe that SNSPP performs comparably to
SVRG and SAGA in reducing the objective as well as the Student-t likelihood loss on a held-
out test set. In order to exclude the possibility that the methods converge to different points
with similar objective function values, we verified that the iterates of all methods follow a similar
path and that the final iterates stay very close in terms of Euclidean distance. (Only the iterates
generated by AdaGrad show a more oscillatory behavior which is expected as it does not use
variance reduction). Fig. 3.5 shows the results for the regression on sido0: here, SNSPP performs
favorably compared to the other methods – both in terms of objective function and test loss.

44 Chapter 3. A Semismooth Newton Stochastic Proximal Point Algorithm With Variance
Reduction

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

Runtime [sec]

10−7

10−6

10−5

10−4

10−3

10−2

10−1

ψ
(x

k
)
−
ψ
?

saga

adagrad

svrg

snspp

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

Runtime [sec]

0.04

0.06

0.08

0.10

0.12

0.14

T
es

t
lo

ss

saga

adagrad

svrg

snspp

(a) ν̂ = 2

0.00 0.25 0.50 0.75 1.00 1.25 1.50

Runtime [sec]

10−7

10−6

10−5

10−4

10−3

10−2

10−1

ψ
(x

k
)
−
ψ
?

saga

adagrad

svrg

snspp

0.00 0.25 0.50 0.75 1.00 1.25 1.50

Runtime [sec]

0.200

0.225

0.250

0.275

0.300

0.325

0.350

0.375

0.400

T
es

t
lo

ss

saga

adagrad

svrg

snspp

(b) ν̂ = 1

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5

Runtime [sec]

10−7

10−6

10−5

10−4

10−3

10−2

10−1

ψ
(x

k
)
−
ψ
?

saga

adagrad

svrg

snspp

0 1 2 3

Runtime [sec]

1.075

1.100

1.125

1.150

1.175

1.200

1.225

T
es

t
lo

ss

saga

adagrad

svrg

snspp

(c) ν̂ = 0.5

Figure 3.4: Objective function (top) and test loss (bottom) for Student-t regression with different
values of degrees of freedom. Test loss is defined as the value of fstd averaged over the samples
of the test set.

3.8 Supplementary Material and Missing Proofs

Lemma 3.11. Let h : Rn → R be a strongly convex, twice continuously differentiable mapping
and let z∗(x) denote the (unique) solution to maxz〈x, z〉 − h(z). Then, the convex conjugate
h∗ : Rn → R is C2 and for all x ∈ Rn it holds that

h∗(x) = 〈x, z∗(x)〉 − h(z∗(x)), ∇h∗(x) = z∗(x), ∇2h∗(x) =
[
∇2h(z∗(x))

]−1
.

Proof. As h is strongly convex and C2, z∗(x) is the unique solution to ∇h(z) = x. By [9,
Thm. 4.20], we have ∇h(y) = x if, and only if, ∇h∗(x) = y for all x, y ∈ Rn, which implies
∇h∗(x) = z∗(x). The inverse function theorem yields that x 7→ z∗(x) is C1 with Jacobian
Dz∗(x) = [∇2h(z∗(x))]−1; as Dz∗(x) = ∇2h∗(x) the statement is proven.

3.8.1 Bounding the Variance

In this section, let F be a σ-algebra and suppose that x and x̃ are F-measurable random variables
in Rn. For i ∈ [N], let us further define ζi := A>i (∇fi(Aix)−∇fi(Aix̃)).

Lemma 3.12. Suppose that condition (A1) is satisfied and let the index i be drawn uniformly
from [N] and independently of F . Conditioned on F , we then have E‖ζi‖2 ≤ L̄2‖x− x̃‖2 almost
surely. In addition, if every fi is convex and there exists x? ∈ arg minx ψ(x), then it holds

E‖ζi‖2 ≤ 4L̄(ψ(x)− ψ(x?) + ψ(x̃)− ψ(x?)) almost surely.

Proof. The first statement follows directly from Lipschitz-smoothness. To prove the second part,

3.8. Supplementary Material and Missing Proofs 45

0 2 4 6 8

Runtime [sec]

10−7

10−6

10−5

10−4

10−3

10−2

10−1

ψ
(x

k
)
−
ψ
?

saga

adagrad

svrg

snspp

(a) Objective function

0 2 4 6 8

Runtime [sec]

0.08

0.10

0.12

0.14

0.16

0.18

0.20

T
es

t
lo

ss

saga

adagrad

svrg

snspp

(b) Test loss

Figure 3.5: Sparse Student-t regression for sido0 dataset. Test loss is defined as the value of
fstd averaged over the samples of the test set.

let us define φi : x 7→ fi(Aix). Lem. 3.4 in [157] (applied to φi) implies

E‖∇φi(x)−∇φi(x̃)‖2 ≤ 2E‖∇φi(x)−∇φi(x?)‖2 + 2E‖∇φi(x̃)−∇φi(x?)‖2
≤ 4L̄(ψ(x)− ψ(x?) + ψ(x̃)− ψ(x?)),

where we used ‖a+ b‖2 ≤ 2‖a‖2 + 2‖b‖2. We conclude as ζi = ∇φi(x)−∇φi(x̃).

Lemma 3.13. Let S be a b-tuple drawn uniformly from [N] and independently of F . Conditioned
on F , the random variable u := ∇fS(x)−∇fS(x̃) +∇f(x̃) is an unbiased estimator of ∇f(x).
Moreover, almost surely, if S is drawn

(i) with replacement, then E‖u−∇f(x)‖2 ≤ 1
bE‖ζi‖2 for any i ∈ S.

(ii) without replacement, then E‖u−∇f(x)‖2 ≤ (1− b
N) 1

b(N−1)

∑N
i=1 E‖ζi‖2.

Proof. Utilizing [87, §2.8], we clearly have E[u] = ∇f(x). For part (i), consider ζ = 1
b

∑
i∈S ζi.

It holds ζ = u−∇f(x̃) and, conditioned on F , we obtain

E‖u−∇f(x)‖2 =
1

b2
E
∥∥∥
∑

i∈S
ζi − E[ζi]

∥∥∥
2

since E[ζi] = ∇f(x)−∇f(x̃) for all i ∈ S. Since the random variables {ζi − E[ζi]} are i.i.d. and
have mean zero (conditioned on F), [68, Lem. 7] allows to conclude

E‖u−∇f(x)‖2 =
1

b2

∑
i∈S

E‖ζi − E[ζi]‖2 ≤
1

b2

∑
i∈S

E‖ζi‖2. (3.26)

This proves the first statement as the random variables ζi are identically distributed. The
formula in (ii) is shown in [87, §2.8].

Combining Lemma 3.12 and Lemma 3.13, we obtain the following result which extends Lem. 3
in [68] and Cor. 3.5 in [157].

Corollary 3.14. Let (A1) hold and let S be a b-tuple drawn uniformly from [N] and indepen-
dently of F . With u as in Lemma 3.13 and conditioned on F , it holds that

46 Chapter 3. A Semismooth Newton Stochastic Proximal Point Algorithm With Variance
Reduction

(i) E‖u−∇f(x)‖2 ≤ L̄2τ
b ‖x− x̃‖2;

(ii) if all fi are convex and x? ∈ arg minx ψ(x) exists, then

E‖u−∇f(x)‖2 ≤ 4L̄τ
b (ψ(x)− ψ(x?) + ψ(x̃)− ψ(x?));

where τ = 1 if S is drawn with replacement and τ = N−b
N−1 if S is drawn without replacement.

3.8.2 Proof for the Weakly Convex Case

Proof of Theorem 3.7. Let us fix the index of the outer loop s. Recall the notation ASk =
1
b (A

>
κk(1), . . . , A

>
κk(b))

> and abbreviate κk by κ. Let (x̂k+1, ξ̂k+1) denote the pair of exact solutions

of the implicit updates Eq. (3.8) and Eq. (3.11). In particular, setting wk := A>Skξ
k+1−MSkx

k+

vk and ŵk := A>Sk ξ̂
k+1 −MSkx

k + vk, we have

xk+1 = proxαkϕ(xk − αkwk) and x̂k+1 = proxαkϕ(xk − αkŵk). (3.27)

We introduce the deterministic proximal update

x̄k+1 = proxId+αkMN
αkψ

(xk) = proxαkϕ(xk − αk∇f(x̄k+1)− αkMN (x̄k+1 − xk)). (3.28)

Using the Lipschitz smoothness of f , we obtain

f(xk+1) ≤ f(xk) + 〈∇f(xk), xk+1 − xk〉+
L

2
‖xk+1 − xk‖2. (3.29)

Setting p = proxγϕ(y − γw) and applying the optimality condition of the proximity operator
(3.3), it holds that

ϕ(p)− ϕ(z) ≤ −〈w, p− z〉+
1

2γ
‖y − z‖2 − 1

2γ
‖p− y‖2 − 1

2γ
‖p− z‖2 (3.30)

for all y, w ∈ Rn, z ∈ dom(ϕ), and γ > 0, see, e.g., [68, Lem. 1] for comparison. Setting y = xk,
γ = αk, w = wk, and z = x̄k+1, this yields

ϕ(xk+1) ≤ ϕ(x̄k+1)− 〈wk, xk+1 − x̄k+1〉+ 1
2αk
‖x̄k+1 − xk‖2

− 1
2αk
‖xk+1 − xk‖2 − 1

2αk
‖xk+1 − x̄k+1‖2.

(3.31)

Moreover, setting y = xk, γ = αk, w = ∇f(x̄k+1) + MN (x̄k+1 − xk), and z = xk in (3.30) and
recalling (3.28), it follows

ϕ(x̄k+1) ≤ ϕ(xk)− 〈∇f(x̄k+1) +MN (x̄k+1 − xk), x̄k+1 − xk〉 − 1
αk
‖x̄k+1 − xk‖2. (3.32)

Adding the three inequalities (3.29), (3.31), and (3.32), we obtain

ψ(xk+1) ≤ ψ(xk) + 〈∇f(xk)−∇f(x̄k+1), x̄k+1 − xk〉+ 〈∇f(xk)− wk, xk+1 − x̄k+1〉
− ‖x̄k+1 − xk‖2

MN+ 1
2αk

Id
+ 1

2

[
L− 1

αk

]
‖xk+1 − xk‖2 − 1

2αk
‖xk+1 − x̄k+1‖2. (3.33)

3.8. Supplementary Material and Missing Proofs 47

Let us define ṽk := ∇fSk(xk) − ∇fSk(x̃) + ∇f(x̃) = ∇fSk(xk) + vk. We decompose the term
∇f(xk)− wk as follows:

∇f(xk)− wk

= −A>Sk(ξk+1 − ξ̂k+1)

=:T1

−MSk(x̂k+1 − xk+1)− (∇fSk(x̂k+1)−∇fSk(xk+1))

=:T2

−MSk(xk+1 − xk)− (∇fSk(xk+1)−∇fSk(xk))

=:T3

+∇f(xk)− ṽk,

where we used A>Sk ξ̂
k+1 = ∇fSk(x̂k+1) + MSk x̂

k+1 (cf. (3.9), where ξk+1 and xk+1 must be

replaced by ξ̂k+1 and x̂k+1, respectively, since in Algorithm 7 and beyond, ξk+1 and xk+1 involve
inexactness). Next, from the choice of εsub and Proposition 3.6, we obtain ‖T1‖2 ≤ Ā2

µ2∗b
ε2
k.

Applying Lipschitz smoothness, Proposition 3.6, and using ‖MSk‖ ≤ M̄ (cf. (3.17)), this yields

‖T2‖ ≤ (L̄b + ‖MSk‖)‖x̂k+1 − xk+1‖ ≤ (L̄b + M̄)
√
Ā2b−1µ−1

∗ αkεk

for all k = 0, . . . ,m− 1. Using MSk � 0 and Young’s inequality, we have

〈T3, x
k+1 − x̄k+1〉 = −〈MSk(x̄k+1 − xk), xk+1 − x̄k+1〉 − ‖xk+1 − x̄k+1‖2MSk

− 〈∇fSk(xk+1)−∇fSk(xk), xk+1 − x̄k+1〉
≤
[
M̄
2σ3
k

+ L̄b
2σ4
k

]
‖xk+1 − x̄k+1‖2 +

L̄bσ
4
k

2 ‖xk+1 − xk‖2 +
M̄σ3

k
2 ‖x̄k+1 − xk‖2

for some σ3
k, σ

4
k > 0. Combining these results with (3.33), applying Young’s inequality, and

defining ν1
k := L+ 1

2M̄σ3
k − 1

2αk
, ν2

k := 1
2 [L+ L̄bσ

4
k − 1

αk
],

ν3
k := 1

2

[
1
σ1
k

+ 1
σ2
k

+ M̄
σ3
k

+ L̄b
σ4
k

+ 1
σ5
k
− 1

αk

]
, ν4

k := 1
2

[
σ1
k + σ2

kα
2
k(L̄b + M̄)2

]
Ā2

µ2∗b
,

we obtain

ψ(xk+1)− ψ(xk)

≤ σ1
k
2 ‖T1‖2 +

σ2
k
2 ‖T2‖2 +

σ5
k
2 ‖∇f(xk)− ṽk‖2 +

[
L+

M̄σ3
k

2 − 1
2αk

]
‖x̄k+1 − xk‖2

+ 1
2

[
L+ L̄bσ

4
k − 1

αk

]
‖xk+1 − xk‖2 + ν3

k‖x̄k+1 − xk+1‖2

≤ σ5
k
2 ‖∇f(xk)− ṽk‖2 + ν1

k‖x̄k+1 − xk‖2 + ν2
k‖xk+1 − xk‖2

+ ν3
k‖x̄k+1 − xk+1‖2 + ν4

kε
2
k.

Using Corollary 3.14 (with x = xk, x̃ = x̃s), conditioned on all random events occurring until
the current iterate xk = xs,k, we have

E‖∇f(xk)− ṽk‖2 ≤ L̄2b−1‖xk − x̃s‖2.

for all k ∈ {0, . . . ,m− 1}. Taking expectation in the previous estimate, it holds that

E[ψ(xk+1)] ≤ E[ψ(xk)] +
L̄2σ5

k
2b E‖xk − x̃s‖2 + ν1

kE‖x̄k+1 − xk‖2

+ ν2
kE‖xk+1 − xk‖2 + ν3

kE‖x̄k+1 − xk+1‖2 + ν4
kε

2
k.

(3.34)

48 Chapter 3. A Semismooth Newton Stochastic Proximal Point Algorithm With Variance
Reduction

With the goal of balancing the terms in ν1
k , . . . , ν

4
k , we now choose σ1

k = mαk/(1 − η̄), σ2
k =√

2b/[L̄bη̄], σ3
k = σ4

k = 1, and σ5
k =

√
2b/[L̄(m− 1)]. For k < m, using x̃s = x0 and the

Cauchy-Schwarz inequality, we deduce

E‖xk − x̃s‖2 = E
∥∥∥∥
∑k−1

i=0
(xi+1 − xi)

∥∥∥∥
2

≤ k
k−1∑

i=0

E‖xi+1 − xi‖2 ≤ k
m−2∑

i=0

E‖xi+1 − xi‖2.

Summing this estimate for k = 0, . . . ,m− 1 gives

m−1∑

k=0

E‖xk − x̃s‖2 ≤
m−1∑

k=0

k

m−2∑

i=0

E‖xi+1 − xi‖2 ≤ m(m−1)
2

m−2∑

i=0

E‖xi+1 − xi‖2. (3.35)

As σ5
k is independent of k, summing (3.34) over k = 0, . . . ,m− 1 gives

E[ψ(xm)] ≤ E[ψ(x0)] +

m−1∑

k=0

[
L̄2m(m−1)σ5

k
4b + ν2

k

]
E‖xk+1 − xk‖2

+
m−1∑

k=0

ν1
kE‖x̄k+1 − xk‖2 +

m−1∑

k=0

ν3
kE‖xk+1 − x̄k+1‖2 +

m−1∑

k=0

ν4
kε

2
k.

(3.36)

Let η̄ ∈ (0, 1) be as stated in Theorem 3.7. Utilizing the specific choices of σ1
k, . . . , σ

5
k, we obtain

L̄m/
√

2b+ 2ν2
k ≤ −(1− η̄)/αk if η̄αk

−1 ≥ [1 +m/
√

2b]L̄+ L,

ν1
k ≤ −1−η̄

2αk
⇐⇒ η̄

αk
≥ 2L+ M̄, and ν3

k ≤ 0 ⇐= 1
αk
≥ (M̄+L̄)m

m−(1−η̄) + L̄m√
2b
.

The second statement follows from plugging in σ1
k, . . . , σ

5
k, which gives that

ν3
k ≤ 0 ⇐⇒ 1

αk
≥ m

m−1+η̄

[
L̄b(1 + η̄√

2b
) + M̄ + L̄(m−1)√

2b

]
=: T4

and estimating T4 ≤ m
m−1+η̄ [M̄ + L̄] + m(m−1+η̄)

m−1+η̄
L̄√
2b

due to L̄b ≤ L̄. Thus, defining

1
α̂ := 1

η̄ max
{

2L+ M̄,
[
1 + m√

2b

]
L̄+ max{M̄, L}

}
,

it holds ν4
k ≤ 1

2 [m/(1− η̄) +
√

2b(1 + M̄/L̄b)]
Ā2

µ2∗b
αk =: ν̄αk. Further, we have

1
αk
≥ 1

α̂ ≥ 1
η̄

[
m√
2b
L̄+ (M̄ + L̄)

]
≥ 1

η̄ [M̄ + L̄] + L̄m√
2b
≥ (M̄+L̄)m

m−(1−η̄) + L̄m√
2b
.

Here, we used η < 1 and the fact that m ≥ 1 and thus

1
η̄ = 1 + 1−η̄

η̄ ≥ 1 + 1−η̄
m−1+η̄ = m

m−(1−η̄) .

Next, introducing the auxiliary function y 7→ ψx(y) := ψ(y) + 1
2‖y − x‖2MN

, we can write

x̄k+1 = proxαkψxk
(xk). Consequently, applying [105, Lem. 2] and [34, Thm. 3.5] with G = ∂ϕ,

Φ = ∂ψxk , t = αk, and β = L+ M̄ , it follows:

‖x̄k+1 − xk‖ ≥ (1− (L+ M̄)αk)‖Fαknat(x
k)‖ ≥ (1− η̄)αk‖Fnat(x

k)‖ (3.37)

as long as αk ≤ min{α̂, 1}. We now use full notations showing the (s, k)-dependence. Let us

define x̄s,k+1 := prox
Id+αskMN

αskψ
(xs,k),

τ1
s :=

∑m−1

k=0
(αsk)

−1E‖x̄s,k+1 − xs,k‖2, τ2
s :=

∑m−1

k=0
(αsk)

−1E‖xs,k+1 − xs,k‖2.

3.8. Supplementary Material and Missing Proofs 49

Using αsk ≤ α̂, (3.36) then implies

E[ψ(x̃s+1)]− E[ψ(x̃s)] ≤ −1− η̄
2

(τ1
s + τ2

s) + ν̄ ·
∑m−1

k=0
αsk(ε

s
k)

2 (3.38)

and due to (A2) and
∑∞

s=0

∑m−1
k=0 α

s
k(ε

s
k)

2 <∞, we further get

∑∞
s=0

τ1
s <∞ and

∑∞
s=0

τ2
s <∞. (3.39)

Finally, the estimates (3.37) and (3.39) yield

∞∑

s=0

m−1∑

k=0

αskE‖Fnat(x
s,k)‖2 <∞ and

∞∑

s=0

m−1∑

k=0

αsk‖Fnat(x
s,k)‖2 <∞

almost surely. Due to
∑∞

s=0

∑m−1
k=0 α

s
k =∞ and the Borel-Cantelli lemma [38], it holds

lim inf
s→∞

‖Fnat(x
s,k)‖2 = 0 almost surely for all 0 ≤ k < m.

The almost sure convergence Fnat(x
s,k) → 0 (and E‖Fnat(x

s,k)‖ → 0) essentially follows from
(3.39) and from the Lipschitz continuity of x 7→ Fnat(x) and can be shown as in [159, Thm. 3.3
and Thm. 4.1]. As this last step is basically identical to the proofs in [159], we omit further
details and refer to [159].

Proof of Corollary 3.8. We have ψ(x̃S+1) ≥ ψ? for all S. In the previous proof, (3.38) can be
obtained directly from (3.36), using only the condition αsk ≤ α̂ on the step sizes (in particular,
we do not need to assume αsk ≤ min{α̂, 1}). Summing (3.38) from s = 0, . . . ,S, and setting

x̄π := proxId+αMN
αψ (xπ), we conclude

E‖x̄π − xπ‖2 ≤ 2α
(1−η̄)m(S+1)

[
ψ(x̃0)− ψ? + ν̄α ·

∑S

s=0

∑m−1

k=0
(εsk)

2

]
.

As in (3.37), we can now utilize the bound ‖x̄π − xπ‖ ≥ (1 − (L + M̄)α)‖Fαnat(xπ)‖ ≥ (1 −
η̄)‖Fαnat(xπ)‖ to express complexity in terms of E‖Fnat(xπ)‖2.

3.8.3 Proof for the Strongly Convex Case

The proofs of Theorem 3.9 and Theorem 3.10 have several identical steps. We start by proving
the latter.

Proof of Theorem 3.10. Fix s ∈ N0 and let k ∈ {0, . . . ,m− 1} be given. Let again (x̂k+1, ξ̂k+1)
denote the pair of exact solutions of (3.8) and (3.11). Due to

ξ̂k+1
i = ∇fκ(i)(Aκ(i)x̂

k+1) + γκ(i)Aκ(i)x̂
k+1, i ∈ [b], (3.40)

(cf. (3.9) replacing again (ξk+1, xk+1) by (ξ̂k+1, x̂k+1)) and (3.27), we have

x̂k+1 = proxαϕ(xk − α[∇fSk(x̂k+1) + vk]− αMSk(x̂k+1 − xk)).

Furthermore, introducing ψk(x) := ψSk(x) + 〈vk, x−xk〉, the underlying optimality condition of
the proximity operator (3.3) implies

p = x̂k+1 ⇐⇒ p ∈ xk − αMSk(p− xk)− α[∂ϕ(p) +∇fSk(p) + vk]

⇐⇒ p = prox
Id+αMSk
αψk

(xk).

50 Chapter 3. A Semismooth Newton Stochastic Proximal Point Algorithm With Variance
Reduction

Moreover, using (A1), the mapping

x 7→ F̂k(x) := fSk(x) +
1

2
‖x− xk‖2MSk

=
1

b

∑
i∈Sk

fi(Aix) +
γi
2
‖Ai(x− xk)‖2

is convex for all k. Hence, setting Ψk(x) := F̂k(x)+ϕ(x)+〈vk, x−xk〉, the function x 7→ Ψk(x)+
1

2α‖x− xk‖2 is (µϕ + α−1)-strongly convex and due to x̂k+1 = arg minx Ψk(x) + 1
2α‖x− xk‖2, it

follows

Ψk(x) + 1
2α‖x− xk‖2 ≥ Ψk(x̂

k+1) + 1
2α‖x̂k+1 − xk‖2 (3.41)

+ 1
2

[
µϕ + 1

α

]
‖x− x̂k+1‖2

for all x ∈ dom(ϕ). Next, combining the optimality condition (3.3), the update rule of Algo-
rithm 7, and (3.40), we obtain

xk+1 ∈ xk − αA>Skξ
k+1 − αvk + αMSkxk − α∂ϕ(xk+1)

= xk − αA>Sk(ξk+1 − ξ̂k+1)− α[∇fSk(x̂k+1)−∇fSk(xk+1)]

− αMSk(x̂k+1 − xk+1)− α[∇fSk(xk+1) + ∂ϕ(xk+1) + vk +MSk(xk+1 − xk)].

Setting hk+1 := A>Sk(ξk+1− ξ̂k+1) + [∇fSk(x̂k+1)−∇fSk(xk+1)] +MSk(x̂k+1−xk+1), this shows

that −hk+1 +(xk−xk+1)/α ∈ ∂Ψk(x
k+1). Thus, due to the strong convexity of Ψk and applying

−〈a, b〉 = 1
2‖a− b‖2 − 1

2‖a‖2 − 1
2‖b‖2, it follows

Ψk(x
k+1)−Ψk(y)

≤ − 1

α
〈xk − xk+1, y − xk+1〉+ 〈hk+1, y − xk+1〉 − µϕ

2
‖y − xk+1‖2

=
1

2α
[‖xk − y‖2 − ‖xk+1 − xk‖2]− 1

2

[
µϕ +

1

α

]
‖xk+1 − y‖2 + 〈hk+1, y − xk+1〉

for all y ∈ dom(ϕ). Using this estimate in (3.41) with y = x̂k+1 and applying Young’s inequality,
we have

1

2α
[(1 + αµϕ)‖x̂k+1 − x‖2 − ‖xk − x‖2]

≤ Ψk(x)−Ψk(x
k+1) + Ψk(x

k+1)−Ψk(x̂
k+1)− 1

2α
‖x̂k+1 − xk‖2

≤ Ψk(x)−Ψk(x
k+1)− 1

2α
‖xk+1 − xk‖2 − µϕ

2
‖x̂k+1 − xk+1‖2 +

α

2
‖hk+1‖2.

Next, we expand the first term on the right hand side as follows:

Ψk(x)−Ψk(x
k+1) = [ψ(x)− ψ(xk+1)] + [fSk(x)− f(x)] + [F̂k(x

k)− F̂k(xk+1)]

+ 〈vk, x− xk+1〉+ [f(xk+1)− f(xk)] + [f(xk)− fSk(xk)] +
1

2
‖x− xk‖2MSk

.

By the convexity of F̂k, we have F̂k(x
k)− F̂k(xk+1) ≤ 〈∇F̂k(xk), xk − xk+1〉 = 〈∇fSk(xk), xk −

xk+1〉. Combining this with the Lipschitz continuity of ∇f , it further holds that

[F̂k(x
k)− F̂k(xk+1)] + [f(xk+1)− f(xk)]

≤ 〈∇f(xk)−∇fSk(xk), xk+1 − xk〉+
L

2
‖xk+1 − xk‖2.

3.8. Supplementary Material and Missing Proofs 51

In addition, using Young’s inequality, we have

‖x̂k+1 − x‖2 ≥ (1− ρ1)‖xk+1 − x‖2 +

[
1− 1

ρ1

]
‖x̂k+1 − xk+1‖2

for ρ1 ∈ (0, 1). Together, applying Young’s inequality once more and setting ek(x) := fSk(x)−
f(x) + f(xk)− fSk(xk) + 〈vk, x− xk〉 − 1

2‖xk − x‖2MN−MSk
, this yields

(1 + αµϕ)(1− ρ1)‖xk+1 − x‖2 − ‖xk − x‖2

≤ 2α[ψ(x)− ψ(xk+1)] + 2αek(x) + α‖x− xk‖2MN

+
α

ρ2
‖∇f(xk)−∇fSk(xk)− vk‖2 − [1− (L+ ρ2)α] ‖xk+1 − xk‖2

+ α2‖hk+1‖2 + (1 + αµϕ)(ρ−1
1 − 1)‖x̂k+1 − xk+1‖2

(3.42)

for all x ∈ dom(ϕ) and ρ2 > 0, where we used −αµϕ− (1 +αµϕ)(1− ρ−1
1) ≤ (1 +αµϕ)(ρ−1

1 − 1).

The choice of εsub and Proposition 3.6 imply ‖A>Sk(ξk+1− ξ̂k+1)‖ ≤ Ā
µ∗
√
b
εk and ‖x̂k+1−xk+1‖ ≤

αĀ
µ∗
√
b
εk. Moreover, applying Lipschitz smoothness and Proposition 3.6, it holds that

‖hk+1‖ ≤ Ā
µ∗
√
b
εk + (L̄b + ‖MSk‖)‖x̂k+1 − xk+1‖ ≤ (1 + α[L̄+ M̄]) Ā

µ∗
√
b
εk.

We now choose x = x?; this yields ψ(x?) − ψ(xk+1) ≤ −µ
2‖xk+1 − x?‖2. Furthermore, Corol-

lary 3.14 (with x = xk, x̃ = x̃s) yields E‖∇f(xk)−∇fSk(xk)− vk‖2 ≤ L̄2b−1‖xk − x̃s‖2 and we
have E[ek(x

?)] = 0. In addition, by definition and due to the Lipschitz continuity of Fnat, we
obtain εk ≤ δs‖Fnat(x̃

s)‖ ≤ (2 +L)δs‖x̃s−x?‖. Using MN � (µϕ−µ)I, combining our previous
results, and taking expectation, it follows

[1 + α(µϕ + µ)− ρ1(1 + αµϕ)]E‖xk+1 − x?‖2

≤ [1 + α(µϕ − µ)]E‖xk − x?‖2 +
L̄2α

bρ2
E‖xk − x̃s‖2 − [1− (L+ ρ2)α]E‖xk+1 − xk‖2

+
[
(1 + αµϕ)ρ−1

1 + (1 + α[L̄+ M̄])2
]
Ā2

µ2∗b
(2 + L)2α2

=:c(α)

δ2
sE‖x̃s − x?‖2.

We now suppose that ρ1 is chosen such that (1 + αµϕ)ρ1 ≤ 2αµ. Then, summing the last
estimate for k = 0, . . . ,m− 1 and invoking (3.35), this implies

[1 + α(µϕ + µ)− ρ1(1 + αµϕ)]E‖x̃s+1 − x?‖2

≤ [1 + α(µϕ − µ) + c(α)mδ2
s]E‖x̃s − x?‖2

−
[
1−

(
L+ ρ2 + L̄2m(m−1)

2bρ2

)
α
]∑m−1

k=0
E‖xk+1 − xk‖2.

Choosing ρ2 = L̄
√
m(m− 1)/

√
2b, α ≤ (L+

√
2L̄m/

√
b)−1, and ρ1 = δs, we obtain

E‖x̃s+1 − x?‖2 ≤
[
1− 2αµ

1+α(µϕ+µ)−ρ1(1+αµϕ) +
ρ1(1+αµϕ)+c(α)mδ2s

1+α(µϕ+µ)−ρ1(1+αµϕ)

]
E‖x̃s − x?‖2

≤
[
1− 2αµ

1+α(µϕ+µ) +O(δs)
]
E‖x̃s − x?‖2

as s→∞. This proves q-linear convergence of {x̃s} to x? in expectation.

52 Chapter 3. A Semismooth Newton Stochastic Proximal Point Algorithm With Variance
Reduction

Proof of Theorem 3.9. Let the iteration index s ∈ N0 and k ∈ {0, . . . ,m − 1} be fixed and let
hk+1, x̂k+1, ek(x) be defined as in the proof of Theorem 3.10. As all fi are convex we have
MSk = MN = 0. Denote by µϕ ≥ 0 the strong convexity parameter of ϕ. Let x? denote the
unique solution to (3.2) satisfying ψ? = ψ(x?). Proceeding as in the proof of Theorem 3.10, we
obtain the following analogue to (3.42)

(1 + αµϕ)(1− ρ1)‖xk+1 − x‖2 − ‖xk − x‖2 ≤ 2α[ψ(x)− ψ(xk+1)] + 2αek(x)

+
α

ρ2
‖∇f(xk)−∇fSk(xk)− vk‖2 − [1− (L+ ρ2)α] ‖xk+1 − xk‖2

+ α2‖hk+1‖2 + (1 + αµϕ)(ρ−1
1 − 1)‖x̂k+1 − xk+1‖2

for x ∈ dom(ϕ), ρ1 ∈ (0, 1), and ρ2 > 0. Conditioned on xk, we have E[ek(x)] = 0. By

Proposition 3.6, it holds ‖hk+1‖2 ≤ (1 + αL̄)2 Ā2

µ2∗b
ε2
k and ‖x̂k+1 − xk+1‖2 ≤ α2Ā2

µ2∗b
ε2
k and we can

again use the estimate εk ≤ (2 +L)δs‖x̃s − x?‖. Applying Corollary 3.14 (with x = xk, x̃ = x̃s),
conditioned on the history of iterates up to xk = xs,k, we have

E‖∇f(xk)−∇fSk(xk)− vk‖2 ≤ 4L̄b−1(ψ(xk)− ψ? + ψ(x̃s)− ψ?)

almost surely. At this point, we assume that the condition 1 − (L + ρ2)α ≥ 0 holds (for the
selected ρ2 and α). Next, setting β(ρ1) := (1 + αµϕ)(1− ρ1) and x = x?, we apply expectation
conditioned on the history up to iterate xk = xs,k and conclude

β(ρ1)E‖xk+1 − x?‖2 ≤ ‖xk − x?‖2 + 2αE[ψ? − ψ(xk+1)]

+ 4αL̄(ρ2b)
−1(ψ(xk)− ψ? + ψ(x̃s)− ψ?) + c̃(α)δ2

s‖x̃s − x?‖2,
(3.43)

where c̃(α) := ((1 + αL̄)2 + (1 + αµϕ)ρ−1
1)α

2Ā2

µ2∗b
(2 +L)2. Using ‖xk − x?‖2 ≤ 2

µ(ψ(xk)−ψ?) and

1− β(ρ1) = ρ1 + αµϕ(ρ1 − 1) ≤ ρ1, this yields

β(ρ1)E‖xk+1 − x?‖2 ≤ β(ρ1)‖xk − x?‖2 + 2αE[ψ? − ψ(xk+1)] (3.44)

+ c̃(α)δ2
s‖x̃s − x?‖2 + 4αL̄

ρ2b
(ψ(xk)− ψ? + ψ(x̃s)− ψ?) + 2ρ1

µ (ψ(xk)− ψ?).

We now require ρ1 ≤ min{1
2 ,

αµL̄
ρ2b
}. Using (3.44) recursively for k = 1, . . . ,m− 1 and (3.43) for

k = 0, applying expectation conditioned on the history up to x̃s and the tower property, we
obtain

β(ρ1)E‖xm − x?‖2 + 2α(1− 3L̄
ρ2b

)
∑m

k=1
E[ψ(xk)− ψ?]

≤ (1 + c̃(α)mδ2
s)‖x̃s − x?‖2 + 4αL̄(m+1)

ρ2b
(ψ(x̃s)− ψ?).

Due to the convexity of ψ and by Option II, we can infer ψ(x̃s+1) ≤ 1
m

∑m
k=1 ψ(xk) and hence,

for ρ2 > 3L̄b−1 it holds that

2α(1− 3L̄
ρ2b

)mE[ψ(x̃s+1)− ψ?] ≤ (1 + c̃(α)mδ2
s)‖x̃s − x?‖2 + 4αL̄(m+1)

ρ2b
(ψ(x̃s)− ψ?).

Furthermore, the strong convexity of ψ again implies ‖x̃s − x?‖2 ≤ 2
µ(ψ(x̃s)− ψ?). We now set

ρ2 = L̄
b (4

1−2θ + 3), i.e., 4L̄
ρ2b

(1 − 3L̄
ρ2b

)−1 = 1 − 2θ. This choice satisfies ρ2 > 3L̄b−1 automatically
and due to (3.20), we have (L+ ρ2)α ≤ 1. This yields

E[ψ(x̃s+1)− ψ?] ≤
[

1 + c̃(α)mδ2
s

µα(1− 3L̄
ρ2b

)m
+

2L̄(m+ 1)

ρ2b(1− 3L̄
ρ2b

)m

]
(ψ(x̃s)− ψ?).

3.8. Supplementary Material and Missing Proofs 53

By the choice of ρ2, it holds 2L̄(m+1)
ρ2bm

(1 − 3L̄
ρ2b

)−1 ≤ 1 − 2θ for all m ∈ N. Finally, if δs is

sufficiently small and m is sufficiently large such that 1+c̃(α)mδ2s
µαm (1 − 3L̄

ρ2b
)−1 ≤ θ, then we can

conclude E[ψ(x̃s+1)− ψ?] ≤ (1− θ)E[ψ(x̃s)− ψ?].

Remark 3. In the case µϕ > 0, ρ1 can be chosen small enough such that β(ρ1) ≥ 1 and we

obtain the term 1− 2L̄
ρ2b

instead of 1− 3L̄
ρ2b

in the latter computations.

3.8.4 Parameter Choices

Here, we report details on the tuning procedure for Section 3.7.2 and Section 3.7.3. For each
method and each dataset, we first identify a candidate interval of step sizes. We then choose
a range of step sizes α on this interval (typically 5–7 values) and perform grid search over 2–3
different batch sizes b. For SAGA, we additionally try b = 1. We select the combination of α
and b that performed best in terms of the objective function sub-optimality over three runs. We
observe that AdaGrad typically requires larger batch sizes than SNSPP/SVRG, which might be due
to a missing variance reduction mechanism in AdaGrad.

Dataset SNSPP SAGA SVRG AdaGrad

α b α b α b α b

mnist 2.5 280 0.04 56 0.25 280 0.030 2800
gisette 7.0 240 1.20·10−3 1 0.022 50 0.028 240
sido0 30.0 50 0.20 10 0.733 50 0.0150 200
covtype 50.0 50 0.25 50 0.350 50 0.10 250

student-t (ν̂ = 0.5) 1.05 20 2.50·10−3 1 0.140 40 0.032 40
student-t (ν̂ = 1) 3.0 20 0.015 4 0.120 20 0.030 20
student-t (ν̂ = 2) 7.0 20 0.20 20 0.40 20 0.032 40
student-t sido0 5.5 200 0.004 1 0.0145 10 0.015 100

Table 3.2: Step size and batch size values for the experiments in Section 3.7.2 and Section 3.7.3.

3.8.5 Additional Plots

0 2 4 6 8 10

Evaluations/N

10−7

10−6

10−5

10−4

10−3

10−2

10−1

ψ
(x

k
)
−
ψ
?

saga

adagrad

svrg

snspp

(a) mnist

0 20 40 60 80 100

Evaluations/N

10−7

10−6

10−5

10−4

10−3

10−2

10−1

ψ
(x

k
)
−
ψ
?

saga

adagrad

svrg

snspp

(b) gisette

0 10 20 30 40 50

Evaluations/N

10−7

10−6

10−5

10−4

10−3

10−2

10−1

ψ
(x

k
)
−
ψ
?

saga

adagrad

svrg

snspp

(c) sido0

0 1 2 3 4 5 6

Evaluations/N

10−7

10−6

10−5

10−4

10−3

10−2

10−1

ψ
(x

k
)
−
ψ
?

saga

adagrad

svrg

snspp

(d) covtype

Figure 3.6: Objective function convergence for the logistic regression datasets with respect to
number of gradient evaluations. All settings are identical to Fig. 3.3.

54 Chapter 3. A Semismooth Newton Stochastic Proximal Point Algorithm With Variance
Reduction

0 50 100 150 200 250 300

Runtime [sec]

10−7

10−6

10−5

10−4

10−3

10−2

10−1

ψ
(x

k
)
−
ψ
?

saga

adagrad

svrg

snspp

0 20 40 60 80 100 120 140

Evaluations/N

10−7

10−6

10−5

10−4

10−3

10−2

10−1

ψ
(x

k
)
−
ψ
?

saga

adagrad

svrg

snspp

Figure 3.7: Convergence plot for logistic regression on the madelon.2 dataset, with respect to
runtime (left) and number of gradient evaluations (right).

3.9 Extension: Additional Loss and Regularization Functions

This section can be seen as a collection of calculations and references for i) the Fenchel conjugate
of classical loss functions and ii) the proximal operator and its subdifferential for standard
regularization terms.

3.9.1 Loss Functions and their Conjugate

In this section, we consider classical loss functions from statistical learning and compute their
Fenchel conjugate. We denote the loss by ` : Rm → R, z 7→ `(z). It is important to note that
the argument z is the model output and not the vector of learnable parameters of the model.
We denote the targets/labels by y which are typically given as (integer) labels for classification
tasks or as real numbers for regression tasks. The general strategy will be to compute solutions
of the problem

`∗(z) = sup
u∈Rm

〈u, z〉 − `(u), z ∈ Rm. (3.45)

If ` is convex, then the above is a concave maximization problem and solutions can be character-
ized by the necessary and sufficient first-order optimality condition. We consider loss functions
for several tasks, namely regression and classification with two or more than two classes. For
motivating considerations on the presented loss functions we refer to standard textbooks of
statistical learning, e.g. [57].

For each loss function, we further check whether `∗ is strongly convex on its domain and essen-
tially differentiable as these properties are needed for convergence of the semismooth Newton
method presented in Algorithm 8.

Squared Loss. Given y ∈ Rm, consider

` : Rm → R, `(z) := ‖z − y‖2.
Clearly, ` is strongly convex and it holds

ū = arg max
u∈Rm

〈z, u〉 − `(u) ⇐⇒ z = ∇`(ū) = 2(ū− y) ⇐⇒ ū =
z

2
+ y.

3.9. Extension: Additional Loss and Regularization Functions 55

Plugging in ū into the objective of (3.45), we get

`∗(z) = 〈z, z
2

+ y〉 − ‖z
2

+ y − y‖2 = 1
4‖z‖2 + 〈y, z〉.

Moreover, it holds

∇`∗(z) =
z

2
+ y, ∇2`∗(z) = 1

2Idm.

As ∇2`∗(z) � 1
2 for all z, `∗ is strongly convex. Further, dom(`∗) = Rm, hence `∗ is essentially

differentiable.

Huber Loss. For µ > 0 and y ∈ R, the Huber loss is given by

` : R→ R, `(z) :=

{
(z−y)2

2µ |z − y| ≤ µ,
|z − y| − µ

2 else.

The derivative of the Huber loss is

`′(z) =

{
(z − y)/µ |z − y| ≤ µ,
sgn(z − y) else.

Again, consider

ū = arg max
u∈R

z · u− `(u) ⇐⇒
{
ū = µz + y |ū− y| ≤ µ,
sgn(ū− y) = z else.

From the first case, we get that ū = µz + y is a solution to (3.45) if |µz| ≤ µ ⇐⇒ |z| ≤ 1. The
second case implies that z = ±1 which we already covered in the first case, so we can disregard
it. Plugging in ū from the first case into the objective of (3.45), we obtain

`∗(z) =

{
z(µz + y)− µ2z2

2µ = 1
2µz

2 + yz |z| ≤ 1,

+∞ else.

For |z| < 1, the derivatives are given by

(`∗)′(z) = µz + y, (`∗)′′(z) = µ.

For |z| < 1, |z| → 1, we have |(`∗)′(z)| 6→ ∞, hence `∗ is not essentially differentiable. It is
strongly convex on (−1, 1) as µ > 0.

Pseudo-Huber Loss. For µ > 0 and y ∈ R, the pseudo-Huber loss [44] is given by

` : R→ R, z 7→
√
µ2 + (z − y)2 − µ.

In contrast to the Huber loss, the above is arbitrarily often differentiable and `′(z) = z−y√
µ2+(z−y)2

.

For details we refer to [44]. For given z ∈ R, it holds

ū = arg max
u∈R

z · u− `(u) ⇐⇒ z − `′(ū) = 0 ⇐⇒ z =
ū− y√

µ2 + (ū− y)2
. (3.46)

56 Chapter 3. A Semismooth Newton Stochastic Proximal Point Algorithm With Variance
Reduction

Squaring both sides in the last equality of (3.46) leads to the necessary condition

z2(µ2 + (ū− y)2) = (ū− y)2.

Simplifying the terms, we obtain a quadratic equation in ū with solutions y ± µ|z|√
1−z2 . From

(3.46) it follows that z and ū − y have the same sign. Therefore, (3.45) has a solution if and
only if z ∈ (−1, 1) and in this case, the solution is ū = y + µz√

1−z2 . Plugging in this ū into the

objective of (3.45) yields

`∗(z) =

{
yz + µz2−µ√

1−z2 + µ = yz + µ− µ
√

1− z2 |z| < 1,

+∞ else.

For |z| < 1, the derivatives are given by

(`∗)′(z) = y +
µz√

1− z2
, (`∗)′′(z) =

µ

(1− z2)3/2
.

For the psuedo-Huber loss, `∗ is essentially differentiable as well as strongly convex on (−1, 1).

Logistic Loss. For two-class classification, where the label is given by y ∈ {−1, 1}, the logistic
loss5 is defined as

` : R→ R, `(z) := ln(1 + exp(−yz)).

The derivative is `′(z) = −y exp(−yz)
1+exp(−yz) = −y

1+exp(yz) and we have

ū = arg max
u∈R

z · u− `(u) ⇐⇒ z
(
1 + exp(yū)

)
= −y.

Using y = 1/y, if z 6= 0 we compute ū = y ln(−y−zz). Further, if z = 0 or −y−zz ≤ 0 ⇐⇒ −y
z ≤ 1

then (3.45) has no solution. Plugging in ū into the objective of (3.45), we get

`∗(z) =

{
yz ln(−y−zz) + ln(y+z

y) −y
z > 1 ∧ z 6= 0,

+∞ else.

Note that the domain of `∗ is equal to (−1, 0) if y = 1 and (0, 1) if y = −1. Computing the
derivative (or using Danskin’s theorem), we conclude that, for −y

z > 1, we have

(`∗)′(z) = y ln
(−y − z

z

)
, (`∗)′′(z) = − 1

z(y + z)
.

One can easily verify that (`∗)′′(z) ≥ 4 for all z such that −y
z > 1 and hence `∗ is strongly convex

on its domain. Further, it is easy to see that |(`∗)′(z)| → ∞ if z approaches the boundary of
dom(`∗); hence `∗ is essentially differentiable.

Squared Hinge Loss. For y ∈ {−1, 1}, consider

` : R→ R, `(z) := max{0, 1− yz}2.
5In Pytorch, this loss function is implemented in torch.nn.SoftMarginLoss.

3.9. Extension: Additional Loss and Regularization Functions 57

It is easy to verify that ` is convex and continuously differentiable. It holds `′(z) = 2y(yz −
1)1yz≤1. As y2 = 1, we have

ū = arg max
u∈R

z · u− `(u) ⇐⇒ z − `′(ū) = 0 ⇐⇒ 0 =

{
2(y − ū) + z yū ≤ 1,

z yū > 1.

From the first case, ū = z
2 + y is a solution to (3.45) if yū = 1 + yz

2 ≤ 1 ⇐⇒ yz ≤ 0. The
second case does not yield new solutions as the first case includes z = 0. In the first case, we
have 1− yū = −yz

2 ≥ 0. Plugging in this ū into the objective of (3.45) yields

`∗(z) =

{
z2

4 + yz yz ≤ 0,

+∞ else.

Hence the domain of `∗ is given by [0,∞) if y = −1 and (−∞, 0] if y = 1. For z ∈ int(dom(`∗)),
the derivatives of the Fenchel conjugate are given by

(`∗)′(z) = y + z/2, (`∗)′′(z) =
1

2
.

The soft-margin loss conjugate is strongly convex on its domain, but not essentially differentiable
(e.g. let zj → 0, then |(`∗)′(zj)| → 1).

Cross Entropy. For Multi-class classification, the task is to predict the correct out of K classes,
i.e. the label is given as y ∈ {1, . . . ,K}. Given a vector of scores z ∈ RK , a standard approach is

to model the probability that the predicted class is k with exp(zk)∑K
j=1 exp(zj)

. Computing the negative

log-likelihood, we obtain the loss function

` : RK → R, `(z) := − ln
exp(zy)∑K
j=1 exp(zj)

= −zy + ln

K∑

j=1

exp(zj). (3.47)

The above is called cross entropy loss.6 We remark that it is invariant under addition of a
constant, i.e. `(z + c1K) = `(z) for any c ∈ R. Further, ` is related to the conjugate function of
the negative entropy on the unit simplex and hence convex [9, Thm. 4.3, Sec. 4.4.11].

Computing ∇`(z) =
(∑K

j=1 exp(zj)
)−1 (

exp(z1), . . . , exp(zK)
)> − ey, we have

ū = arg max
u∈RK

〈u, z〉 − `(u) ⇐⇒ exp(ūl)∑K
j=1 exp(ūj)

=

{
zl + 1 l = y,

zl else.
(3.48)

Summing on both sides, this implies 1+
∑K

l=1 zl = 1 ⇐⇒ ∑K
l=1 zl = 0. Further, exp(ūl)∑K

j=1 exp(ūj)
> 0

implies zl > −1 if l = y and zl > 0 else. Denote

M(y) :=



z ∈ RK

∣∣∣∣∣zl
{
> −1 if l = y

> 0 else
,
K∑

j=1

zj = 0



 .

Now, assume z ∈M(y). Then, (3.48) is satisfied for ūl = ln(zl + 1) if y = l and ūl = ln(zl) else.
This shows that the domain of `∗ is equal to M(y) which is not an open set. Hence, it is not

6See for example torch.nn.CrossEntropyLoss in Pytorch.

58 Chapter 3. A Semismooth Newton Stochastic Proximal Point Algorithm With Variance
Reduction

well suited for the semismooth Newton approach. We will develop an alternative in the next
paragraph.

For the sake of completeness, we compute also `∗: plugging in the derived ū into (3.45), we
obtain

`∗(z) =

{
(1 + zy) ln(1 + zy) +

∑
l 6=y zl ln(zl), z ∈M(y),

+∞ else.

Reduced Cross Entropy. Again, consider K classes and y ∈ {1, . . . ,K}. We have seen that
the cross entropy loss is invariant to adding a constant. Hence, we can subtract from every
component of the score vector z the last entry of z without loss of generality. This results in
the score vector having a zero in the last component and effectively reducing the dimension by
one. Thus, defining zy := 0 if y = K, consider

` : RK−1 → R, `(z) := −zy + ln


1 +

K−1∑

j=1

exp(zj)


 .

This loss is used for example in multiclass logistic regression [58, Sec. 3.3] and we will call it
reduced cross entropy. It holds

w :=

{
ey if y ∈ [K − 1],

0 else,
∇`(z) = −w +

(exp(z1), . . . , exp(zK−1))>

1 +
∑K−1

j=1 exp(zj)
.

As the reduced cross entropy ` is equal to the cross entropy on the set of K-dimensional vectors
where the last entry is zero, it is convex. Hence, for y ∈ [K] and z ∈ RK−1 given, it holds

ū = arg max
u∈RK−1

〈z, u〉 − `(u)

⇐⇒ z + w − (exp(ū1), . . . , exp(ūK−1))>

1 +
∑K−1

j=1 exp(ūj)
= 0

⇐⇒ 1

1 +
∑K−1

j=1 exp(ūj)
exp(ūl) =

{
zl + 1 y = l, y ∈ [K − 1],

zl else.
(3.49)

A necessary condition for the above system to have a solution ū is that zl > −1 if y = l, y ∈
[K − 1] and zl > 0 else. Moreover, as the sum of the left-hand side is smaller than one, this
implies

∑K−1
j=1 zj < 0 if y ∈ [K − 1] and

∑K−1
j=1 zj < 1 if y = K. We summarize these conditions

with

M(y) :=



z ∈ RK−1

∣∣∣∣∣zl
{
> −1 if y = l, y ∈ [K − 1]

> 0 else
,

K−1∑

j=1

zj

{
< 0 if y ∈ [K − 1]

< 1 if y = K



 .

Assume for the following that z ∈M(y). Summing over l on both sides of (3.49), we obtain

∑K−1
l=1 exp(ūl)

1 +
∑K−1

l=1 exp(ūl)
= 1y∈[K−1] +

K−1∑

l=1

zl.

Using x
1+x = c ⇐⇒ x = c

1−c and denoting z̄ :=
∑K−1

l=1 zl, we conclude

K−1∑

l=1

exp(ūl) =
1y∈[K−1] + z̄

1y=K − z̄
=: cy,z. (3.50)

3.9. Extension: Additional Loss and Regularization Functions 59

Plugging in (3.50) into (3.49), we obtain

exp(ūl) = (1 + cy,z)

{
zl + 1 y = l, y ∈ [K − 1],

zl else.

⇐⇒ ūl =

{
ln
(
(1 + cy,z)(zl + 1)

)
y = l, y ∈ [K − 1],

ln
(
(1 + cy,z)(zl)

)
else.

(3.51)

Our derivation shows that this is the unique solution to (3.49) and hence Danskin’s theorem
implies that ∇(`∗)(z) = ū if z ∈ M(y). Moreover, the domain of `∗ is given by M(y). We will
now compute `∗ and ∇2(`∗) with case distinction:

y ∈ [K− 1]: Plugging in ū from (3.51) into the objective of (3.45), we obtain

`∗(z) =
∑

l 6=y
zl ln(−zl

z̄
) + (1 + zy) ln(−1 + zy

z̄
) + ln(−z̄),

where we used that 1 + cy,z = −1
z̄ in this case. Again from (3.51), using that ln(a/b) =

ln(a)− ln(b), we compute the Hessian

∇2`∗(z) = diag({vl}l=1,...,K−1)− 1

z̄
1K−11

>
K−1, vl =

{
1/(zl + 1) y = l,

1/zl else.

As z ∈ M(y), we have ∇2`∗(z) � 1. Note that if z̄ → 0−, then cy,z → ∞. As z̄ → 0− and all
zl → 0, zy → −1 can not happen simultaneously, we conclude ‖∇(`∗)(z)‖ → ∞, if z approaches
the boundary of M(y).

y = K: Plugging in ū from (3.51) into the objective of (3.45), we obtain

`∗(z) =
K−1∑

l=1

zl ln(
zl

1− z̄) + ln(1− z̄),

where we used that 1 + cy,z = 1
1−z̄ in this case. Using ln(a/b) = ln(a) − ln(b), we compute the

Hessian

∇2`∗(z) = diag((z−1
l)l=1,...,K−1) +

1

1− z̄1K−11
>
K−1.

As z ∈ M(y), we have ∇2`∗(z) � 1. Again, if z̄ → 1, then cy,z → ∞. As z̄ → 1 and all zl → 0
can not happen simultaneously, we conclude ‖∇(`∗)(z)‖ → ∞, if z approaches the boundary of
M(y).

In conclusion, `∗ is strongly convex on its domain, and essentially differentiable.

3.9.2 Regularization Functions

In this section we consider classical regularization functions ϕ : Rn → R used in statistical learn-
ing. Typically, these are used to avoid overfitting or to bias the solution towards a prior. One of
the most prominent examples is the `1-norm which is used in order to obtain sparse solutions.
It has been used for the Lasso [150], i.e. sparse regression, as well as in compressed sensing [31].

60 Chapter 3. A Semismooth Newton Stochastic Proximal Point Algorithm With Variance
Reduction

Again, we do not go into details here and refer instead to [57,58] for more background. We also
refer to [9, Sec. 6.9] for additional prox-computations.

The purpose of this section is to summarize the proximal operator and its Clarke subdiffer-
ential for several classical regularization functions. In fact, instead of stating the complete
set ∂proxαϕ(x), for our purposes it is sufficient to compute one element of the subdifferential.
Python implementations of most of the operators below can be found in [135].

Squared `2-norm. Let ϕ(x) = λ
2‖x‖2 for some λ > 0. The squared Euclidean norm has been

used in ridge regression [57] and is still among the most commonly used regularization techniques
in modern deep learning (where it is often referred to as weight decay [77]).

For α > 0, it is easy to compute

proxαϕ(x) =
1

1 + αλ
x, envαϕ(x) =

λ

2(1 + αλ)
‖x‖2 ∂proxαϕ(x) = { 1

1 + αλ
Id}.

`1- and `2-norm. Let ϕ(x) = λ‖x‖1 for some λ > 0. As this is multiplicative in λ we only
compute proxϕ instead of proxαϕ. We have (cf. [9, Sec. 6.9])

proxϕ(x) = sign(x)�max{|x| − λ1n, 0}, Diag(di)i=1,...,n ∈ ∂proxϕ(x),

where di = 1 if |xi| > λ and di = 0 else7.

Let ϕ(x) = λ‖x‖ for some λ > 0. According to [9, Sec. 6.9], it holds

proxϕ(x) =
(
1− λ

max{‖x‖, λ}
)
x = x− ProjBλ(0)(x),

where Bλ(0) is the λ-ball at 0. Due to [164, Rem. 3.1] we have Id− Σ ∈ ∂proxϕ(x) for

Σ =

{
λ
‖x‖ [Id− xx>

‖x‖2] if ‖x‖ > λ,

Id else.

For both `1- and `2-norm the proximal operator is strongly semismooth [164, Lem. 2.1]. Further,
for λ1, λ2 > 0, due to [164, Prop. 2.1] we have

proxλ1‖·‖1+λ2‖·‖(x) =
(
proxλ2‖·‖ ◦ proxλ1‖·‖1

)
(x).

Hence, the proximal operator of the sum can be computed by composition of the individual
proximal operators; this can be extended to settings where the `2-norm is computed over a
partition of the components of x [164]. Due to [153, Prop. 2.16], the proximal operator of the
sum is also strongly semismooth.

Total Variation. Let ϕ(x) = λ
∑n

i=2 |xi−xi−1| for some λ > 0. The proximal operator proxϕ(x)
is not known in closed form, but can be computed efficiently using Condat’s algorithm [23]. Using
a duality argument, one can even compute an element of ∂proxϕ(x) and extend the results to
the regularizer ϕ(x) = λ1‖x‖1 + λ2

∑n
i=2 |xi − xi−1| for λ1, λ2 > 0. As the derivations of these

formulas is rather technical, we refer to [85,135,163] for implementation details.

Due to ϕ being convex and piecewise affine, proxϕ is piecewise linear [126, Thm. 12.30] and thus
strongly semismooth.

7Setting di = 0 in the corner case |xi| = λ leads to a sparser matrix and helps to reduce computation in our
semismooth Newton method (cf. [84, Sec. 3.3]).

3.10. Extension: Prox-linear Algorithm 61

Indicator Functions. Let C ⊂ Rn be a nonempty, closed, convex set. Then, the proximal
operator of the indicator function is equal to the projection, i.e. prox1C (x) = ProjC(x), and in
particular the projection is unique [9, Thm. 6.25]. The projection for standard constraint sets
is given in [9, Sec. 6.4.6]. We refer to [86] for computing an element of the subdifferential of
ProjC(x), if C is a generalized matrix simplex.

3.10 Extension: Prox-linear Algorithm

When training machine learning models, the objective function is often the composition of two
functions: one of them, for a given input yin, computes a model output based on learnable param-
eters x (the variables to optimize for). We have called this function forwardx(·) in Section 2.1.
The second mapping computes the loss, as a function of the model output forwardx(yin) and a
desired output yout.8

For a training set of size N , we can formalize the loss function to be

f(x) :=
1

N

N∑

i=1

hi(ci(x)).

In the above, ci(x) denotes the function that produces a model output for the i-th input sample.
The loss function measuring the quality of the model output is denoted by hi. The dependence
on the index i for hi, ci is typically given via hi(z) = h(z; yout

i) and ci(x) = c(x; yin
i). However,

as (yin
i , y

out
i)i=1,...,N are a given training set, we will only denote the dependency on the variable

x. Adding a regularization function ϕ, we obtain the problem

min
x∈Rn

f(x) + ϕ(x), f(x) :=
1

N

N∑

i=1

hi(ci(x)). (3.52)

One important observation is that the network architecture only affects ci, while the loss function
hi is often simple: for example, the squared loss for regression or the cross entropy loss for
classification. In particular, for both examples hi is a convex function. It is the arbitrary choice
of ci, for example a multi-layer network with activation functions, which results in hi(ci(x))
being non-convex. This section discusses how this particular structure could be leveraged for
solving (3.52); the main technique will be similar to what has been discussed before for obtaining
a practical stochastic proximal point method.

Throughout this section, we consider problems of form (3.52) where we assume hi : Rm → R to
be convex and differentiable for some m ∈ N, and ci : Rn → Rm to be differentiable. We assume
that the Fenchel conjugate h∗i is twice continuously differentiable on int(dom(h∗i)). Further,
assume that ϕ : Rn → R is proper, closed, and convex. We use the convention ∇ci(x) ∈ Rn×m,
i.e. ∇ denotes the transposed Jacobian.

3.10.1 Background and Related Work

We start by introducing the (deterministic) prox-linear algorithm [26, 35]. Its core idea is to
compose hi with the linearization of ci around the current iterate and take a proximal step.
This is in contrast to gradient descent which would linearize hi(ci(·)) instead. In the following,

8What is used for yout depends on whether we train a supervised learning task or not.

62 Chapter 3. A Semismooth Newton Stochastic Proximal Point Algorithm With Variance
Reduction

consider that the current iterate x ∈ Rn is given and we want to compute the next iterate x+.
For simplicity, the iteration index is suppressed in the notation.

Let α > 0 denote the step size. The update of a (finite-sum) prox-linear algorithm is given
by

x+ = arg min
y∈Rn

1

N

N∑

i=1

hi

(
ci(x) +∇ci(x)>(y − x)

)
+ ϕ(y) +

1

2α
‖y − x‖2

= proxαϕ

(
x− α

N

N∑

i=1

∇ci(x)∇hi(ci(x) +∇ci(x)>(x+ − x))
)
.

In the stochastic setting, we can replace the full sum over i = 1, . . . , N with a mini-batch S, i.e.
a random tuple containing b elements of [N]. Let us introduce the map κ : [b] → [N] mapping
the index of the mini-batch to the index of the data point.

The mini-batch version of the update then becomes

x+ = proxαϕ

(
x− α

b

b∑

i=1

∇cκ(i)(x)∇hκ(i)(cκ(i)(x) +∇cκ(i)(x)>(x+ − x))
)
. (3.53)

The following section shows how to compute this implicit update efficiently. In essence, the
semismooth Newton framework developed in the previous section can be used in very similar
fashion for the prox-linear method.

Related work. The prox-linear method has been analyzed in [35,83], with its stochastic version
being considered in [26]. We refer to the introduction of [35] for further references on the history
of this method. A prox-linear method with variance reduction is analyzed in [162], with the
difference that the finite sum is inside the argument of the outer function.

Practical consideration for the prox-linear method on how to compute (3.53) have been proposed
in [131, 142]. Both of these works present very similar ideas to the ones here.9 Thus, we do
not consider the contents of this section to be particularly novel, but rather want to showcase
how to extend the ideas developed earlier. Specifically, [131] solves the prox-linear subproblem
(3.53) approximately with conjugate gradient (in the dual, similar to what we propose below)
and obtain promising numerical performance.

3.10.2 Algorithmic Framework

The update (3.53) can be transformed into a dual subproblem, as we show next. We will then
consider important special cases where solving the subproblem can be simplified. Using Fenchel
duality [9, Thm. 4.20], we introduce for i = 1, . . . , b the variable

ξi := ∇hκ(i)

(
cκ(i)(x) +∇cκ(i)(x)>(x+ − x)

)
⇐⇒ ∇h∗κ(i)(ξi) = cκ(i)(x) +∇cκ(i)(x)>(x+ − x).

Therefore, for b ∈ [N], solve

x+ = proxαϕ

(
x− α

b

b∑

i=1

∇cκ(i)(x)ξi

)
, (3.54)

∇h∗κ(i)(ξi) = cκ(i)(x) +∇cκ(i)(x)>(x+ − x), i = 1, . . . , b. (3.55)

9 [142] appeared on arxiv shortly after our work [98], [131] was posted over one year later. However, the
contents of this section are unpublished work and were not part of [98], even though the central idea is essentially
the same.

3.10. Extension: Prox-linear Algorithm 63

For ξ = (ξ1, . . . , ξb)
>, ξi ∈ Rm, we introduce the linear operator

C : Rb×m → Rn, C[ξ] :=
1

b

b∑

i=1

∇cκ(i)(x)ξi.

Note that in the case of m = 1 the operator C can be represented by a n× b matrix. Plugging
in (3.54) into (3.55), we obtain the following system of nonlinear equations

V(ξ) =
(
V1(ξ), . . . ,Vb(ξ)

)
= 0,

Vi(ξ) := ∇h∗κ(i)(ξi)− cκ(i)(x)−∇cκ(i)(x)>
(
proxαϕ(x− αC[ξ])− x

)
.

(3.56)

We aim to solve (3.56) with a globalized semismooth Newton method. An element of the Clarke
subdifferential W ∈ ∂V(ξ) is given by

W = diag
(
(∇2h∗κ(i)(ξi))i=1,...,b

)
+
α

b
Λ,

Λij = ∇cκ(i)(x)>U∇cκ(j)(x), U ∈ ∂proxαϕ(x− αC[ξ]), i, j = 1, . . . , b.

Moreover, the (semismooth) Newton method can be globalized using Armijo line search, by the
following observation: using that

∇envαϕ(y) = y − proxαϕ(y) =⇒ proxαϕ(y) = ∇
[1
2
‖y‖2 − envαϕ(y)

]
,

we have that V(ξ) = ∇U(ξ) for

U(ξ) :=
b∑

i=1

h∗κ(i)(ξi)−
b∑

i=1

〈cκ(i)(x), ξi〉

+
b

2α

(
‖x− αC[ξ]‖2 − 2envαϕ(x− αC[ξ])

)
+

b∑

i=1

〈∇cκ(i)(x)>x, ξi〉.
(3.57)

Altogether, solving (3.56) is equivalent to finding a stationary point of U . Under appropriate
assumptions on h∗i , U can be guaranteed to be strongly convex, and convergence theory for the
semismooth Newton scheme can be derived similar to Section 3.4.

Easy updates. Next, we consider the system of equations (3.54)–(3.55) for the following sim-
plified setting:

i) Loss function hi(z) = ‖z − yout
i ‖2, where yout

i ∈ Rm,

ii) squared `2-regularization ϕ(x) = λ
2‖x‖2 for some λ ≥ 0.

Note that this does not make any restrictions to the model architecture (encoded in ci) except
for the loss on the outputs of the final layer. Clearly, hi is strongly convex and it is easy to
compute h∗i (z) = 1

4‖z‖2 + 〈z, yout
i 〉 and ∇h∗i (z) = 1

2z + yout
i . Further, it holds

proxαϕ(x) =
1

1 + αλ
x, envαϕ(x) =

αλ

2(1 + αλ)
‖x‖2, ∂proxαϕ(x) = { 1

1 + αλ
Id}.

We will show that in this simplified setting, (3.56) is a linear system of equations. Plugging in
∇h∗i and proxαϕ, we get

64 Chapter 3. A Semismooth Newton Stochastic Proximal Point Algorithm With Variance
Reduction

Vi(ξ) =
1

2
ξi + yout

κ(i) − cκ(i)(x)−∇cκ(i)(x)>
(1

1 + αλ
(x− αC[ξ])− x

)

=
1

2
ξi + yout

κ(i) − cκ(i)(x) +
αλ

1 + αλ
∇cκ(i)(x)>x+

α

1 + αλ
∇cκ(i)(x)>C[ξ].

(3.58)

Plugging in C[ξ] and rearranging we obtain

Vi(ξ) = 0 ⇐⇒
1

2
ξi +

α

b(1 + αλ)

b∑

j=1

∇cκ(i)(x)>∇cκ(j)(x)ξj = cκ(i)(x)− yout
κ(i) −

αλ

1 + αλ
∇cκ(i)(x)>x.

(3.59)

Clearly, solving V(ξ) = (V1(ξ), . . . ,Vb(ξ)) = 0 is a linear system of equations in ξ. It can be seen
that the linear operator applied to ξ is positive definite and self-adjoint; hence, we can solve
(3.59) with efficient methods such as conjugate gradient.

Closed-form updates. If b = 1, m = 1, and in the setting above, we can compute ξ in
closed form. This assumption is of course very restrictive, but it serves to illustrate the update
formula. In this case, as b = 1, we can simplify notation to κ(i) → i and ξi → ξ ∈ R. Further,
C[ξ] = ∇ci(x)ξ. Equation (3.58) becomes

1

2
ξ + yout

i − ci(x) +
αλ

1 + αλ
∇ci(x)>x+

α

1 + αλ
‖∇ci(x)‖2ξ = 0

⇐⇒ ξ = (
1

2
+

α

1 + αλ
‖∇ci(x)‖2)−1

[
ci(x)− yout

i − αλ

1 + αλ
∇ci(x)>x

]
.

Consequently, plugging ξ into (3.54), we have the update

x+ =
1

1 + αλ

[
x− α

ci(x)− yout
i − αλ

1+αλ∇ci(x)>x
1
2 + α

1+αλ‖∇ci(x)‖2 ∇ci(x)
]
. (3.60)

3.11 Conclusions and Open Questions

In this chapter, we present SNSPP, a variance-reduced stochastic proximal point method, using
a semismooth Newton method to solve the subproblem in each update step. Most importantly,
this is the first practical SPP method that can handle mini-batching, (nonsmooth) regularization
terms and is implementable for many classical loss functions, including least squares, the logistic
loss or a Student-t likelihood loss.

Further, SNSPP is novel in combining SPP with variance reduction and obtaining improved rates
for constant step sizes for the weakly and strongly convex case, similar to the results of SVRG.
Our experiments show that our proposed algorithm is competitive with SAGA and SVRG, and
can be much better for problem instances where the dimension is large. Similar to what has
been observed for SPP versus SGD without variance reduction, SNSPP is less sensitive to step-size
choice than its variance-reduced stochastic proximal gradient competitors.

SNSPP employs the same variance reduction scheme as SVRG, computing the full gradient every
once in a while. We have not covered other variance reduction schemes (for example the one of

3.11. Conclusions and Open Questions 65

SAGA), but it is clear how they can be immediately incorporated into the framework of SNSPP.
However, for the theoretical results this change would necessitate different proof strategies.

While SNSPP is mostly designed for problems with generalized linear models, we have shown
in Section 3.10 how the underlying idea can be extended to a more general composite problem
structure. Investigating the theoretical and empirical performance of this method ı́s left for
future work.

66 Chapter 3. A Semismooth Newton Stochastic Proximal Point Algorithm With Variance
Reduction

Chapter 4

A Stochastic Proximal Polyak Step Size

The chapter is mainly based on the article

[132] F. Schaipp, R. M. Gower, and M. Ulbrich, A Stochastic Proximal Polyak Step Size,
Transactions on Machine Learning Research, (2023), https://openreview.net/forum?
id=jWr41htaB3.

4.1 Introduction

When training machine learning models, a commonly known problem is how to select the step
size (or learning rate). Not only does the practitioner need to choose the value of the learning
rate, but also a schedule, meaning that the learning rate in general can change over the course
of training. To complicate this matter even further, it has been shown in [137] that the benefit
of learning rate schedules depends on the specific problem and optimization method, and while
selecting a schedule helps on average, it can also lead to worse results for specific instances. The
same study [137] concludes that picking an optimizer and tuning its hyperparameters performs
equally well as compared to choosing the best among a set of optimization methods in their
default setting.

Designing optimization methods that select the learning rate on the fly, for example based on the
current progress in terms of loss function or gradient, could overcome these issues and reduce the
need for tuning, or alternatively in light of [137], lead to better performance in default setting.
We will refer to such techniques in the following as adaptive learning rates.1

A general principle in optimization is that methods which exploit the problem structure at
hand are usually superior. However, widely used methods, such as SGD or Adam, do not fully
make use of the inherent structure in deep learning. On the one hand, deep learning models
can approximately interpolate the training data (i.e. reach a loss of zero) while generalizing
well [51, 91]. In such situations, an a priori estimate of the optimal value of the underlying
problem is available. Even the simpler fact that loss functions are typically non-negative, yielding
a lower bound of the objective, is not used in SGD or Adam.

On the other hand, the stochastic loss function value computed at the current iterate is usually
available at no extra cost but not used for training. This is due to the fact that in frameworks

1This is not to be confused with the notion of adaptivity for Adam or Adagrad, introduced in Section 2.6, where
the learning rate is adapted to each coordinate.

67

https://openreview.net/forum?id=jWr41htaB3
https://openreview.net/forum?id=jWr41htaB3

68 Chapter 4. A Stochastic Proximal Polyak Step Size

such as Pytorch, gradients are computed with backpropagation after a forward pass. Both the
current function value and optimal value are employed in the famously known Polyak step size
[117], proposed for the subgradient method in 1987. In recent years, several works [6,10,59,88]
developed adaptive learning rate mechanisms for stochastic optimization reminiscent of Polyak’s
work.

An open question in this line of research is how to deal with additional objective function terms,
such as regularization, for adaptive learning rates. This is important precisely because additional
terms change the objective and its optimal value and these quantities are used for Polyak-type
methods.

One of the most established regularization in deep learning is using the squared `2-norm (also
called weight decay) in order to improve generalization [89]. To give a non-extensive list of
examples, weight decay has been used for training the large language model GPT-3 [18], for the
vision transformer ViT [32], or Google’s weather forecasting model MetNet2 [40].

The subject matter of this chapter is to propose a stochastic Polyak step size for regularized
problems. Our solution handles regularization in a proximal fashion instead of interpreting it
as an additional loss function term. We will state convergence theory for general regularization
terms, and show that the proposed method can be implemented easily for squared `2-norm
regularization. Our experiments substantiate that stochastic Polyak step sizes indeed reduce
the tuning effort as hypothesized above – but it matters how to handle regularization, and the
proximal way we propose typically works better.

Problem setup. In this chapter, we consider problems of the form (P), namely

min
x∈Rn

ψ(x), ψ(x) := f(x) + ϕ(x).

Here, f is again given via (2.1), i.e. f(x) = E[f(x;S)], where f(·; s) : Rn → R is locally Lipschitz
for all s ∈ S and ϕ : Rn → R is a proper, closed, and convex regularization function. An
important special case will be the unregularized problem, when ϕ = 0, given by

min
x∈Rn

f(x), f(x) = E[f(x;S)]. (4.1)

Throughout this chapter, we assume that Assumption 1 holds true. It is clear from the above that
Polyak step sizes are only useful in situations where we know or can estimate the optimal value,
or (as it will turn out) a lower bound thereof. As a result, we make the following assumption
throughout the entire chapter.

Assumption 8. For every s ∈ S, infx f(x; s) is finite and there exists C(s) satisfying C(s) ≤
infx f(x; s).

In many machine learning applications, the loss functions f(·; s) are non-negative and thus
C(s) = 0 is an appropriate choice. We also make the technical assumption that whenever we
select g ∈ ∂f(x; s) and C(s), this selection is measurable with respect to P (s), the associated
probability measure of S.

4.2. Background and Contributions 69

4.2 Background and Contributions

Polyak step size. For minimizing a convex, possibly non-differentiable function f , Polyak
proposed in [117, Chapter 5.3] the step size

xk+1 = xk − αkgk, αk =
f(xk)−min f

‖gk‖2
, gk ∈ ∂f(xk) \ {0}.

This particular choice of αk, requiring the knowledge of min f , has been subsequently called the
Polyak step size for the subgradient method. Recently, [10,88,109] adapted the Polyak step size
to the stochastic setting: consider the (ER) case and assume that each fi is differentiable and
that a lower bound C(si) ≤ infx fi(x) is known for all i ∈ [N]. The method proposed by [88]
is

xk+1 = xk −min
{
γb,

fik(xk)− C(Sik)

c‖∇fik(xk)‖2
}
∇fik(xk), (SPSmax)

with hyper-parameters c, γb > 0 and where in each iteration ik is drawn from {1, . . . , N}
uniformly at random. It is important to note that the initial work [88] used C(si) = inf fi;
later, [109] established theory for SPSmax for the more general case of C(si) ≤ infx fi(x) and
allowing for mini-batching. Other works analyzed the Polyak step size in the convex, smooth set-
ting [59] and in the convex, smooth and stochastic setting [118]. Further, the stochastic Polyak
step size is closely related to stochastic model-based proximal point [6] as well as stochastic
bundle methods [111].

Contribution. We propose a proximal version of the stochastic Polyak step size, called ProxSPS,
which explicitly handles regularization functions. Our proposal is based crucially on the fact that
the stochastic Polyak step size can be motivated with stochastic proximal point for a truncated
linear model of the objective function (we explain this in detail in Section 4.3). Our method
has closed-form updates for squared `2-regularization. We provide theoretical guarantees for
ProxSPS for any closed, proper, and convex regularization function (including indicator functions
for constraints). Our main results, Theorem 4.7 and Theorem 4.8, also give new insights for
SPSmax, in particular showing exact convergence for convex and non-convex settings.

Lower bounds and regularization. Methods such as SPSmax need to estimate a lower bound
C(s) for each loss function f(·; s). Though infx f(x; s) can be precomputed in some restricted
settings, in practice the lower bound C(s) = 0 is used for non-negative loss functions.2 The
tightness of the choice C(s) is further reflected in the constant σ2 := min f − E[C(S)], which
affects the convergence guarantees of SPSmax [109].

Contribution. For regularized problems (P) and if ϕ is differentiable, the current proposal of
SPSmax would add ϕ to every loss function f(·; s). In this case, for non-negative regularization
terms, such as the squared `2-norm, the lower bound C(s) = 0 is always loose. Indeed, if ϕ ≥ 0,
then infx∈Rn(f(x; s) + ϕ(x)) ≥ infx∈Rn f(x; s) and this inequality is strict in most practical
scenarios. For our proposed method ProxSPS, we now need only estimate a lower bound for the
loss f(x; s) and not for the composite function f(x; s) + ϕ(x). Further, ProxSPS decouples the
adaptive step size for the gradient of the loss from the regularization (we explain this in detail
in Section 4.4.1 and Fig. 4.1).

Proximal and adaptive methods. The question on how to handle regularization terms has
also been posed for other families of adaptive methods. For Adam [74] with `2-regularization it has

2See for instance https://github.com/IssamLaradji/sps.

https://github.com/IssamLaradji/sps

70 Chapter 4. A Stochastic Proximal Polyak Step Size

been observed that it generalizes worse and is harder to tune than AdamW [89] which uses weight
decay. Further, AdamW can be seen as an approximation to a proximal version of Adam [169].3

On the other hand, [88] showed that – without regularization – default hyperparameter settings
for SPSmax give very encouraging results on matrix factorization and image classification tasks.
This is promising since it suggests that SPSmax is an adaptive method, and can work well across
varied tasks without the need for extensive hyperparameter tuning.

Contribution. We show that by handling `2-regularization using a proximal step, our resulting
ProxSPS is less sensitive to hyperparameter choice as compared to SPSmax. This becomes ap-
parent in matrix factorization problems, where ProxSPS converges for a much wider range of
regularization parameters and learning rates, while SPSmax is more sensitive to these settings.
We also show similar results for image classification over the CIFAR10 and Imagenet32 dataset
when using a ResNet model, where, compared to AdamW, our method is less sensitive with respect
to the regularization parameter.

The remainder of our paper is organized as follows: we will first recall how the stochastic Polyak
step size, in the case of ϕ = 0, can be derived using the model-based approach of [6,26] and how
this is connected to SPSmax. We then derive ProxSPS based on the connection to model-based
methods, and present our theoretical results, based on the proof techniques in [26].

4.3 A Model-based Viewpoint for the Unregularized Case

In this section, consider problems of form (4.1), i.e. the regularization term ϕ is zero. Let
us recall some important insights from Section 2.7: for solving (4.1), model-based stochastic
proximal point in each iteration constructs a model fx(·; s) approximating f(·; s) locally around
x. With Sk ∼ P being drawn at random, the update is computed as

xk+1 = arg min
y∈Rn

fxk(y;Sk) +
1

2αk
‖y − xk‖2. (4.2)

We have shown in Section 2.7 that for the linear model, fx(y; s) = f(x; s) + 〈g, y − x〉 where
g ∈ ∂f(x; s), update (4.2) is equal to SGD.

For the truncated model, fx(y; s) = max{f(x; s) + 〈g, y − x〉, C(s)} where g ∈ ∂f(x; s) and
C(s) ≤ infz∈Rn f(z; s), (4.2) results in the update

xk+1 = xk −min
{
αk,

f(xk;Sk)− C(Sk)

‖gk‖2
}
gk, gk ∈ ∂f(xk, Sk). (4.3)

A proof for this statement is given in Lemma 4.11; the complete method is stated in Algorithm 9.
This inherent connection between the truncated model and the stochastic Polyak step size (SPS)
is not a new insight and has been pointed out in several works (including [6, 88] and [10, Prop.
1]). Regarding the name SPS, it should be pointed out that this acronym (and variations of
it) have been used for stochastic Polyak-type methods in slightly different ways [51, 88]. For
instance consider again the SPSmax method

xk+1 = xk −min
{
γb,

fik(xk)− C(sik)

c‖∇fik(xk)‖2
}
∇fik(xk), (SPSmax)

3For SGD treating `2-regularization as a part of the loss can be seen to be equivalent to its proximal version
(cf. Section 4.8.5).

4.4. The Regularized Case 71

Algorithm 9 SPS

Require: x0 ∈ Rn, step sizes αk > 0.
1: for k = 0, 1, 2, . . . ,K − 1 do
2: Sample Sk and set Ck := C(Sk).
3: Choose gk ∈ ∂f(xk;Sk). If gk = 0, set xk+1 = xk. Otherwise, set

xk+1 = xk − γkgk, γk = min
{
αk,

f(xk;Sk)− Ck
‖gk‖2

}
. (4.4)

4: end for
5: return xK

where c, γb > 0. Clearly, for c = 1 and αk = γb, update (4.4) is identical to SPSmax. With this
in mind, we can interpret the hyperparameter γb in SPSmax simply as a step size for the model-
based stochastic proximal point step. For the parameter c on the other hand, the model-based
approach motivates the choice c = 1. In this article, we will focus on this natural choice c = 1
which also reduces the amount of hyperparameter tuning. However, we should point out that,
in the strongly convex case, c = 1/2 gives the best rate of convergence in [88].

4.4 The Regularized Case

Now we consider regularized problems of the form (P), i.e.

min
x∈Rn

ψ(x), ψ(x) = f(x) + ϕ(x),

where ϕ : Rn → R ∪ {∞} is a proper, closed, λ-strongly convex function for λ ≥ 0 (we allow
λ = 0). For s ∈ S, denote by ψx(·; s) a stochastic model of the objective ψ at x. We aim to
analyze algorithms with the update

xk+1 = arg min
x∈Rn

ψxk(x;Sk) +
1

2αk
‖x− xk‖2, (4.5)

where Sk ∼ P and αk > 0. Naively, if we know a lower bound C̃(s) of f(·; s)+ϕ(·), the truncated
model could be constructed for the function f(x; s) + ϕ(x), resulting in

ψx(y; s) = max{f(x; s) + ϕ(x) + 〈g + u, y − x〉, C̃(s)}, g ∈ ∂f(x; s), u ∈ ∂ϕ(x). (4.6)

In fact, [6] and [88] work in the setting of unregularized problems and hence their approaches
would handle regularization in this way. What we propose instead, is to only truncate a lin-
earization of the loss f(x; s), yielding the model

ψx(y; s) = fx(y; s) + ϕ(y), fx(y; s) = max{f(x; s) + 〈g, y − x〉, C(s)}, g ∈ ∂f(x; s). (4.7)

Solving (4.5) with the model in (4.7) results in

xk+1 = arg min
y∈Rn

max{f(xk;Sk) + 〈gk, y − xk〉, C(Sk)}+ ϕ(y) +
1

2αk
‖y − xk‖2. (4.8)

The resulting model-based stochastic proximal point method is given in Algorithm 10 4. Lemma 4.12
shows that, if proxϕ is known, update (4.8) can be computed by minimizing a strongly convex

4For ϕ = 0, Algorithm 10 is identical to Algorithm 9.

72 Chapter 4. A Stochastic Proximal Polyak Step Size

−6 −4 −2 0 2 4 6
−1

0

1

2

3

4

5

6

x0

x?
x̂1

x1

f(x; s) = ln(1 + exp(−0.5 · x)), α = 10.0, λ = 0.1

f(·; s) + ϕ

ProxSPS model

SPS model

ProxSPS objective

SPS objective

(a) Regularized logistic loss.

−2 0 2
−3

−2

−1

0

1

2

3
ProxSPS

−2 0 2
−3

−2

−1

0

1

2

3
SPS

(b) Regularized squared loss with αk = 1, λ = 1.

Figure 4.1: a) SPS refers to model (4.6) whereas ProxSPS refers to (4.7). We plot the correspond-
ing model ψx0(y; s) and the objective function of (4.5). x1 (resp. x̂1) denotes the new iterate
for ProxSPS (resp. SPS), x? is the minimizer of f(·; s) + ϕ. b) Streamlines of the vector field
V (xk) := xk+1 − xk, for f(x) = ‖Ax− b‖2 and for the deterministic update, i.e. f(x; s) = f(x).
ProxSPS refers to update (4.11) and SPS refers to (4.10). The circle marks the minimizer of
f(x) + λ

2‖x‖2.

function over a compact one-dimensional interval. The relation to the proximal operator of ϕ
motivates the name ProxSPS. Further, the ProxSPS update (4.8) has a closed form solution when
ϕ is the squared `2-norm, as we detail in the next section.

Algorithm 10 ProxSPS

Require: x0 ∈ Rn, step sizes αk > 0.
1: for k = 0, 1, 2, . . . ,K − 1 do
2: Sample Sk and set Ck := C(Sk).
3: Choose gk ∈ ∂f(xk;Sk). Update xk+1 according to (4.8).
4: end for
5: return xK

4.4.1 The Special Case of `2-regularization

When ϕ(x) = λ
2‖x‖2 for some λ > 0, ProxSPS (4.8) has a closed form solution as we show next

in Lemma 4.1. For this lemma, recall that the proximal operator of ϕ(x) = λ
2‖x‖2 is given by

proxαϕ(x) = 1
1+αλx for all α > 0, x ∈ Rn.

Lemma 4.1. Let ϕ(x) = λ
2‖x‖2 and let g ∈ ∂f(x; s) and C(s) ≤ infz∈Rn f(z; s) hold for all

s ∈ S. For ψx(y; s) = fx(y; s) + ϕ(y) with fx(y; s) = max{f(x; s) + 〈g, y − x〉, C(s)} consider
update (4.8), i.e.

xk+1 = arg min
y∈Rn

ψxk(y;Sk) +
1

2αk
‖y − xk‖2.

4.4. The Regularized Case 73

Denote Ck := C(Sk) and let gk ∈ ∂f(xk;Sk). Define

τ+
k :=





0 if gk = 0,

min

{
αk,
(

(1+αkλ)(f(xk;Sk)−Ck)−αkλ〈gk,xk〉
‖gk‖2

)
+

}
else.

Update (4.8) is given by

xk+1 =
1

1 + αkλ

(
xk − τ+

k gk

)
= proxαkϕ(xk − τ+

k gk). (4.9)

Proof. Rearrange to fx(y; s) =
(
f(x; s)−C(s) + 〈g, y−x〉

)
+

+C(s) and drop the constant term

C(Sk) in the objective of (4.8). We can apply Lemma 4.10 with c ← f(xk;Sk) − C(Sk), a ←
gk, y0 ← xk, β ← αk and D← Idn. The statement follows from (4.32) with τ+

k ← τ .

Remark 4. In the published version [132], we provide a more direct proof for the above lemma.

The update (4.9) can be naturally decomposed into two steps, one stochastic gradient step with
an adaptive stepsize, that is x̄k+1 = xk−τ+

k gk followed by a proximal step xk+1 = proxαkϕ(x̄k+1).

This decoupling into two steps, makes it easier to interpret the effect of each step, with τ+
k adjust-

ing for the scale/curvature and the following proximal step shrinking the resulting parameters.
There is no clear separation of tasks if we apply the SPS method to the regularized problem, as
we see next.

Algorithm 11 ProxSPS for ϕ = λ
2‖ · ‖2

Require: x0 ∈ Rn, step sizes αk > 0.
1: for k = 0, 1, 2, . . . ,K − 1 do
2: Sample Sk and set Ck := C(Sk).
3: Choose gk ∈ ∂f(xk;Sk). If gk = 0, set xk+1 = 1

1+αkλ
xk. Otherwise, set

xk+1 =
1

1 + αkλ

[
xk −min

{
αk,

(
(1 + αkλ)(f(xk;Sk)− Ck)− αkλ〈gk, xk〉

‖gk‖2
)

+

}
gk

]
.

4: end for
5: return xK

4.4.2 Comparing the Model of SPS and ProxSPS

For simplicity, assume again the discrete sample space setting (ER) with differentiable loss func-
tions fi and let ϕ = λ

2‖·‖2. Clearly, the composite problem (P) can be transformed to an instance

of (4.1) by setting `i(x) := fi(x) + λ
2‖x‖2 and solving minx `(x) with `(x) := 1

N

∑N
i=1 `i(x). As-

sume that a lower bound `i ≤ infx `i(x) is known. In this case (4.6) becomes

ψx(y; si) = max
{
fi(x) + λ

2‖x‖2 + 〈∇fi(x) + λx, y − x〉, `i
}
.

Due to Lemma 4.11, if ∇fik(xk) + λxk 6= 0, the update (4.5) is given by

xk+1 = xk −min
{
αk,

fik(xk) + λ
2‖xk‖2 − `ik

‖∇fik(xk) + λxk‖2
}

(∇fik(xk) + λxk). (4.10)

74 Chapter 4. A Stochastic Proximal Polyak Step Size

We refer to this method, which is using model (4.6), as SPS. On the other hand, using model
(4.7) and if ∇fik(xk) 6= 0, the update of ProxSPS (4.9) is

xk+1 = 1
1+αkλ

[
xk −min

{
αk,

(
(1+αkλ)(fik (xk)−C(sik))−αkλ〈∇fik (xk),xk〉

‖∇fik (xk)‖2

)

+

}
∇fik(xk)

]
. (4.11)

In Fig. 4.1a, we illustrate the two models (4.6) (denoted by SPS) and (4.7) (denoted by ProxSPS)
for the logistic loss with squared `2-regularization. We can see that the ProxSPS model is a much
better approximation of the (stochastic) objective function as it still captures the quadratic
behaviour of ϕ. Furthermore, as noted in the previous section, ProxSPS decouples the step size
of the gradient and of the shrinkage, and hence the update direction depends on αk. In contrast,
the update direction of SPS does not depend on αk, and the regularization effect is intertwined
with the adaptive step size. Another way to see that the model (4.7) on which ProxSPS is based
on is a more accurate model as compared to the SPS model (4.6), is that the resulting vector
field of ProxSPS takes a more direct route to the minimum, as illustrated in Fig. 4.1b.

Update (4.11) needs to compute the term 〈∇fik(xk), xk〉 while (4.10) needs to evaluate ‖xk‖2.
Other than that, the computational costs are roughly identical. For (4.11), a lower bound `i is
required. For non-negative loss functions, in practice both `i and C(si) are often set to zero, in
which case (4.7) will be a more accurate model as compared to (4.6). 5

4.5 Convergence Analysis

For the convergence analysis of Algorithm 10, we can work with the following assumption on
ϕ.

Assumption 9. ϕ : Rn → R ∪ {∞} is a proper, closed, λ-strongly convex function with λ ≥ 0.

Throughout this section we consider model (4.7), i.e. for g ∈ ∂f(x; s), let

ψx(y; s) = fx(y; s) + ϕ(y), fx(y; s) = max{f(x; s) + 〈g, y − x〉, C(s)}.

Let us first state a lemma on important properties of the truncated model:

Lemma 4.2. Consider fx(y; s) = max{f(x; s)+〈g, y−x〉, C(s)}, where g ∈ ∂f(x; s) is arbitrary
and C(s) ≤ infz∈Rn f(z; s). Then, it holds:

(i) The mapping y 7→ fx(y; s) is convex.

(ii) For all x ∈ Rn, it holds fx(x; s) = f(x; s). If f(·; s) is ρs–weakly convex for all s ∈ S, then

fx(y; s) ≤ f(y; s) + ρs
2 ‖y − x‖2 for all x, y ∈ Rn.

Proof. (i) The maximum over a constant and linear term is convex.

(ii) Recall that C(s) ≤ f(y; s) for all y ∈ Rn. Therefore, fx(x; s) = max{C(s), f(x; s)} =
f(x; s). From weak convexity of f(·; s) it follows f(x; s) + 〈g, y− x〉 ≤ f(y; s) + ρs

2 ‖y− x‖2
and therefore

fx(y; s) ≤ max{C(s), f(y; s) + ρs
2 ‖y − x‖2} = f(y; s) + ρs

2 ‖y − x‖2 for all y ∈ Rn.

5For single element sampling, inf `i can sometimes be precomputed (e.g. regularized logistic regression, see [88,
Appendix D]). But even in this restricted setting it is not clear how to estimate inf `i when using mini-batching.

4.5. Convergence Analysis 75

4.5.1 Globally Bounded Subgradients

In this section, we show that the results for stochastic model-based proximal point methods
in [26] can be immediately applied to our specific model – even though this model has not been
explicitly analyzed in their article. This, however, requires assuming that the subgradients are
bounded.

Proposition 4.3. Let Assumption 1 and Assumption 9 hold and assume that there is an open,
convex set U containing dom ϕ. Let f(·; s) be ρs–weakly convex for all s ∈ S and let ρ = E[ρS].

Assume that there exists Gs ∈ R+ for all s ∈ S, such that G :=
√
E[G2

S] <∞ and

‖g(x; s)‖ ≤ Gs ∀g(x; s) ∈ ∂f(x; s), ∀x ∈ U. (4.12)

Then, ψx(y; s) (given in (4.7)) satisfies the following:

(B1) It is possible to generate infinitely many i.i.d. realizations S0, S1, . . . from S.

(B2) It holds E[fx(x;S)] = f(x) and E[fx(y;S)] ≤ f(y) + ρ
2‖y − x‖2 for all x, y ∈ Rn.

(B3) The mapping ψx(·; s) = fx(·; s) + ϕ(·) is convex for all x ∈ Rn and all s ∈ S.

(B4) For all x, y ∈ U and s ∈ S, it holds fx(x; s)− fx(y; s) ≤ Gs‖x− y‖.

Proof. The properties (B1)–(B4) are identical to (B1)–(B4) in [26, Assum. B], setting r = ϕ,
fx(·, ξ) = fx(·; s), η = 0, τ = ρ, L = G, and L(ξ) = Gs. (B1) is identical to Assumption 1.
(B2) holds due to Lemma 4.2, (ii), applying expectation and using the definition of f , i.e.
f(x) = E[f(x;S)]. (B3) holds due to Lemma 4.2, (i) and convexity of ϕ. For (B4), taking
g ∈ ∂f(x; s) and x, y ∈ U , we have

fx(x; s)− fx(y; s) ≤ f(x; s)− f(x; s)− 〈g, y − x〉 ≤ ‖g‖‖y − x‖ ≤ Gs‖x− y‖.

Corollary 4.4 (Weakly convex case). Let the assumptions of Proposition 4.3 hold with ρs > 0

for all s ∈ S. Let ρ = E[ρS] < ∞ and let ∆ ≥ env
1/(2ρ)
ψ (x0) − minψ. Let {xk}k=0,...,K be

generated by Algorithm 10 for constant step sizes αk =
(

2ρ+
√

4ρG2K
∆

)−1
. Then, it holds

E‖∇env
1/(2ρ)
ψ (xK∼)‖2 ≤ 8ρ∆

K
+ 16G

√
ρ∆

K
,

where xK∼ is uniformly drawn from {x0, . . . , xK−1}.

Proof. The claim follows from Proposition 4.3 and [26, Thm. 4.3], (4.16) setting η = 0, ρ̄ = 2ρ,
T = K − 1 and βt = α−1

k .

Corollary 4.5 ((Strongly) convex case). Let the assumptions of Proposition 4.3 hold with ρs = 0
for all s ∈ S. Let λ > 0 and x? = arg minx ψ(x). Let {xk}k=0,...,K be generated by Algorithm 10
for step sizes αk = 2

λ(k+1) . Then, it holds

E
[
ψ
(

2
(K+1)(K+2)−2

K∑

k=1

(k + 1)xk
)
− ψ(x?)

]
≤ λ

(K + 1)2
‖x0 − x?‖2 +

8G2

λ(K + 1)
.

76 Chapter 4. A Stochastic Proximal Polyak Step Size

Proof. As ρs = 0 and hence ρ = 0, we have that [26, Assum. B] is satisfied with τ = 0 (in the
notation of [26], see Proposition 4.3). Moreover, by Lemma 4.2, (i) and λ–strong convexity of
ϕ, we have λ–strong convexity of ψx(·; s). The claim follows from Proposition 4.3 and [26, Thm.
4.5] setting µ = λ, T = K − 1 and βt = α−1

k .

4.5.2 Lipschitz Smoothness

Assumption (4.12), i.e. having globally bounded subgradients, is strong: it implies Lipschitz
continuity of f (cf. [26, Lem. 4.1]) and simple functions such as the squared loss do not satisfy
this. Therefore, we provide additional guarantees for the smooth case, without the assumption
of globally bounded gradients.

The following result, similar to [26, Lem. 4.2], is the basic inequality for the subsequent conver-
gence analysis.

Lemma 4.6. Let Assumption 9 hold. Let xk+1 be given by (4.8) and ψxk be given in (4.7). For
every x ∈ Rn it holds

(1 + αkλ)‖xk+1 − x‖2 ≤ ‖xk − x‖2 − ‖xk+1 − xk‖2 + 2αk
(
ψxk(x;Sk)− ψxk(xk+1;Sk)

)
. (4.13)

Moreover, it holds

ψxk(xk+1;Sk) ≥ f(xk;Sk) + 〈gk, xk+1 − xk〉+ ϕ(xk+1). (4.14)

Proof. The objective of (4.8) is given by Ψk(y) := ψxk(y;Sk) + 1
2αk
‖y−xk‖2. Using Lemma 4.2,

(i) and λ-strong convexity of ϕ, Ψk(y) is (λ+ 1
αk

)–strongly convex. As xk+1 is the minimizer of
Ψk(y), for all x ∈ Rn we have

Ψk(x) ≥ Ψk(x
k+1) +

1 + αkλ

2αk
‖xk+1 − x‖2 ⇐⇒

(1 + αkλ)‖xk+1 − x‖2 ≤ ‖xk − x‖2 − ‖xk+1 − xk‖2 + 2αk
(
ψxk(x;Sk)− ψxk(xk+1;Sk)

)
.

Moreover, by definition of fx(y; s) in (4.7) we have

ψxk(xk+1;Sk) = fxk(xk+1;Sk) + ϕ(xk+1) ≥ f(xk;Sk) + 〈gk, xk+1 − xk〉+ ϕ(xk+1).

We will work in the setting of differentiable loss functions with bounded gradient noise.

Assumption 10. The mapping f(·; s) is differentiable for all s ∈ S and there exists β ≥ 0 such
that

E‖∇f(x;S)−∇f(x)‖2 ≤ β for all x ∈ Rn. (4.15)

The assumption of bounded gradient noise (4.15) (in the differentiable setting) is indeed a weaker
assumption than (4.12) since E[∇f(x;S)] = ∇f(x) and

E‖∇f(x;S)−∇f(x)‖2 ≤ β ⇐⇒ E‖∇f(x;S)‖2 ≤ ‖∇f(x)‖2 + β.

4.5. Convergence Analysis 77

Remark 5. Assumption 10 (and the subsequent theorems) could be adapted to the case where
f(·; s) is weakly convex but non-differentiable: for fixed x ∈ Rn, due to [11, Prop. 2.2] and [26,
Lem. 2.1] it holds

E[∂f(x;S)] = E
[
∂
(
f(x;S) +

ρS
2
‖x‖2

)
− ρSx

]
= ∂f(x) + ρx− E[ρSx] = ∂f(x),

where we used ρ = E[ρS]. Hence, for gs ∈ ∂f(x; s) we have E[gS] ∈ ∂f(x) and (4.15) is replaced
by

E‖gS − E[gS]‖2 ≤ β for all x ∈ Rn.

However, as we will still require that f is Lipschitz-smooth, we present our results for the dif-
ferentiable setting.

The proof of the subsequent theorems can be found in Section 4.8.2 and Section 4.8.3.

Theorem 4.7. Let Assumption 9 and Assumption 10 hold. Let f(·; s) be convex for all s ∈ S
and let f be L–smooth. Let x? ∈ arg minx∈Rn ψ(x) and let θ > 1. Let {xk}k=0,...,K be generated
by Algorithm 10 for step sizes αk > 0 such that

αk ≤
1− 1/θ

L
. (4.16)

Then, it holds

(1 + αkλ)E‖xk+1 − x?‖2 ≤ E‖xk − x?‖2 + 2αkE[ψ(x?)− ψ(xk+1)] + θβα2
k. (4.17)

Moreover, we have:

a) If λ > 0 and αk = 1
λ(k+k0) with k0 ≥ 1 large enough such that (4.16) is fulfilled, then

E
[
ψ
(

1
K

K−1∑

k=0

xk+1
)
− ψ(x?)

]
≤ λk0

2K
‖x0 − x?‖2 +

θβ(1 + lnK)

2λK
. (4.18)

b) If λ = 0 and αk = α√
k+1

with α ≤ 1−1/θ
L , then

E
[
ψ
(

1∑K−1
k=0 αk

K−1∑

k=0

αkx
k+1
)
− ψ(x?)

]
≤ ‖x0 − x?‖2

4α(
√
K + 1− 1)

+
θβα(1 + lnK)

4(
√
K + 1− 1)

. (4.19)

c) If f is µ–strongly convex with µ ≥ 0,6 and αk = α fulfilling (4.16), then

E‖xK − x?‖2 ≤ (1 + α(µ+ 2λ))−K‖x0 − x?‖2 +
θβα

µ+ 2λ
. (4.20)

Remark 6. If λ > 0, for the decaying step sizes in item a) we get a rate of Õ(1
K) if λ > 0.

In the strongly convex case in item c), for constant step sizes, we get a linear convergence upto
a neighborhood of the solution. Note that the constant on the right-hand side of (4.20) can be
forced to be small using a small α. Further, the rate (4.20) has a 2λ term, instead of λ. This
slight improvement in the rate occurs because we do not linearize ϕ in the ProxSPS model.

6Note that as f(·; s) is convex, so is f , and that we allow µ = 0 here.

78 Chapter 4. A Stochastic Proximal Polyak Step Size

Theorem 4.8. Let Assumption 9 and Assumption 10 hold. Let f(·; s) be ρs–weakly convex for
all s ∈ S and let ρ := E[ρS] < ∞. Let f be L–smooth7 and assume that inf ψ > −∞. Let
{xk}k≥0 be generated by Algorithm 10. For θ > 1, under the condition

η ∈
{

(0, 1
ρ−λ) if ρ > λ

(0,∞) else
, αk ≤

1− θ−1

L+ η−1
, (4.21)

it holds

K−1∑

k=0

αkE‖∇envηψ(xk)‖2 ≤
2(envηψ(x0)− inf ψ)

1− η(ρ− λ)
+

βθ

η(1− η(ρ− λ))

K−1∑

k=0

α2
k. (4.22)

Moreover, for the choice αk = α√
k+1

and with α ≤ 1−θ−1

L+η−1 , we have

min
k=0,...,K−1

E‖∇envηψ(xk)‖2 ≤
envηψ(x0)− inf ψ

α(1− η(ρ− λ))(
√
K + 1− 1)

+
βθ

2η(1− η(ρ− λ))

α(1 + lnK)

(
√
K + 1− 1)

.

If instead we choose αk = α√
K

and with α ≤
√
K 1−θ−1

L+η−1 , we have

E‖∇envηψ(xK∼)‖2 ≤
2(envηψ(x0)− inf ψ)

α(1− η(ρ− λ))
√
K

+
βθ

η(1− η(ρ− λ))

α√
K
,

where xK∼ is uniformly drawn from {x0, . . . , xK−1}.

Comparison to Existing Theory. Recalling that Algorithm 9 is equivalent to SPSmax with
c = 1 and γb = αk, we can apply Theorem 4.7 and Theorem 4.8 for the unregularized case where
ϕ = 0 and hence obtain new theory for SPSmax. We start by summarizing the main theoretical
results for SPSmax given in [88, 109]: in the (ER) setting, consider the interpolation constant
σ2 = E[f(x?;S) − C(S)] = 1

N

∑N
i=1 fi(x

?) − C(si). If fi is Li-smooth and convex, [109, Thm.
3.1] proves convergence to a neighborhood of the solution, i.e. the iterates {xk} of SPSmax

satisfy

E[f(x̄K)− f(x?)] ≤ ‖x
0 − x?‖2
αK

+
2γbσ

2

α
, (4.23)

where x̄K := 1
K

∑K−1
k=0 xk, α := min{ 1

2cLmax
, γb}, and Lmax := maxi∈[N] Li.

8 For the nonconvex
case, if fi is Li-smooth and under suitable assumptions on the gradient noise, [88, Thm. 3.8]
states that, for constants c1 and c2, we have

min
k=1,...,K

E‖∇f(xk)‖2 ≤ 1

c1K
+ c2. (4.24)

The main advantage of these results is that γb can be held constant; furthermore in the convex
setting (4.23), the choice of γb requires no knowledge of the smoothness constants Li. For both
results however, we can not directly conclude that the right-hand side goes to zero as K → ∞
as there is an additional constant. Choosing γb sufficiently small does not immediately solve
this as c1, α and c2 all go to zero as γb goes to zero.

7As f is ρ–weakly convex, this implies ρ ≤ L.
8The theorem also handles the mini-batch case but, for simplicity, we state the result for sampling a single ik

in each iteration.

4.6. Numerical Experiments 79

Our results complement this by showing exact convergence for the (weakly) convex case, i.e.
without constants on the right-hand side. This comes at the cost of an upper bound on the step
sizes αk which depends on the smoothness constant L. For exact convergence, it is important
to use decreasing step sizes αk: Theorem 4.8 shows that the gradient of the Moreau envelope
converges to zero at the rate O(1/

√
K) for the choice of αk = α√

K
.9 Another minor difference

to [88] is that we do not need to assume Lipschitz-smoothness for all f(·; s) and work instead with
the (more general) assumption of weak convexity. However, we still need to assume Lipschitz
smoothness of f .

Another variant of SPSmax, named DecSPS, has been proposed in [109]: for unregularized prob-
lems (4.1) it is given by

xk+1 = xk − γ̂kgk, γ̂k =
1

ck
min

{f(xk;Sk)− Ck
‖gk‖2

, ck−1γ̂k−1

}
(DecSPS)

where {ck}k≥0 is an increasing sequence. In the (ER) setting, if all fi are Lipschitz-smooth and
strongly convex, DecSPS converges with a rate of O(1√

K
), without knowledge of the smoothness

or convexity constants (cf. [109, Thm. 5.5]). However, under these assumptions, the objective
f is strongly convex and the optimal rate is O(1

K), which we achieve up to a logarithmic
factor in Theorem 4.7, (4.18). Moreover, for DecSPS no guarantees are given for nonconvex
problems.

For regularized problems, the constant in (4.23) is problematic if σ2 (computed for the regu-
larized loss) is moderately large. We refer to Section 4.9.3 where we show that this can easily
happen. For ProxSPS, our theoretical results Theorem 4.7 and Theorem 4.8 are not affected by
this as they do not depend on the size of σ2. To the best of our knowledge, this is the first work
to show theory for the stochastic Polyak step size in a setting that explicitly considers regulariza-
tion. Moreover, our results also cover the case of non-smooth or non-real-valued regularization
ϕ where the theory in [88] can not be applied.

4.6 Numerical Experiments

Throughout we denote Algorithm 9 by SPS and Algorithm 11 with ProxSPS. For all experiments
we use Pytorch [113]10.

4.6.1 General Parameter Setting

For SPS and ProxSPS we always use C(s) = 0 for all s ∈ S. For αk, we use the following
schedules:

• constant: set αk = α0 for all k and some α0 > 0.

• sqrt: set αk = α0√
j

for all iterations k during epoch j.

As we consider problems with `2-regularization, for SPS we handle the regularization term by
incorporating it into all individual loss functions, as depicted in (4.10). With ϕ = λ

2‖ · ‖2 for
λ ≥ 0, we denote by ζk the adaptive step size term of the following algorithms:

9Notice that αk then depends on the total number of iterations K and hence one would need to fix K before
starting the method.

10The code for our experiments and an implementation of ProxSPS can be found at https://github.com/

fabian-sp/ProxSPS.

https://github.com/fabian-sp/ProxSPS
https://github.com/fabian-sp/ProxSPS

80 Chapter 4. A Stochastic Proximal Polyak Step Size

• for SPS we have ζk :=
f(xk;Sk)+λ

2
‖xk‖2

‖gk+λxk‖2 (cf. (4.10) with `ik = 0),

• for ProxSPS we have ζk :=
(

(1+αkλ)f(xk;Sk)−αkλ〈gk,xk〉
‖gk‖2

)
+

and thus τ+
k = min{αk, ζk} (cf.

Lemma 4.1 with C(Sk) = 0).

4.6.2 Regularized Matrix Factorization

Problem description. For A ∈ Rq×p, consider the problem

min
W1∈Rr×p,W2Rq×r

Ey∼N(0,I)‖W2W1y −Ay‖2 = min
W1∈Rr×p,W2Rq×r

‖W2W1 −A‖2F .

For the above problem, SPSmax has shown superior performance than other methods in the
numerical experiments of [88]. The problem can can be turned into a (nonconvex) empirical
risk minimization problem by drawing N samples {y(1), . . . , y(N)}. Denote b(i) := Ay(i). Adding
squared norm regularization with λ ≥ 0 (cf. [146]), we obtain the problem

min
W1∈Rr×p,W2Rq×r

1

N

N∑

i=1

‖W2W1y
(i) − b(i)‖2 + λ

2

(
‖W1‖2F + ‖W2‖2F

)
. (4.25)

This fits the format of (P), where x = (W1,W2), using a finite sample space S = {s1, . . . , sN},
f(x; si) = ‖W2W1y

(i) − Ay(i)‖2, and ϕ = λ
2‖ · ‖2F . Clearly, zero is a lower bound of f(·; si) for

all i ∈ [N]. We investigate ProxSPS for problems of form (4.25) on synthetic data. For details
on the experimental procedure, we refer to Section 4.9.1.

Discussion. Here, we discuss results for the setting matrix-fac1 in Table 4.1 in the Appendix.
We first fix λ = 0.001 and consider the three methods SPS, ProxSPS and SGD. Fig. 4.2 shows the
objective function over 50 epochs, for both step size schedules sqrt and constant, and several
initial values α0. For the constant schedule, we observe that ProxSPS converges quickly for all
initial values while SPS is unstable. Note that for SGD we need to pick much smaller values for
α0 in order to avoid divergence (SGD diverges for large α0). SPS for large α0 is unstable, while
for small α0 we can expect similar performance to SGD (as γk is capped by αk = α0). However,
in the regime of small α0, convergence will be very slow. Hence, one of the main advantages of
SPS, namely that its step size can be chosen constant and moderately large (compared to SGD),
is not observed here. ProxSPS fixes this by admitting a larger range of initial step sizes, all of
which result in fast convergence, and therefore is more robust than SGD and SPS with respect to
the tuning of α0.

For the sqrt schedule, we observe in Fig. 4.2 that SPS can be stabilized by reducing the values
of αk over the course of the iterations. However, for large α0 we still see instability in the early
iterations, whereas ProxSPS does not show this behaviour. We again observe that ProxSPS is
less sensitive with respect to the choice of α0 as compared to SGD. The empirical results also
confirm our theoretical statement, showing exact convergence if αk is decaying in the order of
1/
√
k. From Fig. 4.3, we can make similar observations for the validation error, defined as

1
Nval

∑Nval
i=1 ‖W2W1y

(i) − b(i)val‖2, where b
(i)
val are the Nval = N measurements from the validation

set (cf. Section 4.9.1 for details).

We now consider different values for λ and only consider the sqrt schedule, as we have seen
that for constant step sizes, SPS would not work for large step sizes and be almost identical
to SGD for small step sizes. Fig. 4.4 shows the objective function and validation error. Again,
we can observe that SPS is unstable for large initial values α0 for all λ ≥ 10−4. On the other

4.6. Numerical Experiments 81

0 10 20 30 40
Epoch

10−5

10−4

10−3

10−2

10−1

ψ
(x

k
)
−

m
in
k
ψ

(x
k
)

constant

0 10 20 30 40
Epoch

10−5

10−4

10−3

10−2

10−1
sqrt

α0

2.0

1.62

1.25

0.88

0.5

2.0

1.62

1.25

0.88

0.5

0.7

0.56

0.41

0.27

0.12

prox-sps

sps

sgd

Figure 4.2: Objective function for the Matrix Factorization problem (4.25), with constant (left)
and sqrt (right) step size schedule and several choices of initial values. Here mink ψ(xk) is the
best objective function value found over all methods and all iterations.

0 10 20 30 40
Epoch

10−4

10−2

100

102

104

V
al

id
at

io
n

E
rr

or

constant

0 10 20 30 40
Epoch

10−4

10−3

10−2

10−1

100

sqrt
α0

2.0

1.62

1.25

0.88

0.5

2.0

1.62

1.25

0.88

0.5

0.7

0.56

0.41

0.27

0.12

prox-sps

sps

sgd

Figure 4.3: Validation error for the Matrix Factorization problem (4.25), with constant (left)
and sqrt (right) step size schedule and several choices of initial values.

hand, ProxSPS has a good performance for a wide range of α0 ∈ [1, 10] if λ is not too large.
Indeed, ProxSPS convergence only starts to deteriorate when both α0 and λ are very large.
For α0 = 1, the two methods give almost identical results. Finally, in Fig. 4.5a we plot the
validation error as a function of λ (taking the median over the last ten epochs). The plot shows
that the best validation error is obtained for λ = 10−4 and for large α0. With SPS the validation
error is higher, in particular for large α0 and λ. Fig. 4.5b shows that ProxSPS leads to smaller
norm of the iterates, hence a more effective regularization. Finally, we plot the actual step sizes
for both methods in Fig. 4.6. We observe that the adaptive step size ζk (Definition at end of
Section 4.6.1) is typically larger and has more variance for SPS than ProxSPS, in particular for
large λ. This increased variance might explain why SPS is unstable when α0 is large: the actual
step size is the minimum between αk and ζk and hence both terms being large could lead to
instability. On the other hand, if α0 = 1, the plot confirms that SPS and ProxSPS are almost
identical methods as ζk > αk for most iterations. In Section 4.9.1 of the supplementary material,
we provide additional numerical results which confirm the above findings in the for the setting
matrix-fac2 of Table 4.1.

82 Chapter 4. A Stochastic Proximal Polyak Step Size

0 20 40

Epoch

0.000

0.002

0.004

0.006

0.008

0.010

O
b

je
ct

iv
e
ψ

(x
k
)

λ = 1e− 05

0 20 40

Epoch

0.002

0.004

0.006

0.008

0.010

λ = 0.0001

0 20 40

Epoch

0.01

0.02

0.03

0.04

λ = 0.001

0 20 40

Epoch

0.100

0.125

0.150

0.175

0.200

0.225

λ = 0.01

0 20 40

Epoch

1.0

1.5

2.0

2.5

λ = 0.1

prox-sps, sqrt, α0=10.0

prox-sps, sqrt, α0=5.0

prox-sps, sqrt, α0=1.0

sps, sqrt, α0=10.0

sps, sqrt, α0=5.0

sps, sqrt, α0=1.0

0 20 40

Epoch

0.0000

0.0005

0.0010

0.0015

0.0020

0.0025

V
al

id
at

io
n

E
rr

or

λ = 1e− 05

0 20 40

Epoch

0.0000

0.0005

0.0010

0.0015

0.0020

0.0025

0.0030
λ = 0.0001

0 20 40

Epoch

0.000

0.002

0.004

0.006

0.008

0.010

λ = 0.001

0 20 40

Epoch

0.00

0.02

0.04

0.06

0.08

λ = 0.01

0 20 40

Epoch

0.00

0.25

0.50

0.75

1.00

1.25

λ = 0.1

prox-sps, sqrt, α0=10.0

prox-sps, sqrt, α0=5.0

prox-sps, sqrt, α0=1.0

sps, sqrt, α0=10.0

sps, sqrt, α0=5.0

sps, sqrt, α0=1.0

Figure 4.4: Objective function value and validation error over the course of optimization. For
the validation error, we plot a rolling median over five epochs in order to avoid clutter.

4.6.3 Regularized Matrix Completion

Consider an unknown matrix of interest W ∈ Rd1×d2 . Factorizing W ≈ U>V with U ∈
Rr×d1 , V ∈ Rr×d2 , we can estimate the entries of matrix W as

Ŵij = u>i vj + bUi + bVj , i ∈ [d1], j ∈ [d2], (4.26)

where ui is the i-th column of U and vj is the j-th column of V , and bU ∈ Rd1 , bV ∈ Rd2 are
bias terms [121].

We can interpret this as an empirical risk minimization problem as follows: let T be the set of
indices (i, j) where Wij is known. With Ŵij as in (4.26) for trainable parameters (U, V, bU , bV),
the (regularized) problem is then given as

min
U,V,bU ,bV

1

|T |
∑

(i,j)∈T
(Wij − Ŵij)

2 +
λ

2
‖(U, V, bU , bV)‖2.

We use a dataset containing air quality measurements of a sensor network over one month. This
dataset has been studied in [121].11 The dataset contains measurements from 130 sensors over
720 timestamps, hence d1 = 130, d2 = 720. In total, there are 56158 nonzero measurements (the
rest was missing data or removed due to being an outlier). We split the nonzero measurements
into a training set of size |T | = 44926 ≈ 0.8 · 56158 and the rest as a validation set. We
standardize training and validation set using mean and variance of the training set. We set
r = 24 and use batch size 128. The validation error is defined as the root mean squared error
on the elements of the validation set (which is not used for training).

Discussion. The results are plotted in Fig. 4.7 and Fig. 4.16a. For all methods, we use a
constant step size αk. ProxSPS achieves the smallest error on the validation set for the two
smaller values of λ. For the largest λ, ProxSPS, SPS and SGD are almost identical for α0 = 5,

11The dataset can be downloaded from https://github.com/andresgiraldo3312/DMF/blob/main/

DatosEliminados/Ventana_Eli_mes1.csv.

https://github.com/andresgiraldo3312/DMF/blob/main/DatosEliminados/Ventana_Eli_mes1.csv
https://github.com/andresgiraldo3312/DMF/blob/main/DatosEliminados/Ventana_Eli_mes1.csv

4.6. Numerical Experiments 83

10−5 10−4 10−3 10−2 10−1

λ

10−5

10−4

10−3

10−2

10−1

100
V

al
id

at
io

n
E

rr
or

prox-sps, sqrt, α0=1.0

prox-sps, sqrt, α0=5.0

prox-sps, sqrt, α0=10.0

sps, sqrt, α0=1.0

sps, sqrt, α0=5.0

sps, sqrt, α0=10.0

(a) Validation error

10−5 10−4 10−3 10−2 10−1

λ

4.00

4.25

4.50

4.75

5.00

5.25

5.50

‖x
k
‖

prox-sps, sqrt, α0=1.0

prox-sps, sqrt, α0=5.0

prox-sps, sqrt, α0=10.0

sps, sqrt, α0=1.0

sps, sqrt, α0=5.0

sps, sqrt, α0=10.0

(b) Model norm
√
‖W1‖2 + ‖W2‖2

Figure 4.5: Validation error and model norm as a function of the regularization parameter λ.
Shaded area is one standard deviation (computed over ten independent runs). For all values,
we take the median over epochs [40, 50].

but SGD with α0 = 1 is the best method. However, comparing all tested values of λ, Fig. 4.16a
shows that ProxSPS obtains the smallest error. Again, from the lower plot in Fig. 4.7 we can
observe that ProxSPS produces iterates with smaller norm.

4.6.4 Deep Networks for Image Classification

We train a ResNet56 and ResNet110 model [60] on the CIFAR10 dataset. We use the data
loading and preprocessing procedure and network implementation from https://github.com/

akamaster/pytorch_resnet_cifar10. The loss function is the cross-entropy loss of the true
image class with respect to the predicted class probabilities, being the output of the ResNet56

network. We add λ
2‖x‖2 as regularization term, where x consists of all learnable parameters of

the model. We do not use batch normalization.12 The CIFAR10 dataset consists of 60,000 images,
each of size 32×32, from ten different classes. We use the Pytorch split into 50,000 training and
10,000 test examples and use a batch size of 128. For AdamW, we set the weight decay parameter
to λ and set all other hyperparameters to its default. We use the AdamW-implementation from
https://github.com/zhenxun-zhuang/AdamW-Scale-free as it does not – in contrast to the
Pytorch implementation – multiply the weight decay parameter with the learning rate, which
leads to better comparability to SPS and ProxSPS for identical values of λ. For SPS and ProxSPS

we use the sqrt-schedule and α0 = 1. We run each method repeatedly using (the same) three
different seeds for the dataset shuffling.

Discussion. For Resnet56, from the bottom plot in Fig. 4.8, we observe that both SPS and
ProxSPS work well with ProxSPS leading to smaller weights. For λ = 5e − 4, the progress of
ProxSPS stagnates after roughly 25 epochs. This can be explained by looking at the adaptive
step size term ζk in Fig. 4.10a: as it decays over time we have τ+

k = ζk � αk. Since every
iteration of ProxSPS shrinks the weights by a factor 1

1+αkλ
, this leads to a bias towards zero.

This suggests that we should choose αk roughly of the order of ζk, for example by using the
values of ζk from the previous epoch.

12The reason for deactivating batch norm is that the interplay between weight decay/`2-regularization and batch
norm is still poorly understood: the output of batch norm layers are by construction invariant to a scaling of the
weights hence and regularization becomes ineffective [161]. Further, experiments in [169] show that for CIFAR10,
it is often the case that with batch norm, the best test accuracy is reached for λ = 0, i.e. no regularization.

https://github.com/akamaster/pytorch_resnet_cifar10
https://github.com/akamaster/pytorch_resnet_cifar10
https://github.com/zhenxun-zhuang/AdamW-Scale-free

84 Chapter 4. A Stochastic Proximal Polyak Step Size

Figure 4.6: Adaptive step size selection for SPS and ProxSPS. We plot ζk (see definition in
Section 4.6.1) as dots for each iteration as well as their median over each epoch. For this plot,
we use the results of only one of the ten runs.

0 25 50 75 100

Epoch

0.65

0.70

0.75

0.80

0.85

V
al

id
at

io
n

E
rr

or

λ = 5e− 05

0 25 50 75 100

Epoch

0.65

0.70

0.75

0.80

0.85

λ = 0.0001

0 25 50 75 100

Epoch

0.65

0.70

0.75

0.80

0.85

λ = 0.0005

prox-sps, constant, α0=10.0

prox-sps, constant, α0=5.0

sps, constant, α0=10.0

sps, constant, α0=5.0

sgd, constant, α0=5.0

sgd, constant, α0=1.0

adamw, constant, α0=0.001

0 25 50 75 100

Epoch

10

20

30

40

‖x
k
‖

λ = 5e− 05

0 25 50 75 100

Epoch

10

20

30

40

λ = 0.0001

0 25 50 75 100

Epoch

10

15

20

25

30

λ = 0.0005

prox-sps, constant, α0=10.0

prox-sps, constant, α0=5.0

sps, constant, α0=10.0

sps, constant, α0=5.0

sgd, constant, α0=5.0

sgd, constant, α0=1.0

adamw, constant, α0=0.001

Figure 4.7: Matrix Completion: Validation error (top) and model norm (bottom) for three
values of the regularization parameter λ. Validation error is plotted as five-epoch running
median. Shaded area is two standard deviations over three independent runs.

4.7. Conclusions and Open Questions 85

0 25 50 75 100

Epoch

0.0

0.2

0.4

0.6

0.8

1.0
V

al
id

at
io

n
A

cc
u

ra
cy

λ = 5e− 06

0 25 50 75 100

Epoch

0.0

0.2

0.4

0.6

0.8

1.0
λ = 5e− 05

0 25 50 75 100

Epoch

0.0

0.2

0.4

0.6

0.8

1.0
λ = 0.0005

prox-sps, sqrt, α0=1.0 sps, sqrt, α0=1.0 adamw, constant, α0=0.001

0 25 50 75 100

Epoch

80

100

120

‖x
k
‖

λ = 5e− 06

0 25 50 75 100

Epoch

50

60

70

80

λ = 5e− 05

0 25 50 75 100

Epoch

10

20

30

40

50

60

λ = 0.0005

prox-sps, sqrt, α0=1.0 sps, sqrt, α0=1.0 adamw, constant, α0=0.001

Figure 4.8: ResNet56: (Top): Validation accuracy and model norm for three values of the
regularization parameter λ. Validation accuracy is defined as the ratio of correctly labeled images
on the validation set (i.e. Top-1 accuracy), plotted as five-epoch running median. (Bottom):
By ‖xk‖ we denote the norm of all learnable parameters at the k-th iteration. Shaded area is
two standard deviations over three independent runs.

For the larger model Resnet110 however, SPS does not make progress for a long time because
the adaptive step size is very small (see Fig. 4.9 and Fig. 4.10b). ProxSPS does not share this
issue and performs well after a few initial epochs. For larger values of λ, the training is also
considerably faster than for AdamW. Generally, we observe that ProxSPS (and SPS for Resnet56)
performs well in comparison to AdamW. This is achieved without extensive hyperparameter tuning
(in particular this suggests that setting c = 1 in SPSmax leads to good results and reduces tuning).

In order to test the performance of ProxSPS on a larger dataset, we trained a ResNet110

with batch norm on Imagenet32, containing over one million training images. The plots and
experimental details can be found in Section 4.9.2. From Fig. 4.14, we conclude that SPS and
ProxSPS perform equally well in this experiment. Both SPS and ProxSPS are less sensititve with
respect to the regularization parameter λ than AdamW and the adaptive step size leads to faster
learning in the initial epochs compared to SGD.

4.7 Conclusions and Open Questions

In this chapter, we propose and analyze ProxSPS, a proximal version of the stochastic Polyak
step size. We arrive at ProxSPS by using the framework of stochastic model-based proximal
point methods. We then use this framework to argue that the resulting model of ProxSPS is a
better approximation as compared to the model used by SPS when using regularization. Our
theoretical results cover a wide range of optimization problems, including convex and non-convex

86 Chapter 4. A Stochastic Proximal Polyak Step Size

0 25 50 75 100

Epoch

0.0

0.2

0.4

0.6

0.8

1.0

V
al

id
at

io
n

A
cc

u
ra

cy

λ = 5e− 06

0 25 50 75 100

Epoch

0.0

0.2

0.4

0.6

0.8

1.0
λ = 5e− 05

0 25 50 75 100

Epoch

0.0

0.2

0.4

0.6

0.8

1.0
λ = 0.0005

prox-sps, sqrt, α0=1.0 sps, sqrt, α0=1.0 adamw, constant, α0=0.001

0 25 50 75 100

Epoch

90

95

100

105

‖x
k
‖

λ = 5e− 06

0 25 50 75 100

Epoch

40

50

60

70

80

90

λ = 5e− 05

0 25 50 75 100

Epoch

20

40

60

80

λ = 0.0005

prox-sps, sqrt, α0=1.0 sps, sqrt, α0=1.0 adamw, constant, α0=0.001

Figure 4.9: ResNet110: Validation accuracy as five-epoch running median (top) and model norm
(bottom) for three values of λ. Shaded area is two standard deviations over three independent
runs.

(a) ResNet56 (b) ResNet110

Figure 4.10: Adaptive step sizes for SPS and ProxSPS. See definition of ζk in Section 4.6.1. For
this plot, we use the results of only one of the three runs.

4.7. Conclusions and Open Questions 87

settings.

Extensive experiments for matrix factorization, matrix completion and image classification com-
pare ProxSPS, SPS, SGD and AdamW when using `2-regularization. In particular, we find that SPS
can be very hard to tune when using `2-regularization, and in contrast, ProxSPS performs well
for a wide choice of step sizes and regularization parameters. Finally, for our experiments on
image classification, we find that ProxSPS is competitive to AdamW, whereas SPS might collapse
for larger models. At the same time ProxSPS produces smaller weights in the trained neural
network. This may help to reduce the memory footprint of the resulting network, or suggest
which weights can be pruned.

To end this chapter, we discuss two questions which are yet to be answered. First, we observe that
in the theory of the Polyak step size for unregularized problems, the quantity σ2 = E[f(x?;S)−
C(S)] appears naturally. For regularized problems (or in a nonconvex setting), it might be better
to use a different notion of interpolation. One natural option would be to look at the gradient
variance, i.e. σ̂2 := E‖∇f(x?;S)−∇f(x?)‖2 (see [46, Def. 4.16]). In our current proofs, neither
σ2 nor σ̂2 appear; one can ask if it possible to improve our theory of ProxSPS for problems
where σ̂ is small or zero.

Second, in practice the most successful methods typically use momentum (e.g. Adam or SGD

with heavy-ball momentum). At this point it is unclear (i) how to incorporate momentum in
ProxSPS, and (ii) how to combine the Polyak step size with preconditioning techniques used for
example in Adam. We will give an answer to both points in the next chapter.

88 Chapter 4. A Stochastic Proximal Polyak Step Size

4.8 Supplementary Material and Missing Proofs

4.8.1 Update Lemmas for the Truncated Model

We provide two technical lemmas which are crucial for deriving the central method of this (and
the next) chapter. It should be remarked that during the work on the contents of this chapter,
the proof for the update formula was slightly more direct (see [132, Lem. 9]). It turned out later
that the update formula could be further generalized; this led to some of the results presented
in Chapter 5.

Lemma 4.9. Let y0, a ∈ Rn and c ∈ R. Let β > 0. The solution to

y+ = arg min
y∈Rn

(
c+ 〈a, y − y0〉

)
+

=:φ(y)

+
1

2β
‖y − y0‖2 (4.27)

is given by

y+ = y0 − τa, τ :=

{
0 if a = 0,

min{β, (c)+
‖a‖2 } else.

(4.28)

Moreover we have

φ(y+) =

{
c− τ‖a‖2, if c ≥ 0,

0 else.
(4.29)

Proof. Clearly, the objective of (4.27) is strongly convex and therefore there exists a unique
solution, which can be characterized by the necessary and sufficient first-order optimality con-
ditions

0 = ta+ β−1(y+ − y0), t ∈ ∂(·)+(c+ 〈a, y+ − y0〉). (4.30)

The subdifferential ∂(·)+(u) is given by {0} if u < 0, {1} if u > 0, and [0, 1] if u = 0. First,
consider a = 0. Then, it clearly holds y+ = y0 and φ(y+) = (c)+ which shows (4.29).

Now, consider a 6= 0. We distinguish three cases:

(i) Suppose c < 0. Then, y+ = y0 satisfies (4.30) with t = 0. In this case, (c)+ = 0 implies
τ = 0.

(ii) Suppose c
‖a‖2 > β. Let ȳ := y0−βa and hence c+ 〈a, ȳ−y0〉 > 0 ⇐⇒ c−β‖a‖2 > 0 ⇐⇒

c
‖a‖2 > β. Then y+ = ȳ satisfies (4.30) with t = 1. As β > 0, hence c > 0 and τ = β.

Further, φ(y+) = (c+ 〈a, y+ − y0〉)+ = (c− β‖a‖2)+ = c− β‖a‖2, equation (4.29) holds.

(iii) If neither c < 0 nor c
‖a‖2 > β holds, then (4.30) can only be satisfied if c+ 〈a, y+− y0〉 = 0

holds (i.e. φ(y+) = 0). Due to, c − tβ‖a‖2 = c + 〈a, y+ − y0〉 = 0 ⇐⇒ t = c
β‖a‖2 , we

propose ȳ = y0 − tβa with t = c
β‖a‖2 as a solution candidate. Indeed, as c ≥ 0 we have

t ≥ 0 and c
‖a‖2 ≤ β implies t ≤ 1. Hence, (4.30) is satisfied for y+ = ȳ and we have

τ = c
‖a‖2 . From c− τ‖a‖2 = c− c = 0, (4.29) holds as well.

As we have derived a solution for all possible cases, and the solution is unique, the proof is
complete.

4.8. Supplementary Material and Missing Proofs 89

Using the result above, we can prove a more general version.

Lemma 4.10. Let y0, a ∈ Rn and c ∈ R. Let β > 0 and λ ≥ 0. Let D ∈ Rn×n be a symmetric,
positive definite matrix. The solution to

y+ = arg min
y∈Rn

(
c+ 〈a, y − y0〉

)
+

=:φ(y)

+
1

2β
‖y − y0‖2D +

λ

2
‖y‖2D (4.31)

is given by

y+ =
1

1 + λβ

[
y0 − τD−1a

]
, τ :=





0 if a = 0,

min
{
β,

(
(1+λβ)c−λβ〈a,y0〉

)
+

‖a‖2
D−1

}
else.

(4.32)

Furthermore, it holds

φ(y+) =

{
c− λβ

1+λβ 〈a, y0〉 − τ
1+λβ‖a‖2D−1 if (1 + λβ)c− λβ〈a, y0〉 ≥ 0,

0 else.
(4.33)

Proof. If a = 0, it is easy to see that the solution is given by D
β [(1 +λβ)y+− y0] = 0 ⇐⇒ y+ =

1
1+λβ y0 and hence (4.32) holds. Further, clearly we have φ(y+) = (c)+.

Now suppose a 6= 0. Denoting with cst.(y) terms that are constant in y, we complete the squares
as follows

λ

2
‖y‖2D +

1

2β
‖y − y0‖2D =

1

2β
‖y‖2(1+λβ)D −

1

β
〈y,Dy0〉+ cst.(y)

=
1

2β
‖y‖2(1+λβ)D −

1

β
〈y, (1 + λβ)D y0

1+λβ 〉+ cst.(y)

=
1

2β
‖y − 1

1+λβ y0‖2(1+λβ)D + cst.(y),

Using the above, (4.31) is equivalent to

y+ = arg min
y∈Rn

φ(y) +
1

2β
‖y − 1

1+λβ y0‖2(1+λβ)D

= arg min
y∈Rn

(
c+ 〈a, y − 1

1+λβy0〉+
(

1
1+λβ − 1

)
〈a, y0〉

)
+

+
1

2β
‖y − 1

1+λβy0‖2(1+λβ)D.

Let ĉ := c+ (1
1+λβ − 1)〈a, y0〉 = c− λβ

1+λβ 〈a, y0〉. With this definition, (4.31) is equivalent to

y+ = arg min
y∈Rn

(
ĉ+ 〈a, y − 1

1+λβy0〉
)

+
+

1

2β
‖y − 1

1+λβy0‖2(1+λβ)D.

Changing variables with z+ = D1/2y+, z = D1/2y, and z0 = D1/2y0 gives

z+ = arg min
z∈Rn

(
ĉ+ 〈D−1/2a, z − 1

1+λβ z0〉
)

+

=:φ̂(z)

+
(1 + λβ)

2β
‖z − 1

1+λβ z0‖2. (4.34)

90 Chapter 4. A Stochastic Proximal Polyak Step Size

Applying Lemma 4.9 with y0 ← 1
1+λβ z0, c← ĉ, a← D−1/2a, β ← β

1+λβ gives

z+ =
1

1 + λβ
z0 −min

{ β

1 + λβ
,

(ĉ)+

‖a‖2
D−1

}

=:τ̂

D−1/2a.

Changing variables back using y+ = D−1/2z+, substituting ĉ = c− λβ
1+λβ 〈a, y0〉 and re-arranging

the above gives

y+ =
1

1 + λβ
y0 −min

{ β

1 + λβ
,

(
c− λβ

1+λβ 〈a, y0〉
)

+

‖a‖2
D−1

}
D−1a

=
1

1 + λβ

[
y0 −min

{
β,

(
(1 + λβ)c− λβ〈a, y0〉

)
+

‖a‖2
D−1

}
D−1a

]
.

Now, let us prove (4.33). First, simple calculations using the change of variable shows that

φ̂(z+) =
(
c− λβ

1+λβ 〈a, y0〉+ 〈a, y+ − 1
1+λβy0〉

)
+

=
(
c+ 〈a, y+ − y0〉

)
+

= φ(y+).

First, assume that (1 +λβ)c−λβ〈a, y0〉 ≥ 0 ⇐⇒ ĉ ≥ 0. In this case, from applying Lemma 4.9
after (4.34), we get that

φ(y+) = φ̂(z+) = ĉ− τ̂‖a‖2D−1 = c− λβ
1+λβ 〈a, y0〉 − τ

1+λβ‖a‖2D−1 .

In the other case, when ĉ < 0, then φ(y+) = φ̂(z+) = 0.

4.8.2 Proof of Theorem 4.7

For the following proofs, denote by Fk the filtration that is generated by the history of all Sj
for j = 0, . . . , k − 1.

Proof of Theorem 4.7. In the proof, we will denote gk = ∇f(xk;Sk). We apply Lemma 4.6,
(4.13) with x = x?. Due to Lemma 4.2 (ii) and convexity of f(·; s) it holds

ψxk(x?;Sk) ≤ f(x?;Sk) + ϕ(x?).

Together with (4.14), we have

(1 + αkλ)‖xk+1 − x?‖2 ≤ ‖xk − x?‖2 − ‖xk+1 − xk‖2 + 2αk[ϕ(x?)− ϕ(xk+1)]

+ 2αk
[
f(x?;Sk)− f(xk;Sk)− 〈gk, xk+1 − xk〉

]
.

(4.35)

Smoothness of f yields

−f(xk) ≤ −f(xk+1) + 〈∇f(xk), xk+1 − xk〉+ L
2 ‖xk+1 − xk‖2.

Consequently,

− 〈gk, xk+1 − xk〉 = f(xk)− f(xk)− 〈gk, xk+1 − xk〉
≤ f(xk)− f(xk+1) + 〈∇f(xk)− gk, xk+1 − xk〉+ L

2 ‖xk+1 − xk‖2

≤ f(xk)− f(xk+1) +
θαk
2
‖∇f(xk)− gk‖2 +

1

2θαk
‖xk+1 − xk‖2 + L

2 ‖xk+1 − xk‖2.

4.8. Supplementary Material and Missing Proofs 91

for any θ > 0, where we used Young’s inequality in the last step. Plugging into (4.35) gives

(1 + αkλ)‖xk+1 − x?‖2 ≤ ‖xk − x?‖2 +
[
αkL+ 1

θ − 1
]
‖xk+1 − xk‖2 + 2αk[ϕ(x?)− ϕ(xk+1)]

+ 2αk
[
f(x?;Sk)− f(xk;Sk) + f(xk)− f(xk+1)

]
+ θα2

k‖∇f(xk)− gk‖2.

Applying conditional expectation, we have E[f(x?;Sk)|Fk] = f(x?) and

E[−f(xk;Sk) + f(xk)|Fk] = 0, E[‖∇f(xk)− gk‖2|Fk] ≤ β.

Moreover, by assumption, αkL+ 1
θ − 1 ≤ 0. Altogether, applying total expectation yields

(1 + αkλ)E‖xk+1 − x?‖2 ≤ E‖xk − x?‖2 + 2αkE[ψ(x?)− ψ(xk+1)] + θβα2
k

which proves (4.17).
Proof of a): let αk = 1

λ(k+k0) . Denote ∆k := E‖xk − x?‖2. Rearranging and summing (4.17),
we have

K−1∑

k=0

E[ψ(xk+1)− ψ(x?)] ≤
K−1∑

k=0

[
1

2αk
∆k − 1+αkλ

2αk
∆k+1 + θβαk

2

]
.

Plugging in αk, we have 1+αkλ
2αk

= λ(k+k0)
2 + λ

2 and thus

K−1∑

k=0

E[ψ(xk+1)− ψ(x?)] ≤
K−1∑

k=0

[
λ(k+k0)

2 ∆k − λ(k+1+k0)
2 ∆k+1

]
+ θβ

2

K−1∑

k=0

1
λ(k+k0) .

Dividing by K and using convexity of ψ,13 we have

E
[
ψ
(

1
K

K−1∑

k=0

xk+1
)
− ψ(x?)

]
≤ λk0

2K
‖x0 − x?‖2 + θβ

2λK

K−1∑

k=0

1
k+k0

.

Finally, as k0 ≥ 1, we estimate
∑K−1

k=0
1

k+k0
≤∑K−1

k=0
1

k+1 ≤ 1 + lnK by Lemma 4.13 and obtain
(4.18).
Proof of b): Similar to the proof above, we rearrange and sum (4.17) from k = 0, . . . ,K − 1,
and obtain

K−1∑

k=0

αkE[ψ(xk+1)− ψ(x?)] ≤ ‖x
0 − x?‖2

2
+
θβ
∑K−1

k=0 α2
k

2
.

We divide by
∑K−1

k=0 αk and use convexity of ψ in order to obtain the left-hand side of (4.19).
Moreover, by Lemma 4.13 we have

K−1∑

k=0

αk ≥ 2α(
√
K + 1− 1),

K−1∑

k=0

α2
k ≤ α2(1 + lnK).

Plugging in the above estimates, gives

E
[
ψ
(

1∑K−1
k=0 αk

K−1∑

k=0

αkx
k+1
)
− ψ(x?)

]
≤ ‖x0 − x?‖2

4α(
√
K + 1− 1)

+
θβα(1 + lnK)

4(
√
K + 1− 1)

.

13By assumption f is convex and therefore ψ is convex.

92 Chapter 4. A Stochastic Proximal Polyak Step Size

Proof of c): If f is µ–strongly–convex, then ψ is (λ+ µ)–strongly convex and

ψ(x?)− ψ(xk+1) ≤ −µ+λ
2 ‖xk+1 − x?‖2.

From (4.17), with αk = α, we get

(1 + α(µ+ 2λ))E‖xk+1 − x?‖2 ≤ E‖xk − x?‖2 + θβα2.

Doing a recursion of the above from k = 0, . . . ,K − 1 gives

E‖xK − x?‖2 ≤ (1 + α(µ+ 2λ))−K‖x0 − x?‖2 + θβα2
K∑

k=1

(1 + α(µ+ 2λ))−k

Using the geometric series,
∑K

k=1(1 + α(µ+ 2λ))−k ≤ 1+α(µ+2λ)
α(µ+2λ) − 1 = 1

α(µ+2λ) , and thus

E‖xK − x?‖2 ≤ (1 + α(µ+ 2λ))−K‖x0 − x?‖2 +
θβα

µ+ 2λ
.

4.8.3 Proof of Theorem 4.8

Proof of Theorem 4.8. In the proof, we will denote gk = ∇f(xk;Sk). By assumption f is ρ-
weakly convex and hence ψ is (ρ − λ)-weakly convex if ρ > λ and convex if ρ ≤ λ. Hence,
x̂k := proxηψ(xk) is well-defined for η < 1/(ρ− λ) if ρ > λ and for any η > 0 else. Note that x̂k

is Fk–measurable. We apply Lemma 4.6, (4.13) with x = x̂k. Due to Lemma 4.2 (ii) it holds

ψxk(x̂k;Sk) = fxk(x̂k;Sk) + ϕ(x̂k) ≤ f(x̂k;Sk) +
ρSk

2 ‖x̂k − xk‖2 + ϕ(x̂k).

Together with (4.14), this gives

(1 + αkλ)‖xk+1 − x̂k‖2 ≤(1 + αkρSk)‖xk − x̂k‖2 − ‖xk+1 − xk‖2

+ 2αk

(
ϕ(x̂k)− ϕ(xk+1) + f(x̂k;Sk)− f(xk;Sk)− 〈gk, xk+1 − xk〉

)

Analogous to the proof of Theorem 4.7, due to Lipschitz smoothness, for all θ > 0 we have

−f(xk;Sk)− 〈gk, xk+1 − xk〉 ≤ −f(xk;Sk) + f(xk)

− f(xk+1) + θαk
2 ‖∇f(xk)− gk‖2 +

[
1

2θαk
+ L

2

]
‖xk+1 − xk‖2.

Plugging in gives

(1 + αkλ)‖xk+1 − x̂k‖2 ≤ (1 + αkρSk)‖xk − x̂k‖2 + 2αk

(
ϕ(x̂k)− ϕ(xk+1)

)

+ 2αk
(
f(x̂k;Sk)− f(xk;Sk) + f(xk)− f(xk+1) + θαk

2 ‖∇f(xk)− gk‖2
)

+
[

1
θ + αkL− 1

]
‖xk+1 − xk‖2.

It holds E[f(x̂k;Sk) − f(xk;Sk)|Fk] = f(x̂k) − f(xk) and E[ψ(x̂k)|Fk] = ψ(x̂k). By Assump-
tion 10, we have E[‖gk −∇f(xk)‖2|Fk] ≤ β. Altogether, taking conditional expectation yields

(1 + αkλ)E[‖xk+1 − x̂k‖2|Fk] ≤ (1 + αkρ)‖xk − x̂k‖2 + 2αkE
[
ψ(x̂k)− ψ(xk+1)|Fk

]

+ α2
kθβ +

[
1
θ + αkL− 1

]
E[‖xk+1 − xk‖2|Fk].

4.8. Supplementary Material and Missing Proofs 93

Next, the definition of the proximal operator implies that almost surely

ψ(x̂k) + 1
2η‖x̂k − xk‖2 ≤ ψ(xk+1) + 1

2η‖xk+1 − xk‖2,
and hence

E
[
ψ(x̂k)− ψ(xk+1)|Fk

]
≤ E

[
1
2η‖xk+1 − xk‖2 − 1

2η‖x̂k − xk‖2|Fk
]
.

Altogether, we have

(1 + αkλ)E[‖xk+1 − x̂k‖2|Fk] ≤ (1 + αk(ρ− η−1))‖xk − x̂k‖2

+ α2
kθβ +

[
1
θ + αkL+ αkη

−1 − 1
]
E[‖xk+1 − xk‖2|Fk].

From assumption (4.21), we can drop the last term. Now, we aim for a recursion in envηψ. Using
that

1 + αk(ρ− η−1)

1 + αkλ
=

1 + αkλ− αkλ+ αk(ρ− η−1)

1 + αkλ
= 1 +

αk(ρ− η−1 − λ)

1 + αkλ
≤ 1 + αk(ρ− η−1 − λ),

we get

E[envηψ(xk+1)|Fk] ≤ E[ψ(x̂k) +
1

2η
‖xk+1 − x̂k‖2|Fk]

≤ ψ(x̂k) +
1

2η
‖xk − x̂k‖2

︸ ︷︷ ︸
=envηψ(xk)

+
1

2η

[
αk(ρ− η−1 − λ)

]
‖xk − x̂k‖2 +

α2
k

2η
θβ.

Now using ‖xk − x̂k‖ = η‖∇envηψ(xk)‖ we conclude

E[envηψ(xk+1)|Fk] ≤ envηψ(xk) +
η

2

[
αk(ρ− η−1 − λ)

]
‖∇envηψ(xk)‖2 +

α2
k

2η
θβ.

Due to (4.21), we have η−1 + λ − ρ > 0. Taking expectation and unfolding the recursion by
summing over k = 0, . . . ,K − 1, we get

K−1∑

k=0

αk
2 (1− η(ρ− λ))E‖∇envηψ(xk)‖2 ≤ envηψ(x0)− E[envηψ(xK)] +

K−1∑

k=0

α2
k

2η
θβ.

Now using that envηψ(xK) ≥ inf ψ almost surely, we finally get

K−1∑

k=0

αkE‖∇envηψ(xk)‖2 ≤
2(envηψ(x0)− inf ψ)

1− η(ρ− λ)
+

βθ

η(1− η(ρ− λ))

K−1∑

k=0

α2
k, (4.36)

which proves (4.22). Now choose αk = α√
k+1

and divide (4.36) by
∑K−1

k=0 αk. Using Lemma 4.13

for
∑K−1

k=0 αk and
∑K−1

k=0 α2
k, we have

min
k=0,...,K−1

E‖∇envηψ(xk)‖2 ≤
envηψ(x0)− inf ψ

α(1− η(ρ− λ))(
√
K + 1− 1)

+
βθ

2η(1− η(ρ− λ))

α(1 + lnK)

(
√
K + 1− 1)

.

Choosing αk = α√
K

instead, we can identify the left-hand-side of (4.36) as α
√
KE‖∇envηψ(xK∼)‖2.

Dividing by α
√
K and using

∑K−1
k=0 α2

k = α2, we obtain

E‖∇envηψ(xK∼)‖2 ≤
2(envηψ(x0)− inf ψ)

α(1− η(ρ− λ))
√
K

+
βθ

η(1− η(ρ− λ))

α√
K
.

94 Chapter 4. A Stochastic Proximal Polyak Step Size

4.8.4 Auxiliary Lemmas

Lemma 4.11. Consider the model fx(y; s) := max{f(x; s)+ 〈g, y−x〉, C(s)} where g ∈ ∂f(x; s)
and C(s) ≤ infz∈Rn f(z; s) holds for all s ∈ S. Then, update (4.2) is given as

xk+1 = xk − γkgk, γk =

{
0 if gk = 0,

min
{
αk,

f(xk;Sk)−C(Sk)
‖gk‖2

}
else.

where gk ∈ ∂f(xk;Sk).

Proof. We apply Lemma 4.1 with λ = 0. As f(xk;Sk) ≥ C(Sk), we have that τ+
k (from

Lemma 4.1) is equal to γk.

Lemma 4.12. Let c ∈ R, a, x0 ∈ Rn and β > 0 and let ϕ : Rn → R ∪ {∞} be proper, closed,
convex. The solution to

y+ = arg min
y∈Rn

(
c+ 〈a, y〉

)
+

+ ϕ(y) +
1

2β
‖y − x0‖2 (4.37)

is given by

y+ =





proxβϕ(x0 − βa), if c+ 〈a,proxβϕ(x0 − βa)〉 > 0,

proxβϕ(x0), if c+ 〈a,proxβϕ(x0)〉 < 0,

proxβϕ(x0 − βua) else, for u ∈ [0, 1] s.th. c+ 〈a,proxβϕ(x0 − βua)〉 = 0.

(4.38)

Remark 7. The first two conditions can not hold simultaneously due to uniqueness of the
solution. If neither of the conditions of the first two cases are satisfied, we have to find the root
of u 7→ c+〈a,proxβϕ(x0−βua)〉 for u ∈ [0, 1]. Due to strong convexity of the objective in (4.37),
we know that there exists a root and hence y+ can be found efficiently with bisection.

Proof. The objective of (4.37) is strongly convex and hence there exists a unique solution. Due
to [9, Thm. 3.63], y is the solution to (4.37) if and only if it satisfies first-order optimality, i.e.

∃u ∈ ∂(·)+(c+ 〈a, y〉) : 0 ∈ ua+ ∂ϕ(y) +
1

β
(y − x0). (4.39)

Now, as y = proxβϕ(z) ⇐⇒ 0 ∈ ∂ϕ(y) + 1
β (y − z), it holds

(4.39) ⇐⇒ ∃u ∈ ∂(·)+(c+ 〈a, y〉) : 0 ∈ ∂ϕ(y) +
1

β
(y − (x0 − βua))

⇐⇒ ∃u ∈ ∂(·)+(c+ 〈a, y〉) : y = proxβϕ(x0 − βua).

We distinguish three cases:

1. Let ȳ := proxβϕ(x0 − βa) and suppose that c + 〈a, ȳ〉 > 0. Then ∂(·)+(c + 〈a, ȳ〉) = {1}
and hence ȳ satisfies (4.39) with u = 1. Hence, y+ = ȳ.

2. Let ȳ := proxβϕ(x0) and suppose that c + 〈a, ȳ〉 < 0. Then ∂(·)+(c + 〈a, ȳ〉) = {0} and
hence ȳ satisfies (4.39) with u = 0. Hence, y+ = ȳ.

3. If neither the condition of the first nor of the second case of (4.38) are satisfied, then, as
(4.39) is a necessary condition for the solution y+, it must hold c + 〈a, y+〉 = 0. Hence,
there exists a u ∈ ∂(·)+(c+ 〈a, y+〉) = [0, 1] such that

c+ 〈a,proxβϕ(x0 − uβa)〉 = 0.

4.9. Supplementary Material on Numerical Experiments 95

Lemma 4.13. For any K ≥ 1 it holds

K−1∑

k=0

1
k+1 = 1 +

K−1∑

k=1

1
k+1 ≤ 1 +

∫ K−1

0

1
s+1ds = 1 + lnK,

K−1∑

k=0

1√
k+1
≥
∫ K

0

1√
s+1

ds = 2
√
K + 1− 2.

4.8.5 Model Equivalence for SGD and `2-regularization

In the unregularized case, the SGD update

xk+1 = xk − αkgk, gk ∈ ∂f(xk;Sk),

can be seen as solving (4.2) with the model

fx(y; s) = f(x; s) + 〈g, y − x〉, g ∈ ∂f(x; s).

Now, consider again the regularized problem (P) with ϕ(x) = λ
2‖x‖2 and update (4.5) .

On the one hand, the model ψx(y; s) = f(x; s) + ϕ(x) + 〈g + λx, y − x〉 with g ∈ ∂f(x; s)
yields

xk+1 = xk − αk(gk + λxk) = (1− αkλ)xk − αkgk. (4.40)

On the other hand, the model ψx(y; s) = f(x; s) + 〈g, y − x〉 + ϕ(y) with g ∈ ∂f(x; s) results
in

xk+1 = proxαkϕ(xk − αkgk) =
1

1 + αkλ

[
xk − αkgk

]
= (1− αk

1 + αkλ
λ)xk − αk

1 + αkλ
gk. (4.41)

Running (4.40) with step sizes αk = βk is equivalent to running (4.41) with step sizes αk
1+αkλ

=

βk ⇐⇒ αk = βk
1−βkλ . In this sense, standard SGD can be seen to be equivalent to proximal SGD

for `2–regularized problems.

4.9 Supplementary Material on Numerical Experiments

4.9.1 Matrix Factorization

Synthetic data generation. We consider the experimental setting of the deep matrix fac-
torization experiments in [88], but with an additional regularization. We generate data in the
following way: first sample B ∈ Rq×p with uniform entries in the interval [0, 1]. Then choose
υ ∈ R (which will be our targeted inverse condition number) and compute A = DB where D
is a diagonal matrix with entries from 1 to υ (equidistant on a logarithmic scale)14. In order
to investigate the impact of regularization, we generate a noise matrix E with uniform entries
in [−ε, ε] and set Ã := A � (1 + E). We then sample y(i) ∼ N(0, I) and compute the targets
b(i) = Ãy(i). A validation set of identical size is created by the same mechanism, but computing

its targets, denoted by b
(i)
val, via the original matrix A instead of Ã. The validation set contains

96 Chapter 4. A Stochastic Proximal Polyak Step Size

Name p q N υ r ε

matrix-fac1 6 10 1000 1e-5 4 0
matrix-fac2 6 10 1000 1e-5 10 0.05

Table 4.1: Matrix factorization synthetic datasets.

Nval = N samples.

Model and general setup. Problem (4.25) can be interpreted as a two-layer neural network
without activation functions. We train the network using the squared distance of the model
output and b(i) (averaged over a mini-batch) as the loss function. We run 50 epochs for different
methods, step size schedules and values of λ. For each different instance, we do ten independent
runs: each run has the identical training set and initialization of W1 and W2, but different
shuffling of the training set and different samples y(i) for the validation set. In order to allow a
fair comparison, all methods have identical train and validation sets across all runs. All metrics
are averaged over the ten runs. We always use a batch size of 20.

Plots for matrix-fac2. We plot additional results for Matrix Factorization, namely for the
setting matrix-fac2 of Table 4.1, see Fig. 4.11, Fig. 4.12, and Fig. 4.13. The results are
qualitatively very similar to the setting matrix-fac1.

0 10 20 30 40
Epoch

10−5

10−4

10−3

10−2

10−1

ψ
(x

k
)
−

m
in
k
ψ

(x
k
)

constant

0 10 20 30 40
Epoch

10−5

10−4

10−3

10−2

10−1
sqrt

α0

2.0

1.62

1.25

0.88

0.5

2.0

1.62

1.25

0.88

0.5

0.7

0.56

0.41

0.27

0.12

prox-sps

sps

sgd

Figure 4.11: Objective function for the Matrix Factorization problem (4.25), with constant

(left) and sqrt (right) step size schedule and several choices of initial values. Here mink ψ(xk)
is the best objective function value found over all methods and all iterations.

14Note that [88] uses entries from 1 to υ on a linear scale which, in our experiments, did not result in large
condition numbers even if υ is very small.

4.9. Supplementary Material on Numerical Experiments 97

0 10 20 30 40
Epoch

10−2

10−1

100

V
al

id
at

io
n

E
rr

or

constant

0 10 20 30 40
Epoch

10−2

10−1

100

sqrt
α0

2.0

1.62

1.25

0.88

0.5

2.0

1.62

1.25

0.88

0.5

0.7

0.56

0.41

0.27

0.12

prox-sps

sps

sgd

Figure 4.12: Validation error for the Matrix Factorization problem (4.25), with constant (left)
and sqrt (right) step size schedule and several choices of initial values.

0 20 40

Epoch

0.00025

0.00050

0.00075

0.00100

0.00125

0.00150

O
b

je
ct

iv
e
ψ

(x
k
)

λ = 1e− 05

0 20 40

Epoch

0.0010

0.0015

0.0020

0.0025

0.0030

0.0035

λ = 0.0001

0 20 40

Epoch

0.010

0.015

0.020

0.025

λ = 0.001

0 20 40

Epoch

0.10

0.15

0.20

0.25

λ = 0.01

0 20 40

Epoch

1.0

1.5

2.0

2.5

λ = 0.1

prox-sps, sqrt, α0=10.0

prox-sps, sqrt, α0=5.0

prox-sps, sqrt, α0=1.0

sps, sqrt, α0=10.0

sps, sqrt, α0=5.0

sps, sqrt, α0=1.0

0 20 40

Epoch

0.0063

0.0064

0.0065

0.0066

V
al

id
at

io
n

E
rr

or

λ = 1e− 05

0 20 40

Epoch

0.0065

0.0070

0.0075

0.0080

λ = 0.0001

0 20 40

Epoch

0.006

0.008

0.010

0.012

0.014

0.016

0.018

λ = 0.001

0 20 40

Epoch

0.02

0.04

0.06

0.08

0.10

0.12

λ = 0.01

0 20 40

Epoch

0.00

0.25

0.50

0.75

1.00

1.25

λ = 0.1

prox-sps, sqrt, α0=10.0

prox-sps, sqrt, α0=5.0

prox-sps, sqrt, α0=1.0

sps, sqrt, α0=10.0

sps, sqrt, α0=5.0

sps, sqrt, α0=1.0

Figure 4.13: Objective function value and validation error over the course of optimization. For
the validation error, we plot a rolling median over five epochs in order to avoid clutter.

4.9.2 Imagenet32 Experiment

Imagenet32 contains 1,28 million training and 50,000 test images of size 32 × 32, from 1,000
classes. We train the same ResNet110 as described in Section 4.6.4 with two differences: we
exchange the output dimension of the final layer to 1,000 and activate batch norm. We use
batch size 512. For this experiment we only run one repetition, simply due to the fact that a
single run takes almost one day to run on a GPU.

Similar to the setup in Section 4.6.4, we run all methods for three different values of λ. For
AdamW, we use a constant learning rate 0.001, for SGD, SPS, and ProxSPS we use the sqrt-schedule
and α0 = 1. The validation accuracy and model norm are plotted in Fig. 4.14: we can observe
that all methods perform similarly well in terms of accuracy. However, AdamW is more sensitive
with respect to the choice of λ and the norm of its iterates differs significantly from the other
methods. Further, using an adaptive step size is advantageous: from Fig. 4.15, we see that the
adaptive step size is active in the initial iterations, which leads to a faster learning of (Prox)SPS
in the initial epochs compared to SGD.

98 Chapter 4. A Stochastic Proximal Polyak Step Size

0 20 40

Epoch

0.0

0.2

0.4

0.6

0.8

1.0

V
a
li
d

a
ti

o
n

A
cc

u
ra

cy

λ = 5e− 06

0 20 40

Epoch

0.0

0.2

0.4

0.6

0.8

1.0
λ = 5e− 05

0 20 40

Epoch

0.0

0.2

0.4

0.6

0.8

1.0
λ = 0.0005

adamw, constant, α0=0.001 sps, sqrt, α0=1.0 prox-sps, sqrt, α0=1.0 sgd, sqrt, α0=1.0

0 20 40

Epoch

150

200

250

300

350

‖x
k
‖

λ = 5e− 06

0 20 40

Epoch

110

115

120

125

130

135

λ = 5e− 05

0 20 40

Epoch

46

48

50

52

54
λ = 0.0005

adamw, constant, α0=0.001 sps, sqrt, α0=1.0 prox-sps, sqrt, α0=1.0 sgd, sqrt, α0=1.0

Figure 4.14: ResNet110 for Imagenet32: Validation accuracy as five-epoch running median
(top) and model norm (bottom) for three values of λ.

Figure 4.15: ResNet110 for Imagenet32: Adaptive step sizes for SPS and ProxSPS.

4.9. Supplementary Material on Numerical Experiments 99

10−4

λ

6.4× 10−1

6.6× 10−1

6.8× 10−1

7× 10−1

7.2× 10−1

7.4× 10−1

V
al

id
at

io
n

E
rr

or

adamw, constant, α0=0.001

prox-sps, constant, α0=5.0

prox-sps, constant, α0=10.0

sgd, constant, α0=1.0

sgd, constant, α0=5.0

sps, constant, α0=5.0

sps, constant, α0=10.0

(a)

10−6 10−4 10−2 100 102

λ

10−6

10−5

10−4

10−3

10−2

10−1

100

101

m
in
ψ
−

1 N

∑
N i=

1

(in
f z
f i

(z
)

+
λ 2
‖z
‖2
)

(b)

Figure 4.16: (a) Matrix Completion: Validation error as a function of the regularization pa-
rameter λ. Shaded area is one standard deviation (computed over three independent runs).
For all values, we take the median over epochs [90, 100]. (b) Interpolation constant for a ridge
regression problem for varying regularization parameter λ. See Section 4.9.3 for details.

4.9.3 Interpolation Constant

We illustrate how the interpolation constant σ2 behaves if it would be computed for the regu-
larized loss `i(x) = fi(x) + λ

2‖x‖2 (cf. also Section 4.4.2). We do a simple ridge regression exper-
iment. Let A ∈ RN×n be a matrix with row vectors ai ∈ Rn, i ∈ [N]. We set N = 80, n = 100
and generate x̂ ∈ Rn with entries drawn uniformly from [0, 1]. We compute b = Ax̂. In this
case, we have fi(x) = 1

2(a>i x− bi)2 and f(x) = 1
N

∑N
i=1 fi(x).

If one would apply the theory of SPSmax for the regularized loss functions `i with estimates
`i = 0, the constant σ2 =

(
minx∈Rn f(x) + ϕ(x)

)
− 1

N

∑N
i=1 infz `i(z) determines the size of the

constant term in the convergence results of [88,109]. We compute minx∈Rn f(x)+ϕ(x) by solving
the ridge regression problem. Further, the minimizer of `i is given by (aia

>
i + λId)−1aibi. We

plot σ2 for varying λ in Fig. 4.16b to verify that σ2 grows significantly if λ becomes large (even
if the loss could be interpolated perfectly, i.e. infx f(x) = 0). We point out that the constant
σ2 does not appear in our convergence results Theorem 4.7 and Theorem 4.8, and hence these
results are not negatively affected when σ2 is large.

100 Chapter 4. A Stochastic Proximal Polyak Step Size

Chapter 5

Momentum Models for Adaptive Learn-
ing Rates

The chapter is mainly based on the article

[134] F. Schaipp, R. Ohana, M. Eickenberg, A. Defazio, and R. M. Gower, MoMo:
Momentum Models for Adaptive Learning Rates, 41st International Conference on Ma-
chine Learning, 2024, https://proceedings.mlr.press/v235/schaipp24a.html.

The original idea for this project emerged during a meeting with Robert Gower and Aaron De-
fazio during the author’s research visit at the Flatiron Institute, New York, in fall 2022. The
experimental results presented below have been a truly collaborative effort: the Imagenet32

experiments were mainly run by Michael Eickenberg, the German-to-English translation experi-
ment was conducted by Ruben Ohana and the DLRM results are due to Aaron Defazio. The idea
for the online lower bound estimation was initially proposed by Robert M. Gower.

5.1 Introduction

The computational cost of training machine learning models can be attributed to a large por-
tion to hyperparameter tuning [25]. This is because for a new task, for example on an unknown
dataset and/or architecture, many different training runs need to be conducted in order to
determine the best hyperparameters for model architecture, loss function or data processing.
However, for each of those runs, the optimal learning rate might be different. Selecting the best
learning rate (schedule) for each setting individually will often exceed the computational/time
budget. As a consequence, from a practitioners perspective, an optimizer that performs reason-
ably well in default settings across many different problems is appealing.

The goal of this chapter is to develop methods which are superior when it comes to out-of-the-
box performance (or having only small tuning budgets). We again consider problems of the form
(P) with ϕ = 0, given by

min
x∈Rn

f(x), f(x) := E[f(x;S)], (5.1)

where x denotes the learnable parameters, S ∈ S represents the distribution of input data,
and f(x; s) is the loss function for s ∈ S. For a formal description of this setup we refer to
Section 2.2.

101

https://proceedings.mlr.press/v235/schaipp24a.html

102 Chapter 5. Momentum Models for Adaptive Learning Rates

Chapter 4 gave a glimpse on how to tackle the fundamental problem of learning rate tuning: our
philosophy is to design adaptive learning-rate methods which makes use of the specific problem
structure at hand, that is, minimizing the expectation of non-negative loss functions. The
resulting method ProxSPS, or SPS for the unregularized case, can be summarized as linearize
and truncate in order to obtain a model of f(x; s). However, since our objective is to minimize
f(x) = E[f(x;S)], can we construct a model directly for f(x), and not f(x; s)? That is, in each
iteration k ∈ N, select a model mk and step size αk > 0, and update

xk+1 = arg min
x∈Rn

mk(x) +
1

2αk
‖x− xk‖2. (5.2)

The model mk needs to satisfy two properties: first, it should be a good approximation of the
loss f(x), at least locally around xk. Second, the update (5.2) should be easy to compute, ideally
in closed form.

The model-based stochastic optimization literature [6, 26] mainly focuses on models which use
only the last sample Sk (cf. Section 2.7). One approach beyond this, is to use the pointwise
maximum of past linearizations as a model of f(x). In iteration k ∈ N, this would lead to

mk(x) = max
j=1,...,k

{
f(xj ;Sj) + 〈∇f(xj ;Sj), x− xj〉

}
,

which is resembling a bundle method [111]1. It has the advantage that it uses past information
to better approximate the loss, at the cost of update (5.2) not being computable in closed form.
In fact, [111] proposes to solve (5.2) iteratively via a dual formulation.

In this chapter, we take a different route, proposing a model mk which uses loss values and
gradients from the entire history of iterations, and where (5.2) can be computed in closed form.
One of the main insights is to use a weighted average of linearizations, followed by truncation.
This will lead to the central method of this chapter, called MoMo.

Problem setup. We assume throughout that f(x; s) ≥ 0 for all x ∈ Rn, s ∈ S, which is
the case for most loss functions2. We also assume that f(·; s) is a continuously differentiable
function for all s ∈ S, that there exists a solution x? to (5.1) and denote the optimal value by
f? := f(x?) ∈ R.

Remark 8. For what follows, in particular the derivation of the MoMo methods, the assumption
on differentiability is not essential. We could instead assume f(·; s) to be locally Lipschitz and
use an element of the Clarke subdifferential instead (as we did in Chapter 4). We choose to
make the assumption on differentiability merely to keep notation simple because the contents of
this chapter are focusing more on application aspects.

5.2 Background and Contributions

Momentum and model-based methods. The update formula of many stochastic methods such
as SGD can be interpreted by taking a proximal step with respect to a model of the objective
function (cf. Section 2.7 and [6, 26]). Independently of this, (heavy-ball) momentum [116, 139]
is incorporated into many methods in order to boost performance.

1For simplicity we take the sum over 1, . . . , k but [111] is more general in using arbitrary bundles.
2 We choose zero as a lower bound for simplicity. Our methods could handle any constant lower bound similarly

to Chapter 4.

5.2. Background and Contributions 103

Contributions. Here we give a new interpretation of momentum, namely that it can be motivated
as a model of the objective function f(x) by averaging sampled loss functions. This allows us
to naturally combine momentum with other model-based techniques.

Lower bounds and truncated models. One of the main advantages of the model-based view-
point [6, 26] is that it illustrates how to use knowledge of a lower bound of the function via
truncation. Methods using this truncated model are often easier to tune [6, 95,132].

Contributions. By combining the model-based viewpoint of momentum with a truncated model
we arrive at our new MoMo method. Since we are interested in loss functions, we can use zero
as a lower bound estimate in many learning tasks. However, for some tasks such as training
transformers, the minimal loss is often non-zero. If the non-zero lower bound is known, we
can straightforwardly incorporate it into our model. For unknown lower bound values we also
develop new online estimates of a lower bound in Section 5.6. Our estimates can be applied
to any stochastic momentum-based method, and thus may be of independent interest. Our
main influence for this technique was D-adaptation [28] which develops an online estimate of
the distance to the solution which is used to set the learning rate.

Adaptive methods. In practice, tuning the learning rate is intricate and computationally ex-
pensive. Adam [74] (or AdamW [89]) is often easier to tune and now being used routinely to
train DNNs across a variety of tasks. This success of Adam has incentivised the development
of many new (adaptive) learning-rate techniques, including approaches based on coin-betting
[107, 108], variants of AdaGrad [28, 36], and stochastic line search [155]. Recent work also com-
bines parameter-free coin betting methods with truncated models [19].

Contributions. Our new adaptive learning rate can be combined with any momentum based
method, and even allows for a preconditioner to be used. For example, Adam is a momentum
method that makes use of a preconditioner (cf. Section 2.6). By using this viewpoint, together
with a lower bound, we derive MoMo-Adam, which is a variant of Adam that uses our adaptive
learning rates.

Polyak step sizes. For convex, non-smooth optimization, Polyak proposed an adaptive step
size using the current objective function value f(xk) and the optimal value f? [117]. Recently,
the Polyak step size has been adapted to the stochastic setting [10,51,88,109]. For example, we
have previously introduced SPSmax [88], given by

xk+1 = xk −min
{
γb,

f(xk;Sk)− C(Sk)

c‖∇f(xk;Sk)‖2
}
∇f(xk;Sk),

where c, γb > 0 and C(Sk) ≤ infz f(z;Sk). The stochastic Polyak step size is closely related to
stochastic model-based proximal point methods (see Chapter 4 and [6, 111]).

Contributions. Our proposed method MoMo can be seen as an extension of the Polyak step
size that also incorporates momentum. This follows from the viewpoint of the Polyak step
size [111, 132] as a truncated model-based method. In particular, MoMo with no momentum is
equal to SPS (cf. Algorithm 9). It has been previously an open question how to ideally combine
momentum and Polyak steps: for instance, [7] shows that knowledge of f? can replace knowledge
of the strong convexity parameter for choosing the momentum parameter. Concurrently to
the work presented in this chapter, [156] proposed a momentum version of Polyak’s step size,
effectively replacing the stochastic gradient by the momentum gradient in SPSmax.

104 Chapter 5. Momentum Models for Adaptive Learning Rates

Numerical findings. We find that MoMo consistently improves the sensitivity with respect to
hyperparameter choice as compared to SGD-M (SGD with momentum). The same is true for
MoMo-Adam compared to Adam. Our experiments cover image classification tasks on MNIST,
CIFAR10, CIFAR100 and Imagenet, a recommender system on the Criteo dataset, an encoder-
decoder transformer for the translation task IWSLT14, and a diffusion model.

Furthermore, we find that the adaptive learning rate of MoMo(-Adam) for some tasks automatically
performs a warm-up at the beginning of training and a decay in later iterations, two techniques
often used in order to improve training [147].

5.3 Model-Based Momentum Methods

Let us recall that the SGD update is (5.2) with mk(x) = f(xk;Sk) + 〈∇f(xk;Sk), x− xk〉. This
has two issues: first, it approximates a single stochastic function f(x;Sk), as opposed to the
full loss f(x). Second, this model can be negative even though our loss functions are always
non-negative. Here, we develop a model directly for f(x), and not f(x;Sk), which also takes
into account lower bounds on the function value.

5.3.1 Model-Based Viewpoint of Momentum

Suppose we have sampled inputs S1, . . . , Sk and past iterates x1, . . . , xk. We can use these
samples to build a better model of f(x) by averaging past function evaluations as follows

f(x) = E[f(x;S)] ≈ 1
ρk

k∑

j=1

ρj,kf(x;Sj), (5.3)

where ρj,k ≥ 0 and ρk :=
∑k

j=1 ρj,k. Thus, the ρ−1
k ρj,k represent a discrete probability mass

function over the previous samples. The obvious choice for ρj,k would be uniform averaging,
however, as we will show, a more natural choice will be an exponentially weighted average in
order to put more weight on recent iterates. The issue with (5.3) is that it is expensive to
evaluate f(x;Sj) for j = 1, . . . , k, which we would need to do at every iteration. Instead, we
approximate each f(x;Sj) by linearizing f(x;Sj) around xj , which was the point where it was
last evaluated. This leads to the further approximation

f(x;Sj) ≈ f(xj ;Sj) + 〈∇f(xj ;Sj), x− xj〉, for j = 1, . . . , k. (5.4)

Using (5.3) and the linear approximations in (5.4) we can approximate f(x) as follows

f(x) ≈ 1
ρk

k∑

j=1

ρj,k
[
f(xj ;Sj) + 〈∇f(xj ;Sj), x− xj〉

]
= mk(x). (5.5)

If we plug in the above model mk(x) into (5.2), then the resulting update is:

dk :=

k∑

j=1

ρj,k∇f(xj ;Sj), xk+1 = xk − αk
ρk
dk. (5.6)

Now choosing ρj,k such that dk is an exponentially weighted average (with factor β ∈ [0, 1)),
(5.6) is equal to SGD-M, given by

dk = βdk−1 + (1− β)∇f(xk;Sk), xk+1 = xk − αkdk.

5.3. Model-Based Momentum Methods 105

This gives a new viewpoint of (heavy-ball) momentum. Next we incorporate a lower bound into
this model so that, much like the loss function, it cannot become negative.

5.3.2 Deriving MoMo

Since we know the loss is lower-bounded by zero, we will also impose a lower bound on the
model (5.5). Though we could use zero, we will use an estimate fk? ≥ 0 of the lower bound to
allow for cases where f? may be far from zero. Imposing a lower bound of fk? gives the following
model

f(x) ≈ max
{

1
ρk

k∑

j=1

ρj,k
[
f(xj ;Sj) + 〈∇f(xj ;Sj), x− xj〉

]
, fk?

}
=: mk(x). (5.7)

For overparametrized machine-learning models the minimum value f(x?) is often close to zero [51,
91]. Thus, choosing fk? = 0 in every iteration will work well (as we verify later in our exper-
iments). For tasks where fk? = 0 is too loose of a bound, in Section 5.6 we develop an online
estimate for fk? based on available information. Using the model (5.7), we now compute the
proximal update

xk+1 = arg min
y∈Rn

mk(y) +
1

2αk
‖y − xk‖2. (5.8)

Because mk(y) is a simple piece-wise linear function, update (5.8) has a closed form solution, as
shown in the following lemma.

Lemma 5.1 (MoMo update). Let

dk :=

k∑

j=1

ρj,k∇f(xj ;Sj), f̄k :=

k∑

j=1

ρj,kf(xj ;Sj), γk :=

k∑

j=1

ρj,k〈∇f(xj ;Sj), x
j〉. (5.9)

Define

hk :=

k∑

j=1

ρj,k[f(xj ;Sj) + 〈∇f(xj ;Sj), x
k − xj〉] = f̄k + 〈dk, xk〉 − γk. (5.10)

Using model (5.7), the closed form solution to (5.8) is

xk+1 = xk −min
{αk
ρk
,

(
f̄k + 〈dk, xk〉 − γk − ρkfk?

)
+

‖dk‖2
}

=:τk

dk. (5.11)

In the above, we define τk := 0 if dk = 0. Moreover, it holds

mk(x
k+1) =

{
1
ρk

[hk − τk‖dk‖2] if hk ≥ ρkfk? ,
fk? else.

(5.12)

Proof. We have that

mk(y) = max
{
ρ−1
k (hk + 〈dk, y − xk〉), fk?

}
=
(
ρ−1
k (hk + 〈dk, y − xk〉)− fk?

)
+

+ fk? . (5.13)

106 Chapter 5. Momentum Models for Adaptive Learning Rates

Using (5.13), dropping the constant term fk? , and multiplying with ρk, problem (5.8) is equivalent
to

xk+1 = arg min
y∈Rn

(
hk + 〈dk, y − xk〉 − ρkfk?

)
+

+
ρk

2αk
‖y − xk‖2.

Applying Lemma 4.9 with β ← ρ−1
k αk, c ← hk − ρkfk? , a ← dk and y0 ← xk gives the result.

Equation (5.12) follows from (4.29), and using that

mk(x
k+1) = fk? +

1

ρk

(
hk + 〈dk, y − xk〉 − ρkfk?

)
+

= fk? +
1

ρk
φ(xk+1).

Finally, it remains to select the averaging coefficients ρj,k. Here we will use an exponentially
weighted average that places more weight on recent samples. Aside from working well in practice
on countless real-world examples, using an exponentially weighted average can be motivated in
the setting of the proximal update (5.8). Recent iterates will most likely have gradients and
loss values that are closer to the current iterate. Since we want the model mk(y) to be a
reasonably accurate approximation of f(y) when y is close to the current iterate, this justifies
using averaging weights ρj,k that put more weight on the recent iterates, i.e. ρj,k is big for j
close to k.

We give two options for exponentially weighted averaging next.

−4 −2 0 2

0

2

4

6

xk−3

xk−2
xk−1

xk

f(x)

xk+1
MoMo

xk+1
SGDM

mk(x)

mk(x) + 1
2αk
‖x− xk‖2

f(xj) + 〈∇f(xj), x− xj〉

(a) Convex loss

−4 −2 0 2

0

2

4

6

xk−3

xk−2

xk−1

xk

f(x)

xk+1
MoMo

xk+1
SGDM

mk(x)

mk(x) + 1
2αk
‖x− xk‖2

f(xj) + 〈∇f(xj), x− xj〉

(b) Non-convex loss

Figure 5.1: Illustration of the MoMo model (blue curves) for two different loss functions with
learning rate αk = 5. Due to truncation, the new iterate of MoMo (blue point) is closer to the
minimum than SGD-M (orange point). The right plot shows how MoMo takes a small step when
gradients are steep, whereas SGD-M takes a large step and ends up far from the solution as a
result.

5.3.3 The Coefficients ρj,k: To Bias or not to Bias

We now choose ρj,k ≥ 0 such that we can update f̄k, dk and γk in (5.9) on the fly, storing only
two scalars and one vector.

Exponentially Weighted Average. Let β ∈ [0, 1). Starting with ρ1,1 = 1, and for k ≥ 2 define

ρj,k = βρj,k−1 for j ≤ k − 1 and ρj,k = 1− β for j = k. Then, ρk =
∑k

j=1 ρj,k = 1 for all k ∈ N

5.3. Model-Based Momentum Methods 107

and the quantities in (5.9) are exponentially weighted averages. A proof is given in Lemma 5.7.
As a consequence, we can update f̄k, dk and γk on the fly as given in lines 3–5 in Algorithm 12.
Combining update (5.11) and the fact that ρk = 1, we obtain Algorithm 12, which we call
MoMo.

Algorithm 12 MoMo: Model-based Momentum method.

Require: x1 ∈ Rn, αk > 0, β ∈ [0, 1), (fk?)k∈N ⊂ R.
Default settings: αk = 1, β = 0.9 and (fk?)k∈N = 0.

1: Initialize: f̄0 = f(x1;S1), d0 = ∇f(x1;S1), γ0 = 〈d0, x
1〉

2: for k = 1, . . . ,K − 1 do
3: f̄k = (1− β)f(xk;Sk) + βf̄k−1

4: γk = (1− β)〈∇f(xk;Sk), x
k〉+ βγk−1

5: dk = (1− β)∇f(xk;Sk) + βdk−1

6: Set τk = 0 if dk = 0 and else τk = min
{
αk,

(f̄k+〈dk,xk〉−γk−fk?)+
‖dk‖2

}

7: Update
xk+1 = xk − τkdk.

8: end for
9: return xK

Remark 9. The adaptive learning rate τk in (5.11) determines the size of the step and can
vary in each iteration even if αk is constant. The (user-specified) learning rate αk is used to
cap the adaptive learning rate τk.

Remark 10 (Complexity). MoMo has the same order of iteration complexity and memory foot-
print as SGD-M. Indeed, MoMo only stores two additional scalars γk and f̄k as compared to SGD-M.
The additional O(d) costs are two inner products on lines 4 and 6, and one vector norm on line
6.

Let us mention a special case: For β = 0 (no momentum), we have γk = 〈∇f(xk;Sk), x
k〉 =

〈dk, xk〉 and f̄k = f(xk;Sk). Consequently hk = f(xk;Sk), and in this special case, MoMo is
equivalent3 to SPSmax.

Fig. 5.1 illustrates how the MoMo model (5.8) approximates a convex function (left) and a non-
convex function (right). In both examples, the resulting update xk+1

MoMo in Fig. 5.1 attains a lower
loss, as compared to a step of SGD-M. However, this is a toy example and only serves to illustrate
how MoMo can result in a different learning dynamic than SGD-M; a proper numerical comparison
will follow later.

Averaging with Bias Correction. Alternatively, we can choose ρj,k = (1 − β)βk−j for j =
1, . . . , k, as it is used in Adam [74]. This gives ρk = 1− βk 6= 1. We discuss this choice for MoMo

in Section 5.9.2 and will use it later for MoMo-Adam. We have not experienced any significant
performance difference in our experiments between switching bias correction on or off.

3This equivalence requires setting γb ← αk, c← 1, and assuming fk? = C(Sik).

108 Chapter 5. Momentum Models for Adaptive Learning Rates

5.4 Weight Decay and Preconditioning

Next, we show how to include weight decay [77] in the MoMo framework. Weight decay can be
seen as adding a squared `2-regularization to the objective function, in other words, instead
of (5.1) we solve

min
x∈Rn

f(x) +
λ

2
‖x‖2, (5.14)

where f(x) is again the loss function and λ ≥ 0.

The technique to adapt the model-based framework to include weight decay is essentially what
has been presented in Chapter 4. That is, we build a model mk for the loss f and keep the
`2-regularization outside of the model. Hence, equation (5.8) is modified to

xk+1 = arg min
y∈Rn

mk(y) +
λ

2
‖y‖2 +

1

2αk
‖y − xk‖2. (5.15)

Finally, for the proximal term 1
2αk
‖y − xk‖2 the Euclidean norm may often not be best suited.

Many popular methods such as AdaGrad or Adam are based on using a preconditioner for the
proximal step. Hence, we allow for an arbitrary norm defined by a symmetric, positive definite
matrix Dk ∈ Rn×n, i.e. ‖x‖2Dk

= 〈x,Dkx〉. We can now use Dk to change the metric within our
proximal method via

xk+1 = arg min
y∈Rn

mk(y) +
λ

2
‖y‖2Dk

+
1

2αk
‖y − xk‖2Dk

. (5.16)

This update (5.16) still enjoys a closed form solution, as we show next.

Lemma 5.2. Using model (5.7), the closed form solution to (5.16) is given by

τk = min
{αk
ρk
,

(
(1 + αkλ)(f̄k − ρkfk? − γk) + 〈dk, xk〉

)
+

‖dk‖2D−1
k

}
, (5.17)

xk+1 =
1

1 + αkλ

[
xk − τkD−1

k dk

]
. (5.18)

In the above, we define τk := 0 if dk = 0. Moreover, it holds

mk(x
k+1) =





1
ρk

[
hk − αkλ

1+αkλ
〈dk, xk〉 − τk

1+αkλ
‖dk‖2D−1

k

]
if hk − ρkfk? ≥ αkλ〈dk,xk〉

1+αkλ
,

fk? else.
(5.19)

Proof. We use again (5.13). Dropping the constant term fk? , and multiplying with ρk, problem
(5.16) is equivalent to

xk+1 = arg min
y∈Rn

(
hk + 〈dk, y − xk〉 − ρkfk?

)
+

+
ρk

2αk
‖y − xk‖2Dk

+
ρkλ

2
‖y‖2Dk

.

Now applying Lemma 4.10 with y0 ← xk, a← dk, c← hk−ρkfk? , λ← ρkλ, β ← ρ−1
k αk and D←

Dk, we obtain the update. Equation (5.19) follows again from mk(x
k+1) = fk? + ρk

−1φ(xk+1)
and (4.33).

Lemma 5.2 shows how to incorporate weight decay in MoMo: we replace line 7 in Algorithm 12 by
(5.17)-(5.18) with Dk = Idn and ρk = 1. In this case, if β = 0 (no momentum) then MoMo with
weight decay recovers ProxSPS as special case, the proximal version of the stochastic Polyak
step size presented in Chapter 4.

5.5. Convergence Analysis 109

Deriving MoMo-Adam. Using Lemma 5.2 we can obtain an Adam-version of MoMo by defining Dk

as the diagonal preconditioner of Adam. Recall the notation 1n for a n-dimensional vector of
ones, and Diag(v) for a diagonal matrix with diagonal entries v ∈ Rn. We use � and

√
v for

elementwise multiplication and square-root operations. Denoting gk = ∇f(xk;Sk), choose

vk = (1− β2)vk−1 + β2(gk � gk), Dk = Diag(ε1n +
√
vk/(1− β2)k),

where β2 ∈ [0, 1), ε > 0. Using this diagonal preconditioner together with Lemma 5.2 gives
Algorithm 13, called MoMo-Adam. Note that here we choose ρj,k = (1−β)βk−j (cf. Section 5.3.3)
which gives the standard averaging scheme of Adam.

Algorithm 13 MoMo-Adam: Adaptive learning rates for Adam.

Require: x1 ∈ Rn, αk > 0, β1, β2 ∈ [0, 1), ε > 0, λ ≥ 0, and (fk?)k∈N ⊂ R.
Default settings: αk = 10−2, (β1, β2) = (0.9, 0.999), ε = 10−8, and (fk?)k∈N = 0.

1: Initialize: f̄0 = 0, d0 = 0, γ0 = 0, and v0 = 0.
2: for k = 1, . . . ,K − 1 do
3: Compute gk = ∇f(xk;Sk) and set dk = (1− β1)gk + β1dk−1.
4: vk = β2vk−1 + (1− β2)(gk � gk)
5: Dk = Diag

(
ε1n +

√
vk/(1− βk2)

)

6: f̄k = (1− β1)f(xk;Sk) + β1f̄k−1

7: γk = (1− β1)〈gk, xk〉+ β1γk−1

8: Set τk = 0 if dk = 0 and else τk = min
{

αk
1−βk1

,

(
(1+λαk)(f̄k−γk−(1−βk1)fk?)+〈dk,xk〉

)
+

‖dk‖2
D−1
k

}

9: Update

xk+1 =
1

1 + αkλ

[
xk − τkD−1

k dk

]

10: end for
11: return xK

Extensions. We focused on SGD-M and Adam as they are the most widely used methods in
the community. From Lemma 5.2 it is however obvious how to derive a MoMo version for any
preconditioned momentum method. In fact, many recently proposed variations of Adam, often
claiming to be superior in performance, fall into this category. For example, consider AdaBelief
[168], which is equal to Adam up to the choice of preconditioner, given by

vk = β2vk−1 + (1− β2)(gk − dk)2 + ε,

Dk = Diag
(
ε1n +

√
vk/(1− βk2)

)
.

Applying Lemma 5.2 with this preconditioner would lead to MoMo-AdaBelief.

5.5 Convergence Analysis

In this section, we present a convergence theorem for MoMo in the convex case. We first show
why proving convergence is non-trivial, in the sense that one can not simply apply the theory
of model-based stochastic optimization established in [6, 26]. If we compute the model value
at the current iterate mk(x

k), we observe that for (5.7) we have E[mk(x
k)] 6= f(xk) due to the

110 Chapter 5. Momentum Models for Adaptive Learning Rates

averaging of linearizations. From this we conclude that the standard model-based theory can
not be applied (cf. Proposition 4.3, (B2)).

Thus, we need to take an alternative path: below, we prove a monotonicity result for the convex
case, i.e. we show that MoMo reduces the distance to the solution in every iteration (almost
surely), if one chooses fk? in a specific way. In particular, the iterates of MoMo are almost surely
contained in a bounded set. This is surprising, since no such result exists for standard SGD to the
best of our knowledge [46]. Finally, we will show a convergence rate of O(1√

K
) in the convex case

if an interpolation condition holds in Theorem 5.4. Importantly, this does not require neither
smoothness nor globally bounded gradients, due to the fact that the iterates are almost surely
bounded.

Let us define the quantity

f̄k? :=
1

ρk

k∑

j=1

ρj,kf(x?;Sj). (5.20)

It is somewhat clear that it will be only possible to prove convergence if fk? is chosen appropiately:
it turns out (from the proof of the below lemma) that the choice fk? = f̄k? allows for a monotonous
decrease of the distance to the solution in the convex setting.

Lemma 5.3. Consider the iterates generated by the general MoMo update (cf. Lemma 5.2) with
no weight decay (λ = 0) and with fk? = f̄k? (defined as in (5.20)). That is, if dk = 0 set τk = 0
and else

τk = min
{αk
ρk
,
(f̄k − ρkf̄k? − γk + 〈dk, xk〉)+

‖dk‖2D−1
k

}
,

xk+1 = xk − τkD−1
k dk.

Let f(·; s) be convex for each s ∈ S and let x? ∈ arg minx∈Rn f(x). Then, it holds almost surely

‖xk+1 − x?‖2Dk
≤ ‖xk − x?‖2Dk

− τk(hk − ρkf̄k?)+. (5.21)

To prove convergence, we rely on the following interpolation assumption:

f(x?; s) = inf
x
f(x; s) = f? for all s ∈ S. (5.22)

Theorem 5.4. Let f(·; s) be convex for every s ∈ S and let x? ∈ arg minx∈Rn f(x). Assume
that (5.22) holds. For K ∈ N, let (xk)k∈[K] be the iterates of Algorithm 12 (MoMo) with fk? = f?

for all k ∈ [K] and assume that dk 6= 0 for all k ∈ [K].4 Define

B := {x ∈ Rn | ‖x− x?‖ ≤ ‖x1 − x?‖}.

Assume that there exists G > 0 such that ‖∇f(x; s)‖2 ≤ G2 <∞ for all x ∈ B, s ∈ S. Further,
assume that

αk ≥
(1− β)

G2
max

x∈B, s∈S
[f(x; s)− f?]. (5.23)

Then, it holds

min
k=1,...,K

E[f(xk)− f?] ≤ G‖x1 − x?‖√
K(1− β)

. (5.24)

4The unlikely case dk = 0 could be circumvented, for example, by adding a resampling step of gk if dk = 0.

5.6. Estimating a Lower Bound 111

The proofs are given in Section 5.9.1. We make a few remarks on the above theorem. Assumption
(5.23) on αk is somewhat uncommon, since typical results require an upper bound on the step
size. Our result in particular allows αk =∞, but using αk as a learning rate cap can be useful
in practice (where other assumptions of the theorem may not be satisfied).

We stress that unlike for standard results for SGD in the convex, non-(Lipschitz-)smooth case, we
do not need to assume globally bounded gradients, but instead only boundedness on a compact
set. Theorem 5.4 is similar to [88, Thm. C.1], with the major difference that here we allow for
momentum. The best constant in (5.24) is achieved by β = 0, i.e. no momentum. Thus, while
empirically momentum helps in most cases, we can not show a theoretical improvement at this
time. Second, we remark that the improvement of not assuming globally bounded gradients
could be achieved analogously for the proof of [88] based on the result in Lemma 5.3.

5.6 Estimating a Lower Bound

So far, we have assumed that lower-bound estimates (fk?) are given with fk? = 0 being the default.
However, fk? = 0 might not always be a tight estimate of f? (e.g. when training transformers).
For such situations, we derive an online estimate of the lower bound next. In particular, for
convex functions we will derive a lower bound for f̄k? . Though this is not the optimal value f(x?)
of our original loss function, it is a reasonable approximation. In particular, it is an unbiased
estimator of f? since

E[f̄k?] =
1

ρk

k∑

j=1

ρj,kE[f(x?;Sj)] =
1

ρk

k∑

j=1

ρj,kf(x?) = f(x?). (5.25)

Further, we motivated our method using the analogous approximation of f(x) in (5.3). The
following lemma derives an estimate fk? ≥ 0 for f̄k? given in (5.20) by using readily available
information for any momentum-based method, in particular Algorithm 12 and Algorithm 13
with λ = 0.

Lemma 5.5. Let f(x; s) be convex in x for all s ∈ S. Let the sequence (xk)k be generated by
xk+1 = xk − τkD−1

k dk for any step size τk > 0 and symmetric, positive definite Dk. Further, let

ηk :=

k∏

j=2

λmin

(
D−1
j Dj−1

)
, and hk := f̄k + 〈dk, xk〉 − γk. (5.26)

It follows that f̄k? ≥ fk+1
? where

fk+1
? := 1

2ηkτkρk

(k∑

j=1

2ηjτj
(
hj −

1

2
τj‖dj‖2D−1

j

)
− ‖x1 − x?‖2D1

− 2

k−1∑

j=1

ηjτjρj f̄
j
?

)
(5.27)

=
2ηk−1τk−1ρk−1(fk? − f̄k−1

?)− ηkτ2
k‖dk‖2D−1

k

+ 2ηkτkhk

2ηkτkρk
. (5.28)

Bootstrapping by using fk? ≈ f̄k−1
? , this yields for k ≥ 2 that

fk+1
? ≈ 1

ρk

(
hk − 1

2τk‖dk‖2D−1
k

)
. (5.29)

112 Chapter 5. Momentum Models for Adaptive Learning Rates

The proof is given in Section 5.9 in the Supplementary Material. We want to give a few remarks
on the above result. First, note that fk+1

? in (5.27) depends on ‖x1 − x?‖2D1
, which we do not

know in general. We circumvent this by using the bootstrapping approximation (5.29) where
‖x1 − x?‖2D1

does not appear. We can initialize f1
? = 0 for most loss functions (or use an

available initial guess for the optimal value). Clearly, (5.29) is only an approximation of (5.28)
and therefore not guaranteed to be a lower bound of f̄k? – though we will verify in experiments
that this heuristic yields accurate estimates of the optimal value.

We can now introduce MoMo or MoMo-Adam with online lower bound fk? , which we call MoMo? and
MoMo-Adam?. We add one more precautionary measure, because we want to avoid the step size
τk in (5.17) to be zero. That is, by examining (5.17) we aim to prevent that

(1 + αkλ)ρkf
k
? ≥ (1 + αkλ)(f̄k − γk) + 〈dk, xk〉 =: hλk . (5.30)

Hence, in each iteration of MoMo? or MoMo-Adam?, we call the ResetStar routine in Algorithm 14
before the update of xk+1. The idea is to check if fk? has become too large such that (5.30) is
satisfied; if this is the case, reset fk? to be sufficiently small.5 After updating xk+1, we update
fk+1
? with EstimateStar routine in Algorithm 15, according to Lemma 5.5. For completeness,

we give the full algorithm of MoMo? in Algorithm 17 in the Supplementary Material.

We show for a simple numerical example how the values of fk? produced by MoMo(-Adam)? converge
to the true f? in Section 5.10.4.

A Pytorch implementation of all MoMo methods we discussed is provided in [133].

Algorithm 14 ResetStar

Require: fk? , αk, λ, ρk, h
λ
k

1: if (5.30) then
2: fk? = max

{
1
2 [(1 + αkλ)ρk]

−1hλk , f
1
?

}

3: end if
4: return fk?

Algorithm 15 EstimateStar

Require: f̄k, x
k, γk, τk, dk,Dk, ρk

1: hk = f̄k + 〈dk, xk〉 − γk
2: fk+1

? = max
{
ρ−1
k

(
hk − 1

2τk‖dk‖2D−1
k

)
, f1
?

}

3: return fk+1
?

5.7 Numerical Experiments

Here we investigate how using the MoMo adaptive learning rate can improve the stability of both
SGD-M and Adam. To do this, for each task and model, we do a learning-rate sweep for both
SGD-M, Adam, MoMo and MoMo-Adam and compare the resulting validation score for each learning
rate.

Our experiments will focus on the sensitivity with respect to the learning rate choice. This is
motivated from the insights in [137] who showed that most optimization methods perform equally
well when being tuned, however for practical use a tuning budget needs to be considered.

For MoMo and MoMo-Adam, note that the effective step size (cf. (5.17)) has the form

τk = min{αkρk , ζk} with ζk :=

(
(1+αkλ)(f̄k−ρkfk?−γk)+〈dk,xk〉

)
+

‖dk‖2
D−1
k

. (5.31)

5In the case that hλk < 0, we can not guarantee that τk > 0 with this resetting procedure.

5.7. Numerical Experiments 113

We refer to Algorithm 12, line 7 and Algorithm 13, line 9 for the exact formula for MoMo and
MoMo-Adam. For MoMo we have that ρk = 1,Dk = Id. We will refer to αk as the (user-specified)
learning rate and to τk as the adaptive learning rate. In all experiments with weight decay, when
we write Adam this actually refers to its decoupled weight decay version AdamW.

5.7.1 Zero as Lower Bound

First, we compare the MoMo methods to SGD-M and Adam for problems where zero is a reasonable
estimate of the optimal value f?. In this section, we set fk? = 0 for all k ∈ N for MoMo(-
Adam).

Models and Datasets. We do the following tasks (more details in Section 5.10.2).

• ResNet110 for CIFAR100, ResNet20, VGG16, ViT for CIFAR10,

• DLRM for Criteo Kaggle Display Advertising Challenge [151],

• MLP for MNIST: two hidden layers of size 100 and ReLU.

Parameter Settings. We use default choices for momentum parameter β = 0.9 for MoMo and
SGD-M, and (β1, β2) = (0.9, 0.999) for MoMo-Adam and Adam respectively. We set λ = 0, i.e. no
weight decay. In the experiments of this section, we always report averaged values over three
seeds (five for DLRM).

Discussion. We run MoMo, MoMo-Adam, Adam and SGD-M, for a fixed number of epochs (cf.
Section 5.10.2), using a constant learning rate αk = α0. The plots in Fig. 5.2 and Fig. 5.3 show
the final training loss (top) and accuracy on the validation set (bottom) of each method when
varying the learning rate α0 (training curves for the best runs can be found in Figs. 5.4 and 5.5).
We observe that for small learning rates MoMo behaves identically to SGD-M. This is expected,
since for small α0, we have τk = α0 (see (5.31)) and the update of MoMo is equal to SGD-M. The
same argument applies to the comparison of Adam and MoMo-Adam.

For larger learning rates, we observe that MoMo and MoMo-Adam improve the training loss and
validation accuracy, but SGD-M and Adam decline in performance or even fail to converge. Most
importantly, MoMo(-Adam) consistently extend the range of “good” learning rates by over one
order of magnitude. Further, MoMo(-Adam) achieve the overall best validation accuracy for all
problems except DLRM and ViT, where the gap to the best score is minute or within the standard
deviation of running multiple seeds (see Table 5.1).

This advantage can be explained with the adaptivity of the step size of MoMo(-Adam). In Fig. 5.6a,
we plot the adaptive term ζk (cf. (5.31)) for MoMo on a ResNet20. For α0 ∈ [1, 10], we have τk = ζk
in many iterations, which means that the effective learning rate is adaptive even though αk is
constant. We observe two phenomena: firstly, in Fig. 5.6a, MoMo is doing an automatic learning
rate decay without any user choice for a learning-rate schedule. Secondly, in the very first
iterations, MoMo is doing a warm-up of the learning rate as τk = ζk starts very small, but quickly
becomes large. Both of these dynamics of τk seemingly improve performance and stability. We
also obtain faster initial training progress of MoMo(-Adam) (cf. Fig. 5.4 and Fig. 5.5).

We also compare to AdaBelief and AdaBound in Fig. 5.10. However, MoMo(-Adam) still turns
out to be the best method. We want to stress again that our approach would also allow to

114 Chapter 5. Momentum Models for Adaptive Learning Rates

10−5 10−3 10−1 101 103

100

103

106

109

T
ra

in
in

g
lo

ss

10−5 10−3 10−1 101 103

Learning rate

0.0

0.2

0.4

0.6

0.8

1.0

V
al

id
at

io
n

sc
or

e

adam momo momo-adam sgd-m

(a) ResNet110 for CIFAR100

10−4 10−2 100 102

10−1

100

T
ra

in
in

g
lo

ss

10−4 10−2 100 102

Learning rate

0.0

0.2

0.4

0.6

0.8

1.0

V
al

id
at

io
n

sc
or

e

adam momo momo-adam sgd-m

(b) ResNet20 for CIFAR10

10−4 10−3 10−2 10−1 100 101
10−2

10−1

100

T
ra

in
in

g
lo

ss

10−4 10−3 10−2 10−1 100 101

Learning rate

0.0

0.2

0.4

0.6

0.8

1.0

V
al

id
at

io
n

sc
or

e

adam momo momo-adam sgd-m

(c) ViT for CIFAR10

Figure 5.2: Training loss (top row) and validation accuracy (bottom row) after a fixed number
of epochs, for varying (constant) learning rate α0. Shaded area depicts two standard deviations
over 3 runs.

derive a MoMo-version for any of these variations of Adam. We further compare to SGD-M with an
exponentially decaying schedule for CIFAR100.

Using a Learning-rate Schedule. We present additional experiments, training a vision trans-
former (ViT) on Imagenet-1k, as well as a diffusion model (with UNet architecture) on the
Smithsonian Butterflies dataset. Here we only compare MoMo-Adam to AdamW. This is in
order to keep the computational expense within reasonable limits6, and that Adam(W) is the
prevalent method for these tasks. Experiment details are in Section 5.10.2.

What distinguishes these experiments to previous ones, is that we use MoMo-Adam and AdamW

with a learning-rate schedule for αk. For both tasks, it is standard practice to use a warmup
(from a very small value to a specified base value αbase) followed by cosine decay [32]. We
vary the value of αbase and investigate again how sensitive the methods are with respect to this
choice.

6For example, one single run for ViT training on Imagenet-1k takes ten hours on four A100-GPUs with 64
CPUs, and we conduct 24 runs in total.

5.7. Numerical Experiments 115

10−4 10−2 100

10−1

100

T
ra

in
in

g
lo

ss

10−4 10−2 100

Learning rate

0.0

0.2

0.4

0.6

0.8

1.0

V
al

id
at

io
n

sc
or

e

adam momo momo-adam sgd-m

(a) VGG16 for CIFAR10

10−3 10−1 101 103

10−2

10−1

100

T
ra

in
in

g
lo

ss

10−3 10−1 101 103

Learning rate

0.0

0.2

0.4

0.6

0.8

1.0

V
al

id
at

io
n

sc
or

e

adam momo momo-adam sgd-m

(b) MLP for MNIST

10−5 10−3 10−1 101

Learning rate

0.4

0.5

0.6

0.7

0.8

T
ra

in
in

g
lo

ss

adam momo momo-adam sgd-m

10−5 10−3 10−1 101

Learning rate

0.650

0.675

0.700

0.725

0.750

0.775

0.800

A
cc

u
ra

cy

adam momo momo-adam sgd-m

(c) DLRM for Criteo

Figure 5.3: Training loss (top row) and validation accuracy (bottom row) after a fixed number
of epochs, for varying (constant) learning rate α0. Shaded area depicts two standard deviations
over 3 runs.

0 20 40 60 80 100
Epoch

0.3

0.4

0.5

0.6

0.7

V
al

id
at

io
n

sc
or

e

momo-adam

sgd-m

momo

adam

(a) ResNet110 for CIFAR100

0 10 20 30 40 50
Epoch

0.60

0.65

0.70

0.75

0.80

0.85

0.90

V
al

id
at

io
n

sc
or

e

momo-adam

sgd-m

momo

adam

(b) ResNet20 for CIFAR10

0 50 100 150 200
Epoch

0.4

0.5

0.6

0.7

0.8

0.9
V

al
id

at
io

n
sc

or
e

momo-adam

momo

adam

sgd-m

(c) ViT for CIFAR10

Figure 5.4: Validation score over training, we plot, for each method, the three choices of α0 that
lead to the best validation score (compare to Fig. 5.2).

10−3 10−2

Learning rate

0.60

0.65

0.70

0.75

V
al

id
at

io
n

sc
or

e

adamw momo-adam

0 50 100 150 200
Epoch

0.2

0.3

0.4

0.5

0.6

0.7

V
al

id
at

io
n

sc
or

e

adamw

momo-adam

Figure 5.7: ViT for Imagenet-1k. Left: Final validation set accuracy (top-1) for different base
learning-rate values. Right: Training curves for the three best learning-rate values for both
methods.

116 Chapter 5. Momentum Models for Adaptive Learning Rates

0 25 50 75 100
Epoch

10−1

101

103

105

T
ra

in
in

g
lo

ss

momo-adam

sgd-m

momo

adam

(a) ResNet110 for CIFAR100

0 20 40
Epoch

10−1

100

T
ra

in
in

g
lo

ss

momo-adam

sgd-m

momo

adam

(b) ResNet20 for CIFAR10

0 50 100 150 200
Epoch

10−1

100

T
ra

in
in

g
lo

ss

momo-adam

momo

adam

sgd-m

(c) ViT for CIFAR10

Figure 5.5: Training loss over training, we plot, for each method, the three choices of α0 that
lead to the best validation score.

From Fig. 5.7, we see that MoMo-Adam (i) works on a larger range of base learning-rate values
and (ii) reaches a higher accuracy for the best value of αbase (here 0.01).

The results for the diffusion model are similar and presented in Figs. 5.11 and 5.12 in the
Appendix. To summarize, we reach the same conclusion as previously: MoMo-Adam is generally
easier to tune as it works for a wider range of learning rates, it stabilizes training, and it can
improve the best model accuracy.

For all of the above tasks, the (training) loss converges to values below 0.5. Next, we consider
two problems where the final training loss is significantly above zero. In such situations, we
find that MoMo methods with fk? = 0 are less likely to make use of the adaptive term ζk for
the step size. As a consequence, MoMo with fk? = 0 will yield little or no improvement. To see
an improvement we need to employ the online estimation of a lower bound for MoMo given in
Lemma 5.5.

5.7.2 Online Lower Bound Estimation

We now consider image classification on Imagenet32 and training a transformer for German-to-
English translation. For both problems, the optimal value f? is far away from zero and hence
we use MoMo with a known estimate of f? or with the online estimation developed in Section 5.6.
More details on models and datasets can be found in Section 5.10.2.

Imagenet32 Classification. We train a ResNet18 for Imagenet32 and give the resulting valida-
tion accuracy in Fig. 5.8a for weight decay λ = 0. We show the results for λ = 10−4 in Fig. 5.9a.
We run MoMo(-Adam) first with constant lower bound fk? = 0 and an oracle value fk? = 0.9.
Further, we run MoMo(-Adam)? (indicated by the suffix -star in the plots), which correspond to
MoMo(-Adam) using the estimate fk? given by Lemma 5.5 (cf. Algorithm 17). We compare to
SGD-M and AdamW as baseline. For all methods, we use a constant learning rate αk = α0 and
vary the value of α0.

First, observe that setting fk? = 0 leads to similar performance as the baseline method (in
particular it is never worse). Next, observe that the tighter lower bound fk? = 0.9 leads to
improvement for all learning rates. Finally, the online estimated lower bound widens the range
of learning rate with good accuracy by an order of magnitude and leads to small improvements
in top accuracy.

5.8. Conclusions and Open Questions 117

(a) MoMo (b) MoMo-Adam

Figure 5.6: ResNet20 for CIFAR10. Adaptive learning rate of MoMo (left) and MoMo-Adam (right).
The colored dots represent the term ζk in each iteration. The grey line represents the user-
specified learning rate αk/ρk (note that ρk = 1 for MoMo and ρk ≈ 1 except for the first few
iterations in MoMo-Adam). The minimum of the grey line and the dots is the adaptive learning
rate τk = min{αkρk , ζk} in each iteration. The silver line with colored markers is the median over
the values of ζk in each epoch.

Transformer for German-to-English Translation. We consider the task of neural machine
translation from German to English by training an encoder-decoder transformer architecture
[154] from scratch on the IWSLT14 dataset. We use a transformer with six encoder and de-
coder blocks from fairseq [110]. We consider two settings, namely dropout of 0.1 and 0.3.
According to standard practice, we fine-tune the hyperparameters of the baseline AdamW: for
the learning-rate schedule αk, we use a linear warm-up of 4000 iterations from zero to a given
value αbase followed by an inverse square-root decay (cf. Fig. 5.8b for an example curve and the
adaptive step sizes). All other settings are reported in Section 5.10.2. MoMo-Adam? uses the same
hyperparameter settings as AdamW.

Fig. 5.8b shows the BLEU score7 after training 60 epochs when varying the initial learning rate
α0: MoMo-Adam? is on par or better than AdamW on the full range of initial learning rates and for
both dropout values. While the improvement is not as substantial as for previous examples, we
remark that for this particular task we compare to a fine-tuned configuration of AdamW.

5.8 Conclusions and Open Questions

In this chapter, we propose a way to combine two fundamental ideas: the Polyak step size and
heavy-ball momentum. We achieve this by introducing momentum as a certain model of the
objective function, more specifically by averaging linearizations of the stochastic loss functions
around past iterates. We call the resulting method MoMo. Second, the model-based approach
offers an easy way to include preconditioning, thus allowing us to propose MoMo-Adam. More

7The BLEU score indicates how similar the candidate sentence, i.e. the output of the trained model, is to a
list of reference sentences. The higher the similarity, the higher is the BLEU score.

118 Chapter 5. Momentum Models for Adaptive Learning Rates

10−5 10−3 10−1 101 103

Learning Rate

0.0

0.1

0.2

0.3

0.4

0.5

V
al

id
at

io
n

A
cc

u
ra

cy

momo lb 0.9

momo-adam lb 0.9

momo lb 0.0

momo-adam lb 0.0

adamw

momo-adam-star

momo-star

sgd-m

(a) ResNet18 for Imagenet32

10−6 10−5 10−4 10−3 10−2

Learning Rate

0

5

10

15

20

25

30

35

B
L

E
U

S
co

re

momo-adam-star adamw

(b) Encoder-decoder transformer for IWSLT14

Figure 5.8: Validation accuracy over a range of learning rates α0. (a) Imagenet32 without weight
decay (λ = 0). (b) Left: IWSLT14 translation task with dropout 0.1 (plain) or 0.3 (dashed).
The x-axis is the final learning rate αbase after warm-up. Right: Learning rate schedule (black)
and adaptive step sizes (grey dots) of MoMo-Adam? for αbase = 10−3 and dropout 0.3.

broadly, we can derive adaptive learning rates for all preconditioned momentum methods within
one single framework.

The results of our experiments reveal one clear and consistent message: MoMo and MoMo-Adam

extend the range of learning rates that lead to the best training results, often by over an order of
magnitude. The MoMo methods can further lead to improved model performance when comparing
with a fixed tuning budget. We demonstrate these advantages across a range of tasks, model
architectures and datasets.

Finally, we discuss briefly open questions and topics for future work: first, the current con-
vergence guarantees of MoMo are limited to convex problems with interpolation. Naturally,
nonconvex convergence results, or less restrictive assumptions on interpolation, would be sat-
isfactory. Given that the existing proof techniques for SGD-M often rely on the connection to
iterate averaging [139] and do not leave much room for adaptive step sizes, this might be a
difficult undertaking.

Second, in this work we can only provide a limited understanding of why the adaptive learning
rates we proposed are so effective. Our motivation of using a known lower bound, thus improving
the model, does not reveal why the adaptive term in MoMo performs an automatic warmup and
decay, as we observed across many experiments. One possible explanation for this phenomenon
is adaptivity to local curvature; this conjecture stems from the fact that for µ-strongly convex,
and L-smooth f , the term f(x)−min f

‖∇f(x)‖2 lies in the interval [1
2L ,

1
2µ], and thus could be related to

the inverse curvature. We leave the analysis of this connection between Polyak-type step sizes
and the loss landscape of neural networks for future work.

5.9. Supplementary Material and Missing Proofs 119

5.9 Supplementary Material and Missing Proofs

Proof of Lemma 5.5. After switching the index k → j, the update rule is

xj+1 = xj − τjD−1
j dj ,

where τj is the step size. Subtracting x? from both sides, taking norms and expanding the
squares we have that

‖xj+1 − x?‖2Dj
= ‖xj − x?‖2Dj

− 2τj〈dj , xj − x?〉+ τ2
j ‖dj‖2D−1

j
. (5.32)

Now let δj+1 := λmin

(
D−1
j+1Dj

)
and note that for every vector v ∈ Rn we have that

δj+1‖v‖2Dj+1
≤ ‖v‖2Dj

. (5.33)

Indeed this follows since

‖v‖2Dj
= v>Djv = v>D

1/2
j+1

(
D
−1/2
j+1 DjD

−1/2
j+1

)
D

1/2
j+1v

≥ λmin

(
D−1
j+1Dj

)
‖v‖2Dj+1

= δj+1‖v‖2Dj+1
.

For simplicity, denote ∇fl := ∇f(xl;Sl), fl := f(xl;Sl). We have that

〈dj , xj − x?〉 =

j∑

l=1

ρl,j〈∇fl, xj − x?〉

=

j∑

l=1

ρl,j
(
〈∇fl, xj − xl〉+ 〈∇fl, xl − x?〉

)

≥
j∑

l=1

ρl,j
(
〈∇fl, xj − xl〉+ fl − f(x?;Sl)

)
(by convexity of f(·; s))

= f̄j + 〈dj , xj〉 − γj −
j∑

l=1

ρl,jf(x?;Sl) = hj − ρj f̄ j? . (5.34)

Using (5.33) together with (5.34) in (5.32) gives

δj+1‖xj+1 − x?‖2Dj+1
≤ ‖xj+1 − x?‖2Dj

= ‖xj − x?‖2Dj
− 2τj〈dj , xj − x?〉+ τ2

j ‖dj‖2D−1
j

≤ ‖xj − x?‖2Dj
− 2τj(hj − ρj f̄ j?) + τ2

j ‖dj‖2D−1
j
. (5.35)

Now we will perform a weighted telescoping. We multiply the above by ηj > 0 such that

δj+1ηj = ηj+1, thus ηj = η1
∏j
l=2 δl. In doing so, we obtain

ηj+1‖xj+1 − x?‖2Dj+1
≤ ηj‖xj − x?‖2Dj

− 2ηjτj(hj − ρj f̄ j?) + ηjτ
2
j ‖dj‖2D−1

j
.

Summing up from j = 1, . . . , k and telescoping we have that

0 ≤ ηk+1‖xk+1 − x?‖2Dk+1

≤ η1‖x1 − x?‖2D1
− 2

k∑

j=1

ηjτj(hj − ρj f̄ j?) +

k∑

j=1

ηjτ
2
j ‖dj‖2D−1

j
. (5.36)

120 Chapter 5. Momentum Models for Adaptive Learning Rates

Re-arranging the above, choosing η1 = 1 and isolating f̄k? gives

2ηkτkρkf̄
k
? ≥ 2

k∑

j=1

ηjτjhj − ‖x1 − x?‖2D1
−

k∑

j=1

ηjτ
2
j ‖dj‖2D−1

j
− 2

k−1∑

j=1

ηjτjρj f̄
j
? .

Dividing through by 2ηkτkρk gives the main result. Finally the recurrence follows since, for
k ≥ 2 we have that

fk+1
? =

2
∑k

j=1 ηjτjhj − ‖x1 − x?‖2D1
−∑k

j=1 ηjτ
2
j ‖dj‖2D−1

j

− 2
∑k−1

j=1 ηjτjρj f̄
j
?

2ηkτkρk

=
ηk−1τk−1ρk−1

ηkτkρk

2
∑k−1

j=1 ηjτjhj − ‖x1 − x?‖2D1
−∑k−1

j=1 ηjτ
2
j ‖dj‖2D−1

j

− 2
∑k−2

j=1 ηjτjρj f̄
j
?

2ηk−1τk−1ρk−1

=fk?

+
ηk−1τk−1ρk−1

ηkτkρk

2ηkτkhk − ηkτ2
k‖dk‖2D−1

k

− 2ηk−1τk−1ρk−1f̄
k−1
?

2ηk−1τk−1ρk−1

=
2ηk−1τk−1ρk−1(fk? − f̄k−1

?)− ηkτ2
k‖dk‖2D−1

k

+ 2ηkτkhk

2ηkτkρk
.

Now bootstrapping by using fk? ≈ f̄k−1
? gives the result.

5.9.1 Convergence Proofs

We discovered the following interpretation, namely that the adaptive step size term in MoMo

minimizes an upper bound of the distance to the solution at the new iterate, after reading the
concurrent work [156].

Lemma 5.6. Let f(·; s) be convex for every s ∈ S. Let hk := f̄k + 〈dk, xk〉 − γk where dk, f̄k,
and γk are defined in (5.9). Consider the iterates xk+1 = xk− τkD−1

k dk for any sequence of step
sizes (τk)k ⊂ R≥0. Let x? ∈ arg minx∈Rn f(x).

Then, we have the upper bound

‖xk+1 − x?‖2Dk
≤ ‖xk − x?‖2Dk

− 2τk(hk − ρkf̄k?) + τ2
k‖dk‖2D−1

k

. (5.37)

Moreover, if dk 6= 0, the right-hand side of (5.37) attains its minimum over the set τk ∈ R≥0 at

τ̄k =
(hk − ρkf̄k?)+

‖dk‖2D−1
k

, (5.38)

which is the adaptive term in the step size of MoMo.

Proof. Subtracting x? from both sides, taking norms and expanding the squares we have that

‖xk+1 − x?‖2Dk
= ‖xk − x?‖2Dk

− 2τk〈dk, xk − x?〉+ τ2
k‖dk‖2D−1

k

. (5.39)

5.9. Supplementary Material and Missing Proofs 121

We use again the notation ∇fj := ∇f(xj ;Sj), fj := f(xj ;Sj). Now using that

〈dk, xk − x?〉 =
k∑

j=1

ρj,k〈∇fj , xk − x?〉

=
k∑

j=1

ρj,k
(
〈∇fj , xk − xj〉+ 〈∇fj , xj − x?〉

)

≥
k∑

j=1

ρj,k
(
〈∇fj , xk − xj〉+ fj − f(x?;Sj)

)
(by convexity of f(·;Sj))

= 〈dk, xk〉 − γk +
k∑

j=1

ρj,k(fj − f(x?;Sj)) = hk − ρkf̄k? . (5.40)

Using (5.40) in (5.39) gives

‖xk+1 − x?‖2Dk
= ‖xk − x?‖2Dk

− 2τk〈dk, xk − x?〉+ τ2
k‖dk‖2D−1

k

≤ ‖xk − x?‖2Dk
− 2τk(hk − ρkf̄k?) + τ2

k‖dk‖2D−1
k

.

For dk 6= 0, minimizing the right-hand side of the above in τk ∈ R, the optimality condition is

−2(hk − ρkf̄k?) + 2τ̄k‖dk‖2D−1
k

= 0 ⇐⇒ τ̄k =
(hk − ρkf̄k?)

‖dk‖2D−1
k

.

Restricting to τk ≥ 0, we finally arrive at (5.38).

Proof of Lemma 5.3. Under the assumptions of this lemma, (5.37) holds. As in Lemma 5.6, we
denote hk = f̄k + 〈dk, xk〉 − γk.
First, consider the case that dk = 0. Then, τk = 0 and the statement clearly holds.

Now, assume that dk 6= 0 and τk = (hk−ρk f̄k?)+
‖dk‖2

D−1
k

. Inserting this τk back in (5.37) we have

‖xk+1 − x?‖2Dk
≤ ‖xk − x?‖2Dk

− 2
(hk − ρkf̄k?)+

‖dk‖2D−1
k

(hk − ρkf̄k?) +
(hk − ρkf̄k?)2

+

‖dk‖2D−1
k

= ‖xk − x?‖2Dk
− (hk − ρkf̄k?)2

+

‖dk‖2D−1
k

= ‖xk − x?‖2Dk
− τk(hk − ρkf̄k?)+. (5.41)

Here we used that a(a)+ = (a)2
+ for any a ∈ R.

On the other hand, if we have τk = αk
ρk

, then (5.37) yields

‖xk+1 − x?‖2Dk
≤ ‖xk − x?‖2Dk

+
αk
ρk

[
− 2(hk − ρkf̄k?) +

αk
ρk
‖dk‖2D−1

k

]
. (5.42)

In this case αk
ρk
≤ (hk−ρk f̄k?)+

‖dk‖2
D−1
k

and hence αk
ρk
‖dk‖2D−1

k

≤ (hk − ρkf̄
k
?)+. Further, it must hold

(hk − ρkf̄k?) = (hk − ρkf̄k?)+ as αk > 0. We get

‖xk+1 − x?‖2Dk
≤ ‖xk − x?‖2Dk

− αk
ρk

(hk − ρkf̄k?)

= ‖xk − x?‖2Dk
− τk(hk − ρkf̄k?)+ (τk =

αk
ρk

). (5.43)

122 Chapter 5. Momentum Models for Adaptive Learning Rates

Now, if τk = min{αkρk ,
(hk−ρk f̄k?)+
‖dk‖2

D−1
k

}, either (5.41) or (5.43) is true, and hence we have

‖xk+1 − x?‖2Dk
≤ ‖xk − x?‖2Dk

− τk(hk − ρkf̄k?)+.

Proof of Theorem 5.4. Recall that Algorithm 12 is Lemma 5.2 with ρk = 1, Dk = Id and λ = 0.
The key quantity is hk = f̄k + 〈dk, xk〉 − γk. Let us denote gk = ∇f(xk;Sk). Further, denote
with Fk the filtration generated by {S1, . . . , Sk−1}.
Step 1. We first show by induction that hk − f? ≥ 0 for all k ∈ N. For k = 1, we have
h1 = f(x1;S1) ≥ f? due to the initialization in Algorithm 12, which implies 〈d1, x

1〉 − γ1 = 0,
and (5.22). Now, for k ≥ 2, assume that hk−1 − f? ≥ 0. Rewrite as

hk = β
[
f̄k−1 + 〈dk−1, x

k〉 − γk−1

]
+ (1− β)

[
f(xk;Sk) + 〈gk, xk〉 − 〈gk, xk〉

]

= β
[
f̄k−1 + 〈dk−1, x

k−1〉 − γk−1 + 〈dk−1, x
k − xk−1〉

]
+ (1− β)f(xk;Sk)

= βhk−1 + β〈dk−1, x
k − xk−1〉+ (1− β)f(xk;Sk).

Using the update rule xk = xk−1 − τk−1dk−1 in the above gives

hk = β(hk−1 − τk−1‖dk−1‖2) + (1− β)f(xk;Sk). (5.44)

From definition of τk−1, we have

τk−1‖dk−1‖2 ≤ (hk−1 − fk−1
?)+ = (hk−1 − f?)+ = hk−1 − f?,

where the last equality is the induction hypothesis. Re-arranging the above, we get

hk−1 − τk−1‖dk−1‖2 ≥ f?. (5.45)

Plugging this inequality into (5.44) gives

hk ≥ βf? + (1− β)f(xk;Sk) ≥ f?,
due to β ∈ [0, 1) and f(xk;Sk) ≥ f?. This completes the induction, and we have further shown
that

hk − f? ≥ (1− β)
(
f(xk;Sk)− f?

)
. (5.46)

Step 2. Due to (5.22) and ρk = 1, it holds f̄?k = f? = fk? . Hence, the assumptions of Lemma 5.3
are satisfied and we can apply (5.21), which implies in particular that the iterates (xk) are almost
surely contained in the bounded set B. By assumption, we conclude that ‖gj‖2 ≤ G2 for all
j ≤ k. Using Jensen for the discrete probability measure induced by ρj,k, we have

‖dk‖2 = ‖
k∑

j=1

ρj,kgj‖2 ≤
k∑

j=1

ρj,k‖gj‖2 ≤ G2.

We will again distinct two cases: first, assume τk = hk−f?
‖dk‖2 (by Step 1, we can omit (·)+). From

(5.21), we have

‖xk+1 − x?‖2 ≤ ‖xk − x?‖2 − (hk − f?)2

‖dk‖2

≤ ‖xk − x?‖2 − (hk − f?)2

G2

≤ ‖xk − x?‖2 − (1− β)2(f(xk;Sk)− f?)2

G2
.

5.9. Supplementary Material and Missing Proofs 123

Now, consider the other case, namely τk = αk (recall ρk = 1). From (5.21) we obtain

‖xk+1 − x?‖2 ≤ ‖xk − x?‖2 − αk(hk − f?)
≤ ‖xk − x?‖2 − αk(1− β)(f(xk;Sk)− f?)

≤ ‖xk − x?‖2 − (1− β)2(f(xk;Sk)− f?)2

G2

where we used (5.46), the fact that αk ≥ (1−β)(f(xk;Sk)−f?)
G2 by assumption and that f(xk;Sk)−

f? ≥ 0 due to (5.22). In both cases, hence almost surely conditioned on Fk, it holds

‖xk+1 − x?‖2 ≤ ‖xk − x?‖2 − (1− β)2(f(xk;Sk)− f?)2

G2
.

Now, we apply conditional expectation. Jensen’s inequality yields

E[(f(xk;Sk)− f?)2 | Fk] ≥ (E[f(xk;Sk)− f? | Fk])2 = (f(xk)− f?)2.

Thus, we get

E[‖xk+1 − x?‖2 | Fk] ≤ ‖xk − x?‖2 −
(1− β)2(f(xk)− f?)2

G2
.

Step 3. Taking full expectation, using the law of total expectation, suming over k = 1, . . . ,K,
dividing by K and re-arranging gives

1

K

K∑

k=1

E[(f(xk)− f?)2] ≤ G2‖x1 − x?‖2
K(1− β)2

. (5.47)

Now, due to Jensen’s inequality we have E[(f(xk) − f?)2] ≥ E[f(xk) − f?]2 and because the
square-root is concave, it holds

1

K

K∑

k=1

E[f(xk)− f?] ≤

√√√√ 1

K

K∑

k=1

E[f(xk)− f?]2.

Using the above together with (5.47), we obtain

min
k=1,...,K

E[f(xk)− f?] ≤ 1

K

K∑

k=1

E[f(xk)− f?] ≤ G‖x1 − x?‖√
K(1− β)

.

5.9.2 Notes on the Averaging Coefficients

Lemma 5.7. Let β ∈ [0, 1). Let ρ1,1 = 1, and for k ≥ 2 let

ρj,k =

{
βρj,k−1, j ≤ k − 1,

1− β, j = k.

Then,
∑k

j=1 ρj,k = 1 holds for all k ∈ N. Further, for an arbitrary sequence (uj)j∈N ⊂ Rm,
m ∈ N, consider the weighted sum

ūk :=

k∑

j=1

ρj,kuj .

Then, if ū0 := u1 it holds ūk = (1− β)uk + βūk−1 for all k ∈ N.

124 Chapter 5. Momentum Models for Adaptive Learning Rates

Proof. We prove that
∑k

j=1 ρj,k = 1 holds for all k ∈ N by induction. For the base case k = 1,

we have ρ1,1 = 1 by definition. Assuming that
∑k−1

j=1 ρj,k−1 = 1, we have

k∑

j=1

ρj,k = ρk,k +
k−1∑

j=1

ρj,k = 1− β + β
k−1∑

j=1

ρj,k−1 = 1− β + β = 1.

Consequently, we have ū1 = ρ11u1 = u1, and for k ≥ 2,

ūk =
k∑

j=1

ρj,kuj = (1− β)uk +
k−1∑

j=1

βρj,k−1uj = (1− β)uk + β
k−1∑

j=1

ρj,k−1uj

= (1− β)uk + βūk−1.

For the choice of ρj,k in Lemma 5.7, unrolling the recursion, for k ≥ 2 we obtain the explicit
formula

ρj,k =

{
(1− β)βk−j , j ≥ 2

βk−1, j = 1.
(5.48)

Averaging with Bias Correction. Choosing ρj,k = (1 − β)βk−j , we have ρj,k = βρj,k−1, and
ρk,k = 1 − β. Hence, we can update f̄k = (1 − β)f(xk, sk) + βf̄k−1 and analogously for dk, γk.

However, this choice does not satisfy
∑k

j=1 ρj,k = 1. Indeed using the geometric series gives

ρk = (1− β)

k−1∑

j=0

βj = 1− βk.

This fact motivates scaling by the factor of 1−βk which was termed debiasing in Adam. Combined
with Lemma 5.1, this alternative averaging scheme leads to a variant of MoMo with bias correction,
presented in Algorithm 16. As the two presented choices of ρj,k are very similar, we would not
expect major differences in their performance (cf. Remark 11) – and indeed did also not observe
any such experimentally.

Algorithm 16 MoMo-Bias: Model-based Momentum with bias correction.

Require: x1 ∈ Rn, β ∈ [0, 1), αk > 0, (fk?)k∈N ⊂ R.
1: Initialize: f̄0 = 0, d0 = 0, and γ0 = 0.
2: for k = 1, . . . ,K − 1 do
3: f̄k = (1− β)f(xk;Sk) + βf̄k−1

4: dk = (1− β)∇f(xk;Sk) + βdk−1

5: γk = (1− β)〈∇f(xk;Sk), x
k〉+ βγk−1

6: xk+1 = xk −min
{

αk
1−βk ,

(f̄k−(1−βk)fk?+〈dk,xk〉−γk)+
‖dk‖2

}
dk.

7: end for
8: return xK

Remark 11. Algorithm 16 differs from Algorithm 12 only in two steps: first, the quantities
f̄0, d0, γ0 are initialized at zero. Secondly, we use αk

1−βk instead of αk and (1−βk)fk? instead of

fk? in line 6. As β ∈ [0, 1), for late iteration number k, we can expect that both methods behave
very similarly.

5.10. Supplementary Material on Numerical Experiments 125

5.9.3 Comparison of MoMo-Adam to AdamW

Algorithm 13 naturally compares to AdamW [89]. Note that the update of AdamW (in the notation
of Algorithm 13) can be written as

xk+1 = (1− αkλ)xk − αk

1− βk1
D−1
k dk,

Compared to Algorithm 13, line 9, the weight decay of AdamW is not done dividing the whole
expression by 1

1+αkλ
, but instead multiplying only xk with 1− αkλ. This is a first-order Taylor

approximation [169]: for α small it holds 1
1+αλ ≈ 1 − αλ and α

1+αλ ≈ α. If we would want to
adapt this approximation, line 9 would be replaced with

xk+1 = (1− λαk)xk −min
{

αk
1−βk1

,
((1+λαk)(f̄k−(1−βk1)fk?−γk)+〈dk,xk〉)+

‖dk‖2
D−1
k

}
D−1
k dk. (5.49)

However, the results of [169] suggest that this approximation has almost no impact on the
empirical performance.

5.9.4 Implementation details on MoMo?

Here we give the complete pseudocode for MoMo?, that is the MoMo method that uses the estimator
for fk? given in Lemma 5.5.

Algorithm 17 MoMo?: Adaptive learning rates and online estimation of f?.

Require: x1 ∈ Rn, β ∈ [0, 1), αk > 0, λ ≥ 0, f1
? ⊂ R.

1: Initialize: f̄0 = f(x1;S1), d0 = ∇f(x1;S1) and γ0 = 〈∇f(x1;S1), x1〉.
2: for k = 1, . . . ,K − 1 do
3: f̄k = (1− β)f(xk;Sk) + βf̄k−1

4: γk = (1− β)〈∇f(xk;Sk), x
k〉+ βγk−1

5: dk = (1− β)∇f(xk;Sk) + βdk−1

6: hλk = (1 + αkλ)(f̄k − γk) + 〈dk, xk〉
7: fk? = ResetStar(fk? , αk, λ, 1, h

λ
k)

8: xk+1 = 1
1+αkλ

[
xk −min

{
αk,

((1+αkλ)(f̄k−fk?−γk)+〈dk,xk〉)+
‖dk‖2

}
dk
]

9: fk+1
? = EstimateStar(f̄k, x

k, γk, τk, dk, Id, 1).
10: end for
11: return xK

5.10 Supplementary Material on Numerical Experiments

5.10.1 Experimental Setup of Section 5.7.1

We use default choices for momentum parameter β = 0.9 for MoMo and SGD-M, and (β1, β2) =
(0.9, 0.999) for MoMo-Adam and Adam respectively. We set λ = 0, i.e. no weight decay.

For SGD-M we set the dampening parameter equal to the momentum parameter. Like this, SGD-M
does an exponentially-weighted average of past gradients and hence is comparable to MoMo for
identical learning rate and momentum. For all other hyperparameters we use the Pytorch

default values for Adam and SGD-M (unless explicitly stated otherwise).

126 Chapter 5. Momentum Models for Adaptive Learning Rates

10−5 10−3 10−1 101 103

Learning Rate

0.0

0.1

0.2

0.3

0.4

0.5

V
al

id
at

io
n

A
cc

u
ra

cy

momo lb 0.9

momo-adam lb 0.9

momo lb 0.0

momo-adam lb 0.0

adamw

momo-adam-star

momo-star

sgd-m

(a) ResNet18 for Imagenet32
(b) Encoder-decoder transformer for
IWSLT14

Figure 5.9: Left: Validation accuracy of a ResNet18 for Imagenet32 with weight decay λ = 10−4.
Right: Encoder-decoder transformer for IWSLT14. Learning rate schedule (black) and adaptive
step sizes (grey dots) of MoMo-Adam? for αbase = 3 · 10−3 and dropout 0.1. The black line
represents the user-specified learning-rate schedule, using linear warm-up followed by an inverse
square-root decay.

5.10.2 Models and Datasets

ResNet for CIFAR [60]

Used for ResNet20 for CIFAR10 and ResNet110 for CIFAR100. We adapt the last layer output
size to {10, 100} according to the used dataset. We run 50 epochs for ResNet20 and 100
epochs for ResNet110, both with batch size 128.

Model https://github.com/akamaster/pytorch_resnet_cifar10/blob/master/resnet.py

VGG16 for CIFAR10 [144]

A deep network with 16 convolutional layers. We run 50 epochs with batch size 128.

Model https://github.com/chengyangfu/pytorch-vgg-cifar10/blob/master/vgg.py

ViT for CIFAR10 [32]

A small vision transformer, based on the hyperparameter setting proposed in github.com/

kentaroy47/vision-transformers-cifar10. In particular, we set the patch size to four.
We run 200 epochs with batch size 512.

Model https://github.com/lucidrains/vit-pytorch

ResNet18 for Imagenet32 [60]

Imagenet32 is a downsampled version of Imagenet-1k to images of 32× 32 pixels. We adapt
the last layer output size to 1000. We run 45 epochs with batch size 128.

Model https://github.com/kuangliu/pytorch-cifar/blob/master/models/resnet.py

DLRM for Criteo [151]

DLRM is an industry-scale model with over 300 million parameters. the Criteo dataset contains

https://github.com/akamaster/pytorch_resnet_cifar10/blob/master/resnet.py
https://github.com/chengyangfu/pytorch-vgg-cifar10/blob/master/vgg.py
github.com/kentaroy47/vision-transformers-cifar10
github.com/kentaroy47/vision-transformers-cifar10
https://github.com/lucidrains/vit-pytorch
https://github.com/kuangliu/pytorch-cifar/blob/master/models/resnet.py

5.10. Supplementary Material on Numerical Experiments 127

approximately 46 million training samples. We run 300k iterations with batch size 128.

Dataset https://kaggle.com/c/criteo-display-ad-challenge

Model https://github.com/facebookresearch/dlrm

IWSLT14 [110]

The IWSLT14 dataset consists of over 160,000 German and English sentence pairs. We use
a transformer with six encoder and decoder blocks from fairseq. The training loss is the
cross-entropy loss with label smoothing of 0.1. We use weight decay of λ = 10−4 (although
we noticed that weight decay does not influence the performance of MoMo-Adam), momentum
parameters (β1, β2) = (0.9, 0.98). We train for 60 epochs.

Model https://github.com/facebookresearch/fairseq

UNet for Smithsonian Butterflies [128]

The Smithsonian Butterflies dataset contains 1,000 images of butterflies. We train a
diffusion model, using a UNet2D architecture from the Huggingface library. For both constant
learning-rate schedule as well as cosine decay we use a warmup period, where the learning
rate is increased linearly over 500 steps from zero to the final value. For MoMo-Adam we use
no weight decay. For Adam we tried both λ ∈ {0, 0.01} but did not observe major differences;
we display the results for λ = 0.01 (the default value). We train for 50 epochs with batch size
16.8

Dataset https://huggingface.co/datasets/huggan/smithsonian_butterflies_subset

Model https://huggingface.co/docs/diffusers/main/en/api/models/unet2d

ViT for Imagenet-1k [32]

We train a vision transformer for image classification on the full Imagenet-1k dataset. We
use the timm library for training and select the vit tiny patch16 224 model. We use the
settings reported in [28]; the only exception is that when increasing the learning rate α, we
decrease the weight decay λ by the same factor, such that α · λ = 10−4 for all runs. By
standard practice, we use a warmup period of five epochs (starting at 10−5 with epoch-wise
steps) to a base learning rate αbase, followed by a cosine decay. We train for 200 epochs with
batch size 512. The loss function is the binary cross entropy loss with label smoothing of 0.1
(also used in [28]).

Model timm/models/vision transformer.py

5.10.3 Additional Experiments

We present additional comparisons in Fig. 5.10, including AdaBelief [168] and AdaBound [90].
For ResNet110 on CIFAR100, we also tried SGD-M with a learning-rate schedule that decays by
a factor of 0.7 every 30 epochs. This apparently does not yield improvements.

8The training script is adapted from https://colab.research.google.com/github/huggingface/notebooks/

blob/main/diffusers_doc/en/pytorch/basic_training.ipynb.

https://kaggle.com/c/criteo-display-ad-challenge
https://github.com/facebookresearch/dlrm
https://github.com/facebookresearch/fairseq
https://huggingface.co/datasets/huggan/smithsonian_butterflies_subset
https://huggingface.co/docs/diffusers/main/en/api/models/unet2d
https://github.com/huggingface/pytorch-image-models/blob/ef72c3cd470dd67836eebf95ec567199c890a6a2/timm/models/vision_transformer.py#L1738
https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers_doc/en/pytorch/basic_training.ipynb
https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers_doc/en/pytorch/basic_training.ipynb

128 Chapter 5. Momentum Models for Adaptive Learning Rates

MoMo MoMo-Adam SGD-M Adam(W)

ResNet110 for CIFAR100 65.21 ± 1.61 66.71 ± 0.31 60.28 ± 0.36 64.5 ± 1.14

ResNet20 for CIFAR10 89.07 ± 0.2 89.45 ± 0.17 86.27 ± 0.67 87.54 ± 0.26

ViT for CIFAR10 85.43 ± 0.19 85.81 ± 0.57 83.39 ± 0.28 86.02 ± 0.44

VGG16 for CIFAR10 90.64 ± 0.18 90.9 ± 0.17 89.81 ± 0.43 89.95 ± 0.67

MLP for MNIST 97.97 ± 0.08 97.96 ± 0.12 97.73 ± 0.12 97.75 ± 0.06

DLRM for Criteo 78.83 ± 0.038 78.98 ± 0.036 78.81 ± 0.041 79.05 ± 0.014

ResNet18 for Imagenet32 47.66? 47.54? 47.38 46.98

IWSLT14 (dp 0.1) N/A 33.63? N/A 32.56

IWSLT14 (dp 0.3) N/A 35.34? N/A 34.97

ViT for Imagenet-1k N/A 73.83 ± 0.36 N/A 72.83 ± 0.51

Table 5.1: Validation score (with one standard deviation) for the best learning rate choice
for each method among the ones displayed in Section 5.7. Best method in bold. Symbol “?”
indicates usage of online lower bound, otherwise MoMo(-Adam) used with fk? = 0.

10−5 10−3 10−1 101 103

Learning rate

0.0

0.2

0.4

0.6

0.8

1.0

V
al

id
at

io
n

sc
or

e

adabelief

adabound

adam

momo

momo-adam

sgd-m

sgd-m

(a) ResNet110 for CIFAR100

10−4 10−2 100 102

Learning rate

0.0

0.2

0.4

0.6

0.8

1.0

V
al

id
at

io
n

sc
or

e

adabelief

adabound

adam

momo

momo-adam sgd-m

(b) ResNet20 for CIFAR10

10−4 10−3 10−2 10−1 100 101

Learning rate

0.0

0.2

0.4

0.6

0.8

1.0

V
al

id
at

io
n

sc
or

e

adabelief

adabound

adam

momo

momo-adam sgd-m

(c) ViT for CIFAR10

Figure 5.10: Additional comparisons to AdaBelief and AdaBound. For CIFAR100 (left plot), the
dashed line of SGD-M displays result of using a learning-rate schedule that decays by a factor of
0.7 every 30 epochs.

We present the results for the UNet for Smithsonian Butterflies experiment in Figs. 5.11
and 5.12. We try a constant learning rate, as well as a cosine-decay schedule (both schedules
with warmup). The cosine decay works better in general.

5.10.4 Illustrative Example of Online Lower Bound Estimation

We show how our online estimation of fk? , derived in Section 5.6 and Lemma 5.5, work for
a simple example. Consider a regression problem, with synthetic matrix A ∈ R200×10 and
b ∈ R200. We solve the problem minx∈R10

∑200
i=1

1
2‖a>i x − bi‖2, where ai are the rows of A. The

data is generated in a way such that there exists x̂ with b = Ax̂ and hence the optimal value is
f? = 0.

We now run MoMo(-Adam) with lower bound estimate fk? = −10 in all iterations, and MoMo(-
Adam)? with initialization f1

? = −10. Clearly, this is not a tight estimate of the optimal value f?.
From Fig. 5.14a, we see that online estimation of fk? , used in MoMo(-Adam)?, improves stability
of the training compared to plain MoMo(-Adam) where a constant value fk? = −10 is used. From
Fig. 5.14b, we also see that the online values of fk? converge to f? = 0.

5.10. Supplementary Material on Numerical Experiments 129

10−4 10−3

Learning rate

1.3× 10−2

1.35× 10−2

1.4× 10−2

1.45× 10−2

1.5× 10−2

1.55× 10−2

T
ra

in
in

g
lo

ss

adamw, lr schedule=constant

adamw, lr schedule=cosine

momo-adam, lr schedule=constant

momo-adam, lr schedule=cosine

0 20 40
Epoch

10−2

10−1

T
ra

in
in

g
lo

ss

momo-adam

adamw

Figure 5.11: Left: Stability over learning rate, for constant and cosine decay schedule. Values are
averaged over three repetitions with different seeds, shaded area depicts one standard deviation.
Missing points for Adam mean that at least one of the three repetitions diverged (or results in
NaN loss). Right: Training loss curve for the best three settings (across all learning rates and
both schedules) for each method.

(a) αbase = 0.0001 (b) αbase = 0.0005 (c) αbase = 0.001

Figure 5.12: Generated images of the UNet diffusion model at the end of training with MoMo-Adam.
We display three different base learning rates for the cosine-decay schedule (i.e. the displayed
value of αbase corresponds to the x-axis in the left plot of Fig. 5.11). Note that when training
with Adam, the images in (a) look very similar, but for (b) and (c), Adam diverges and thus the
model generates no useful images.

130 Chapter 5. Momentum Models for Adaptive Learning Rates

Figure 5.13: UNet for Smithsonian Butterflies: Adaptive learning rates of MoMo-Adam for
the constant and cosine decay schedule (grey line), and for different base learning-rate values
(indicated by α0 in the title of each plot).

10−3 10−1 101 103

Learning rate

10−6

10−3

100

T
ra

in
in

g
lo

ss

adam

momo

momo-adam

momo-adam-star

momo-star sgd-m

(a) Training loss

0 5 10 15
Epoch

−4

−3

−2

−1

0

f
k ∗

momo-adam-star

momo-star

(b) Online estimation of f? = 0

Figure 5.14: Illustrative example of online lower bound estimation. For all MoMo methods, we
initialize f1

? = −10. Left: Training loss for varying (constant) learning rate α0. Right: Value of
fk? over training, one line corresponds to one choice of α0. We plot per method the three values
of α0 that lead to smallest training loss.

Bibliography

[1] M. Abadi, A. Agarwal, P. Barham, E. Brevdo, Z. Chen, C. Citro, G. S. Cor-
rado, A. Davis, J. Dean, M. Devin, S. Ghemawat, I. Goodfellow, A. Harp,
G. Irving, M. Isard, Y. Jia, R. Jozefowicz, L. Kaiser, M. Kudlur, J. Lev-
enberg, D. Mane, R. Monga, S. Moore, D. Murray, C. Olah, M. Schuster,
J. Shlens, B. Steiner, I. Sutskever, K. Talwar, P. Tucker, V. Vanhoucke,
V. Vasudevan, F. Viegas, O. Vinyals, P. Warden, M. Wattenberg, M. Wicke,
Y. Yu, and X. Zheng, Tensorflow: Large-scale machine learning on heterogeneous sys-
tems, 2015. Software available from tensorflow.org. [Cited on page 12]

[2] A. Ajalloeian and S. U. Stich, On the convergence of SGD with biased gradients,
(2020). [Cited on page 15]

[3] S. Amari, A theory of adaptive pattern classifiers, IEEE Transactions on Electronic Com-
puters, EC-16 (1967), pp. 299–307. [Cited on page 12]

[4] A. Aravkin, M. P. Friedlander, F. J. Herrmann, and T. van Leeuwen, Robust
inversion, dimensionality reduction, and randomized sampling, Math Program, 134 (2012),
pp. 101–125. [Cited on page 43]

[5] H. Asi and J. C. Duchi, The importance of better models in stochastic optimization,
Proc. Natl. Acad. Sci. U. S. A., 116 (2019), pp. 22924–22930. [Cited on page 24]

[6] , Stochastic (approximate) proximal point methods: convergence, optimality, and
adaptivity, SIAM J Optim, 29 (2019), pp. 2257–2290. [Cited on pages 2, 24, 25, 26, 28, 30,

31, 32, 39, 40, 68, 69, 70, 71, 102, 103, and 109]

[7] M. Barré, A. Taylor, and A. d’Aspremont, Complexity guarantees for Polyak steps
with momentum, in Proceedings of Thirty Third Conference on Learning Theory, J. Aber-
nethy and S. Agarwal, eds., vol. 125 of Proceedings of Machine Learning Research, PMLR,
09–12 Jul 2020, pp. 452–478. [Cited on page 103]

[8] H. H. Bauschke and P. L. Combettes, Convex analysis and monotone operator theory
in Hilbert spaces, CMS Books in Mathematics/Ouvrages de Mathématiques de la SMC,
Springer, New York, 2011. With a foreword by Hédy Attouch. [Cited on pages 5, 6, 7, and 30]

[9] A. Beck, First-order methods in optimization, vol. 25 of MOS-SIAM Series on Optimiza-
tion, Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA; Mathe-
matical Optimization Society, Philadelphia, PA, 2017. [Cited on pages 5, 6, 7, 8, 10, 32, 34, 44,

57, 60, 61, 62, and 94]

[10] L. Berrada, A. Zisserman, and M. P. Kumar, Training neural networks for and by
interpolation, (2019). [Cited on pages 68, 69, 70, and 103]

131

132 Bibliography

[11] D. P. Bertsekas, Stochastic optimization problems with nondifferentiable cost function-
als, J Optim Theory Appl, 12 (1973), pp. 218–231. [Cited on pages 15 and 77]

[12] , Incremental proximal methods for large scale convex optimization, Math Program,
129 (2011), pp. 163–195. [Cited on pages 2 and 28]

[13] J. Bolte, A. Daniilidis, and A. Lewis, Tame functions are semismooth, Math Pro-
gram, 117 (2009), pp. 5–19. [Cited on page 30]

[14] J. F. Bonnans, J. C. Gilbert, C. Lemaréchal, and C. A. Sagastizábal, A family
of variable metric proximal methods, Math Program, 68 (1995), pp. 15–47. [Cited on page 31]

[15] L. Bottou, Large-scale machine learning with stochastic gradient descent, in Proceedings
of COMPSTAT’2010, Physica-Verlag/Springer, Heidelberg, 2010, pp. 177–186. [Cited on

page 1]

[16] L. Bottou, F. E. Curtis, and J. Nocedal, Optimization methods for large-scale
machine learning, SIAM Rev, 60 (2018), pp. 223–311. [Cited on pages 1, 13, 15, 18, and 19]

[17] S. Boyd and E. K. Ryu, Stochastic proximal iteration: a non-asymptotic improvement
upon stochastic gradient descent. 2014. [Cited on pages 2 and 28]

[18] T. Brown, B. Mann, N. Ryder, M. Subbiah, J. D. Kaplan, P. Dhariwal, A. Nee-
lakantan, P. Shyam, G. Sastry, A. Askell, S. Agarwal, A. Herbert-Voss,
G. Krueger, T. Henighan, R. Child, A. Ramesh, D. Ziegler, J. Wu, C. Win-
ter, C. Hesse, M. Chen, E. Sigler, M. Litwin, S. Gray, B. Chess, J. Clark,
C. Berner, S. McCandlish, A. Radford, I. Sutskever, and D. Amodei, Lan-
guage models are few-shot learners, in Advances in Neural Information Processing Sys-
tems, H. Larochelle, M. Ranzato, R. Hadsell, M. Balcan, and H. Lin, eds., vol. 33, Curran
Associates, Inc., 2020, pp. 1877–1901. [Cited on pages 1, 12, and 68]

[19] K. Chen, A. Cutkosky, and F. Orabona, Implicit parameter-free online learning
with truncated linear models, in Proceedings of The 33rd International Conference on
Algorithmic Learning Theory, S. Dasgupta and N. Haghtalab, eds., vol. 167 of Proceedings
of Machine Learning Research, PMLR, 29 Mar–01 Apr 2022, pp. 148–175. [Cited on page 103]

[20] L. Chizat and F. Bach, On the global convergence of gradient descent for over-
parameterized models using optimal transport, in Advances in Neural Information Pro-
cessing Systems, S. Bengio, H. Wallach, H. Larochelle, K. Grauman, N. Cesa-Bianchi, and
R. Garnett, eds., vol. 31, Curran Associates, Inc., 2018. [Cited on page 2]

[21] D. C. Cireşan, U. Meier, J. Masci, L. M. Gambardella, and J. Schmidhu-
ber, Flexible, high performance convolutional neural networks for image classification,
in Proceedings of the Twenty-Second International Joint Conference on Artificial Intelli-
gence - Volume Volume Two, IJCAI’11, Barcelona, Catalonia, Spain, 2011, AAAI Press,
p. 1237–1242. [Cited on page 13]

[22] F. H. Clarke, Optimization and nonsmooth analysis, Canadian Mathematical Society
Series of Monographs and Advanced Texts, John Wiley & Sons, Inc., New York, 1983. A
Wiley-Interscience Publication. [Cited on pages 5, 6, and 15]

[23] L. Condat, A direct algorithm for 1-d total variation denoising, IEEE Signal Processing
Letters, 20 (2013), pp. 1054–1057. [Cited on page 60]

[24] M. Cranmer, A. Sanchez Gonzalez, P. Battaglia, R. Xu, K. Cranmer,
D. Spergel, and S. Ho, Discovering symbolic models from deep learning with inductive

Bibliography 133

biases, in Advances in Neural Information Processing Systems, H. Larochelle, M. Ran-
zato, R. Hadsell, M. Balcan, and H. Lin, eds., vol. 33, Curran Associates, Inc., 2020,
pp. 17429–17442. [Cited on page 1]

[25] G. E. Dahl, F. Schneider, Z. Nado, N. Agarwal, C. S. Sastry, P. Hennig,
S. Medapati, R. Eschenhagen, P. Kasimbeg, D. Suo, J. Bae, J. Gilmer, A. L.
Peirson, B. Khan, R. Anil, M. Rabbat, S. Krishnan, D. Snider, E. Amid,
K. Chen, C. J. Maddison, R. Vasudev, M. Badura, A. Garg, and P. Matt-
son, Benchmarking neural network training algorithms, (2023). [Cited on pages 2 and 101]

[26] D. Davis and D. Drusvyatskiy, Stochastic model-based minimization of weakly convex
functions, SIAM J Optim, 29 (2019), pp. 207–239. [Cited on pages 2, 6, 8, 14, 17, 18, 24, 25, 26,

28, 30, 31, 32, 39, 40, 61, 62, 70, 75, 76, 77, 102, 103, and 109]

[27] A. Defazio, F. Bach, and S. Lacoste-Julien, Saga: A fast incremental gradient
method with support for non-strongly convex composite objectives, in Advances in Neural
Information Processing Systems, Z. Ghahramani, M. Welling, C. Cortes, N. Lawrence,
and K. Q. Weinberger, eds., vol. 27, Curran Associates, Inc., 2014, pp. 1646–1654. [Cited

on pages 2, 19, 21, 30, and 31]

[28] A. Defazio and K. Mishchenko, Learning-rate-free learning by D-adaptation, in Pro-
ceedings of the 40th International Conference on Machine Learning, A. Krause, E. Brun-
skill, K. Cho, B. Engelhardt, S. Sabato, and J. Scarlett, eds., vol. 202 of Proceedings of
Machine Learning Research, PMLR, 23–29 Jul 2023, pp. 7449–7479. [Cited on pages 2, 103,

and 127]

[29] A. Défossez, L. Bottou, F. Bach, and N. Usunier, A simple convergence proof of
Adam and Adagrad, Transactions on Machine Learning Research, (2022). [Cited on page 22]

[30] U. K. Deiters and R. Maćıas-Salinas, Calculation of Densities from Cubic Equations
of State: Revisited, Industrial & Engineering Chemistry Research, 53 (2014), pp. 2529–
2536. [Cited on page 43]

[31] D. L. Donoho, Compressed sensing, IEEE Transactions on Information Theory, 52
(2006), pp. 1289–1306. [Cited on page 59]

[32] A. Dosovitskiy, L. Beyer, A. Kolesnikov, D. Weissenborn, X. Zhai, T. Un-
terthiner, M. Dehghani, M. Minderer, G. Heigold, S. Gelly, J. Uszkoreit,
and N. Houlsby, An image is worth 16x16 words: Transformers for image recognition at
scale, in 9th International Conference on Learning Representations, ICLR 2021, Virtual
Event, Austria, May 3-7, 2021, OpenReview.net, 2021. [Cited on pages 1, 13, 68, 114, 126,

and 127]

[33] D. Drusvyatskiy, The proximal point method revisited, (2017). [Cited on page 28]

[34] D. Drusvyatskiy and A. S. Lewis, Error bounds, quadratic growth, and linear conver-
gence of proximal methods, Math Oper Res, 43 (2018), pp. 919–948. [Cited on page 48]

[35] D. Drusvyatskiy and C. Paquette, Efficiency of minimizing compositions of convex
functions and smooth maps, Math Program, 178 (2019), pp. 503–558. [Cited on pages 14, 61,

and 62]

[36] J. Duchi, E. Hazan, and Y. Singer, Adaptive subgradient methods for online learning
and stochastic optimization, J Mach Learn Res, 12 (2011), pp. 2121–2159. [Cited on pages

2, 22, and 103]

134 Bibliography

[37] J. C. Duchi and F. Ruan, Stochastic methods for composite and weakly convex opti-
mization problems, SIAM J Optim, 28 (2018), pp. 3229–3259. [Cited on pages 2 and 24]

[38] R. Durrett, Probability—theory and examples, Cambridge University Press, Cambridge,
2019. [Cited on page 49]

[39] J. Eckstein and D. P. Bertsekas, On the Douglas—Rachford splitting method and
the proximal point algorithm for maximal monotone operators, Math Program, 55 (1992),
pp. 293–318. [Cited on page 28]

[40] L. Espeholt, S. Agrawal, C. Sønderby, M. Kumar, J. Heek, C. Bromberg,
C. Gazen, R. Carver, M. Andrychowicz, J. Hickey, A. Bell, and N. Kalch-
brenner, Deep learning for twelve hour precipitation forecasts, Nat Commun, 13 (2022).
[Cited on pages 1 and 68]

[41] F. Facchinei, Minimization of SC1 functions and the Maratos effect, Oper Res Lett, 17
(1995), pp. 131–137. [Cited on pages 34 and 35]

[42] F. Facchinei and J.-S. Pang, Finite-dimensional variational inequalities and comple-
mentarity problems. Vol. I, Springer Series in Operations Research, Springer-Verlag, New
York, 2003. [Cited on page 5]

[43] , Finite-dimensional variational inequalities and complementarity problems. Vol. II,
Springer Series in Operations Research, Springer-Verlag, New York, 2003. [Cited on pages 5,

9, and 33]

[44] K. Fountoulakis and J. Gondzio, A second-order method for strongly convex `1-
regularization problems, Math Program, 156 (2016), pp. 189–219. [Cited on page 55]

[45] K. Fukushima, Neocognitron: A self-organizing neural network model for a mechanism of
pattern recognition unaffected by shift in position, Biol Cybernet, 36 (1980), pp. 193–202.
[Cited on page 13]

[46] G. Garrigos and R. M. Gower, Handbook of convergence theorems for (stochastic)
gradient methods, (2023). [Cited on pages 18, 21, 87, and 110]

[47] S. Ghadimi and G. Lan, Stochastic first- and zeroth-order methods for nonconvex
stochastic programming, SIAM J Optim, 23 (2013), pp. 2341–2368. [Cited on pages 15 and 31]

[48] S. Ghadimi, G. Lan, and H. Zhang, Mini-batch stochastic approximation methods for
nonconvex stochastic composite optimization, Math Program, 155 (2016), pp. 267–305.
[Cited on pages 14, 15, 18, 29, 30, and 31]

[49] R. Goebel and R. T. Rockafellar, Local strong convexity and local Lipschitz conti-
nuity of the gradient of convex functions, J Convex Anal, 15 (2008), pp. 263–270. [Cited on

pages 8 and 30]

[50] E. Gorbunov, F. Hanzely, and P. Richtarik, A unified theory of SGD: Variance
reduction, sampling, quantization and coordinate descent, in Proceedings of the Twenty
Third International Conference on Artificial Intelligence and Statistics, S. Chiappa and
R. Calandra, eds., vol. 108 of Proceedings of Machine Learning Research, PMLR, 26–28
Aug 2020, pp. 680–690. [Cited on page 19]

[51] R. Gower, O. Sebbouh, and N. Loizou, SGD for structured nonconvex functions:
Learning rates, minibatching and interpolation, in Proceedings of The 24th International
Conference on Artificial Intelligence and Statistics, A. Banerjee and K. Fukumizu, eds.,

Bibliography 135

vol. 130 of Proceedings of Machine Learning Research, PMLR, 13–15 Apr 2021, pp. 1315–
1323. [Cited on pages 67, 70, 103, and 105]

[52] R. M. Gower, N. Loizou, X. Qian, A. Sailanbayev, E. Shulgin, and
P. Richtárik, SGD: General analysis and improved rates, in Proceedings of the 36th
International Conference on Machine Learning, K. Chaudhuri and R. Salakhutdinov, eds.,
vol. 97 of Proceedings of Machine Learning Research, PMLR, 09–15 Jun 2019, pp. 5200–
5209. [Cited on pages 21 and 22]

[53] R. M. Gower, M. Schmidt, F. Bach, and P. Richtárik, Variance-reduced methods
for machine learning, Proceedings of the IEEE, 108 (2020), pp. 1968–1983. [Cited on page 19]

[54] O. Güler, On the convergence of the proximal point algorithm for convex minimization,
SIAM J Control Optim, 29 (1991), pp. 403–419. [Cited on page 28]

[55] I. Guyon, S. Gunn, A. Ben-Hur, and G. Dror, Result analysis of the NIPS 2003
feature selection challenge, in Advances in Neural Information Processing Systems, L. Saul,
Y. Weiss, and L. Bottou, eds., vol. 17, MIT Press, 2005, pp. 545–552. [Cited on page 39]

[56] F. Hanzely, K. Mishchenko, and P. Richtarik, Sega: Variance reduction via gradi-
ent sketching, in Advances in Neural Information Processing Systems, S. Bengio, H. Wal-
lach, H. Larochelle, K. Grauman, N. Cesa-Bianchi, and R. Garnett, eds., vol. 31, Curran
Associates, Inc., 2018, pp. 2082–2093. [Cited on pages 2 and 31]

[57] T. Hastie, R. Tibshirani, and J. Friedman, The elements of statistical learning,
Springer Series in Statistics, Springer, New York, second ed., 2009. Data mining, inference,
and prediction. [Cited on pages 12, 38, 54, and 60]

[58] T. Hastie, R. Tibshirani, and M. Wainwright, Statistical learning with sparsity,
vol. 143 of Monographs on Statistics and Applied Probability, CRC Press, Boca Raton,
FL, 2015. The lasso and generalizations. [Cited on pages 2, 12, 58, and 60]

[59] E. Hazan and S. Kakade, Revisiting the Polyak step size, (2019). [Cited on pages 3, 68,

and 69]

[60] K. He, X. Zhang, S. Ren, and J. Sun, Deep residual learning for image recognition,
in 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2016,
pp. 770–778. [Cited on pages 13, 83, and 126]

[61] J.-B. Hiriart-Urruty and C. Lemaréchal, Fundamentals of convex analysis,
Grundlehren Text Editions, Springer-Verlag, Berlin, 2001. Abridged version of ıt Convex
analysis and minimization algorithms. I [Springer, Berlin, 1993; MR1261420 (95m:90001)]
and ıt II [ibid.; MR1295240 (95m:90002)]. [Cited on page 5]

[62] J.-B. Hiriart-Urruty, J.-J. Strodiot, and V. H. Nguyen, Generalized Hessian
matrix and second-order optimality conditions for problems with C1,1 data, Appl Math
Optim, 11 (1984), pp. 43–56. [Cited on page 30]

[63] J. Hoffmann, S. Borgeaud, A. Mensch, E. Buchatskaya, T. Cai, E. Ruther-
ford, D. de Las Casas, L. A. Hendricks, J. Welbl, A. Clark, T. Hennigan,
E. Noland, K. Millican, G. van den Driessche, B. Damoc, A. Guy, S. Osin-
dero, K. Simonyan, E. Elsen, O. Vinyals, J. Rae, and L. Sifre, An empirical
analysis of compute-optimal large language model training, in Advances in Neural Infor-
mation Processing Systems, S. Koyejo, S. Mohamed, A. Agarwal, D. Belgrave, K. Cho,
and A. Oh, eds., vol. 35, Curran Associates, Inc., 2022, pp. 30016–30030. [Cited on page 1]

136 Bibliography

[64] P. J. Huber, Robust statistics, Wiley Series in Probability and Mathematical Statistics,
John Wiley & Sons, Inc., New York, 1981. [Cited on page 43]

[65] C. Irrgang, N. Boers, M. Sonnewald, E. A. Barnes, C. Kadow, J. Staneva, and
J. Saynisch-Wagner, Towards neural Earth system modelling by integrating artificial
intelligence in Earth system science, Nature Machine Intelligence, 3 (2021), pp. 667–674.
[Cited on page 1]

[66] A. G. Ivakhnenko, V. G. Lapa, and R. N. Mcdonough, Cybernetics and forecasting
techniques, 1967. [Cited on page 12]

[67] M. Ivgi, O. Hinder, and Y. Carmon, DoG is SGD’s best friend: A parameter-free
dynamic step size schedule, in Proceedings of the 40th International Conference on Machine
Learning, A. Krause, E. Brunskill, K. Cho, B. Engelhardt, S. Sabato, and J. Scarlett, eds.,
vol. 202 of Proceedings of Machine Learning Research, PMLR, 23–29 Jul 2023, pp. 14465–
14499. [Cited on page 2]

[68] S. J. Reddi, S. Sra, B. Poczos, and A. J. Smola, Proximal stochastic methods for
nonsmooth nonconvex finite-sum optimization, in Advances in Neural Information Pro-
cessing Systems 29, D. D. Lee, M. Sugiyama, U. V. Luxburg, I. Guyon, and R. Garnett,
eds., Curran Associates, Inc., 2016, pp. 1145–1153. [Cited on pages 2, 20, 21, 29, 30, 31, 36, 45,

and 46]

[69] A. Jacot, F. Gabriel, and C. Hongler, Neural tangent kernel: Convergence and
generalization in neural networks, in Advances in Neural Information Processing Systems,
S. Bengio, H. Wallach, H. Larochelle, K. Grauman, N. Cesa-Bianchi, and R. Garnett, eds.,
vol. 31, Curran Associates, Inc., 2018. [Cited on page 2]

[70] H. Jiang and L. Q. Qi, Local uniqueness and convergence of iterative methods for non-
smooth variational inequalities, J Math Anal Appl, 196 (1995), pp. 314–331. [Cited on

page 33]

[71] R. Johnson and T. Zhang, Accelerating stochastic gradient descent using predictive vari-
ance reduction, in Advances in Neural Information Processing Systems, C. J. C. Burges,
L. Bottou, M. Welling, Z. Ghahramani, and K. Q. Weinberger, eds., vol. 26, Curran As-
sociates, Inc., 2013, pp. 315–323. [Cited on pages 2, 19, and 20]

[72] J. Jumper, R. Evans, A. Pritzel, T. Green, M. Figurnov, O. Ronneberger,
K. Tunyasuvunakool, R. Bates, A. Ž́ıdek, A. Potapenko, A. Bridgland,
C. Meyer, S. A. A. Kohl, A. J. Ballard, A. Cowie, B. Romera-Paredes,
S. Nikolov, R. Jain, J. Adler, T. Back, S. Petersen, D. Reiman, E. Clancy,
M. Zielinski, M. Steinegger, M. Pacholska, T. Berghammer, S. Bodenstein,
D. Silver, O. Vinyals, A. W. Senior, K. Kavukcuoglu, P. Kohli, and D. Has-
sabis, Highly accurate protein structure prediction with alphafold, Nature, 596 (2021),
pp. 583–589. [Cited on page 1]

[73] J. Kiefer and J. Wolfowitz, Stochastic estimation of the maximum of a regression
function, Ann. Math. Statistics, 23 (1952), pp. 462–466. [Cited on pages 11 and 14]

[74] D. P. Kingma and J. Ba, Adam: A method for stochastic optimization, in 3rd Inter-
national Conference on Learning Representations, ICLR 2015, San Diego, CA, USA, May
7-9, 2015, Conference Track Proceedings, Y. Bengio and Y. LeCun, eds., 2015. [Cited on

pages 1, 2, 22, 23, 69, 103, and 107]

Bibliography 137

[75] K. Koh, S.-J. Kim, and S. Boyd, An interior-point method for large-scale l1-regularized
logistic regression, J Mach Learn Res, 8 (2007), pp. 1519–1555. [Cited on page 38]

[76] A. Krizhevsky, I. Sutskever, and G. E. Hinton, Imagenet classification with deep
convolutional neural networks, in Advances in Neural Information Processing Systems,
F. Pereira, C. Burges, L. Bottou, and K. Weinberger, eds., vol. 25, Curran Associates,
Inc., 2012. [Cited on page 13]

[77] A. Krogh and J. Hertz, A simple weight decay can improve generalization, in Advances
in Neural Information Processing Systems, J. Moody, S. Hanson, and R. Lippmann, eds.,
vol. 4, Morgan-Kaufmann, 1991. [Cited on pages 2, 60, and 108]

[78] R. Lam, A. Sanchez-Gonzalez, M. Willson, P. Wirnsberger, M. Fortunato,
F. Alet, S. Ravuri, T. Ewalds, Z. Eaton-Rosen, W. Hu, A. Merose, S. Hoyer,
G. Holland, O. Vinyals, J. Stott, A. Pritzel, S. Mohamed, and P. Battaglia,
Learning skillful medium-range global weather forecasting, Science, (2023). [Cited on page 1]

[79] K. L. Lange, R. J. A. Little, and J. M. G. Taylor, Robust statistical modeling
using the t distribution, J Amer Statist Assoc, 84 (1989), pp. 881–896. [Cited on page 43]

[80] Y. LeCun and Y. Bengio, Convolutional Networks for Images, Speech, and Time Series,
MIT Press, Cambridge, MA, USA, 1998, p. 255–258. [Cited on page 13]

[81] Y. LeCun, Y. Bengio, and G. Hinton, Deep Learning, Nature, 521 (2015), pp. 436–
444. [Cited on pages 12 and 13]

[82] Y. LeCun and C. Cortes, MNIST handwritten digit database, (2010). [Cited on page 38]

[83] A. S. Lewis and S. J. Wright, A proximal method for composite minimization, Math
Program, 158 (2015), pp. 501–546. [Cited on page 62]

[84] X. Li, D. Sun, and K.-C. Toh, A highly efficient semismooth Newton augmented La-
grangian method for solving lasso problems, SIAM J Optim, 28 (2018), pp. 433–458. [Cited

on pages 2, 28, 29, 32, 34, and 60]

[85] , On efficiently solving the subproblems of a level-set method for fused lasso problems,
SIAM J Optim, 28 (2018), pp. 1842–1866. [Cited on page 60]

[86] Y. Lin and S. Hu, B-subdifferential of the projection onto the generalized spectraplex, J
Optim Theory Appl, 192 (2022), pp. 702–724. [Cited on page 61]

[87] S. L. Lohr, Sampling: design and analysis, Brooks/Cole, Cengage Learning, Boston,
MA, second ed., 2010. [Cited on pages 32 and 45]

[88] N. Loizou, S. Vaswani, I. Hadj Laradji, and S. Lacoste-Julien, Stochastic Polyak
step-size for SGD: An adaptive learning rate for fast convergence, in Proceedings of The
24th International Conference on Artificial Intelligence and Statistics, A. Banerjee and
K. Fukumizu, eds., vol. 130 of Proceedings of Machine Learning Research, PMLR, 13–15
Apr 2021, pp. 1306–1314. [Cited on pages 3, 68, 69, 70, 71, 74, 78, 79, 80, 95, 96, 99, 103, and 111]

[89] I. Loshchilov and F. Hutter, Decoupled weight decay regularization, in 7th Interna-
tional Conference on Learning Representations, ICLR 2019, New Orleans, LA, USA, May
6-9, 2019, OpenReview.net, 2019. [Cited on pages 1, 2, 23, 68, 70, 103, and 125]

[90] L. Luo, Y. Xiong, Y. Liu, and X. Sun, Adaptive gradient methods with dynamic
bound of learning rate, in Proceedings of the 7th International Conference on Learning
Representations, May 2019. [Cited on page 127]

138 Bibliography

[91] S. Ma, R. Bassily, and M. Belkin, The power of interpolation: Understanding the
effectiveness of SGD in modern over-parametrized learning, in Proceedings of the 35th
International Conference on Machine Learning, J. Dy and A. Krause, eds., vol. 80 of
Proceedings of Machine Learning Research, PMLR, 10–15 Jul 2018, pp. 3325–3334. [Cited

on pages 3, 21, 67, and 105]

[92] B. Martinet, Regularisation d’inéquations variationelles par approximations successives,
Rev. Française Inf. Rech. Oper., (1970), pp. 154–159. [Cited on pages 27 and 31]

[93] , Determination approchée d’un point fixe d’une application pseudo-contractante, C.R.
Acad. Sci. Paris, 274 (1972), pp. 163–165. [Cited on pages 27 and 31]

[94] H. B. McMahan and M. Streeter, Adaptive bound optimization for online convex
optimization, Proceedings of the 23rd Annual Conference on Learning Theory (COLT)
2010, (2010). [Cited on pages 2 and 22]

[95] S. Y. Meng and R. M. Gower, A model-based method for minimizing CVaR and be-
yond, in Proceedings of the 40th International Conference on Machine Learning, A. Krause,
E. Brunskill, K. Cho, B. Engelhardt, S. Sabato, and J. Scarlett, eds., vol. 202 of Proceed-
ings of Machine Learning Research, PMLR, 23–29 Jul 2023, pp. 24436–24456. [Cited on

page 103]

[96] R. Mifflin, Semismooth and semiconvex functions in constrained optimization, SIAM J
Control Optim, 15 (1977), pp. 959–972. [Cited on page 9]

[97] A. Milzarek, Numerical methods and second order theory for nonsmooth problems, PhD
thesis, Technische Universität München, 2016. [Cited on pages 7, 30, and 33]

[98] A. Milzarek, F. Schaipp, and M. Ulbrich, A semismooth Newton stochastic proximal
point algorithm with variance reduction, SIAM J Optim, 34 (2024), pp. 1157–1185. [Cited

on pages 3, 27, and 62]

[99] A. Milzarek, X. Xiao, S. Cen, Z. Wen, and M. Ulbrich, A stochastic semis-
mooth Newton method for nonsmooth nonconvex optimization, SIAM J Optim, 29 (2019),
pp. 2916–2948. [Cited on pages 22 and 31]

[100] J.-J. Moreau, Proximité et dualité dans un espace hilbertien, Bull Soc Math France, 93
(1965), pp. 273–299. [Cited on page 8]

[101] E. Moulines and F. Bach, Non-asymptotic analysis of stochastic approximation al-
gorithms for machine learning, in Advances in Neural Information Processing Systems,
J. Shawe-Taylor, R. Zemel, P. Bartlett, F. Pereira, and K. Weinberger, eds., vol. 24,
Curran Associates, Inc., 2011. [Cited on page 22]

[102] D. Needell, N. Srebro, and R. Ward, Stochastic gradient descent, weighted sampling,
and the randomized Kaczmarz algorithm, Math Program, 155 (2016), pp. 549–573. [Cited

on page 22]

[103] A. Nemirovski, A. Juditsky, G. Lan, and A. Shapiro, Robust stochastic approxima-
tion approach to stochastic programming, SIAM J Optim, 19 (2008), pp. 1574–1609. [Cited

on pages 15 and 18]

[104] A. S. Nemirovsky and D. B. a. Yudin, Problem complexity and method efficiency
in optimization, A Wiley-Interscience Publication, John Wiley & Sons, Inc., New York,
1983. Translated from the Russian and with a preface by E. R. Dawson, Wiley-Interscience
Series in Discrete Mathematics. [Cited on page 1]

Bibliography 139

[105] Y. Nesterov, Gradient methods for minimizing composite functions, Math Program, 140
(2013), pp. 125–161. [Cited on pages 29 and 48]

[106] Y. Nesterov, Lectures on convex optimization, vol. 137 of Springer Optimization and Its
Applications, Springer, Cham, 2018. Second edition of [MR2142598]. [Cited on page 5]

[107] F. Orabona and D. Pál, Coin betting and parameter-free online learning, in Advances
in Neural Information Processing Systems 29: Annual Conference on Neural Information
Processing Systems 2016, December 5-10, 2016, Barcelona, Spain, D. D. Lee, M. Sugiyama,
U. von Luxburg, I. Guyon, and R. Garnett, eds., 2016, pp. 577–585. [Cited on pages 2 and 103]

[108] F. Orabona and T. Tommasi, Training deep networks without learning rates through
coin betting, in Advances in Neural Information Processing Systems, I. Guyon, U. V.
Luxburg, S. Bengio, H. Wallach, R. Fergus, S. Vishwanathan, and R. Garnett, eds., vol. 30,
Curran Associates, Inc., 2017. [Cited on page 103]

[109] A. Orvieto, S. Lacoste-Julien, and N. Loizou, Dynamics of SGD with stochastic
Polyak stepsizes: Truly adaptive variants and convergence to exact solution, in Advances in
Neural Information Processing Systems, S. Koyejo, S. Mohamed, A. Agarwal, D. Belgrave,
K. Cho, and A. Oh, eds., vol. 35, Curran Associates, Inc., 2022, pp. 26943–26954. [Cited

on pages 3, 69, 78, 79, 99, and 103]

[110] M. Ott, S. Edunov, A. Baevski, A. Fan, S. Gross, N. Ng, D. Grangier, and
M. Auli, fairseq: A fast, extensible toolkit for sequence modeling, in Proceedings of
NAACL-HLT 2019: Demonstrations, 2019. [Cited on pages 117 and 127]

[111] A. Paren, L. Berrada, R. P. K. Poudel, and M. P. Kumar, A stochastic bundle
method for interpolation, J Mach Learn Res, 23 (2022), pp. 1–57. [Cited on pages 69, 102,

and 103]

[112] L. A. Parente, P. A. Lotito, and M. V. Solodov, A class of inexact variable metric
proximal point algorithms, SIAM J Optim, 19 (2008), pp. 240–260. [Cited on page 31]

[113] A. Paszke, S. Gross, F. Massa, A. Lerer, J. Bradbury, G. Chanan, T. Killeen,
Z. Lin, N. Gimelshein, L. Antiga, A. Desmaison, A. Kopf, E. Yang, Z. De-
Vito, M. Raison, A. Tejani, S. Chilamkurthy, B. Steiner, L. Fang, J. Bai,
and S. Chintala, Pytorch: An imperative style, high-performance deep learning library,
in Advances in Neural Information Processing Systems 32, Curran Associates, Inc., 2019,
pp. 8024–8035. [Cited on pages 12 and 79]

[114] A. Patrascu and I. Necoara, Nonasymptotic convergence of stochastic proximal point
methods for constrained convex optimization, J Mach Learn Res, 18 (2017), pp. Paper No.
198, 42. [Cited on pages 2 and 28]

[115] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel,
M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Pas-
sos, D. Cournapeau, M. Brucher, M. Perrot, and E. Duchesnay, Scikit-learn:
Machine learning in Python, J Mach Learn Res, 12 (2011), pp. 2825–2830. [Cited on page 38]

[116] B. T. Polyak, Some methods of speeding up the convergence of iteration methods, USSR
Computational Mathematics and Mathematical Physics, 4 (1964), pp. 1–17. [Cited on pages

3 and 102]

140 Bibliography

[117] B. T. Polyak, Introduction to optimization, Translations Series in Mathematics and En-
gineering, Optimization Software, Inc., Publications Division, New York, 1987. Translated
from the Russian, With a foreword by Dimitri P. Bertsekas. [Cited on pages 3, 68, 69, and 103]

[118] M. Prazeres and A. M. Oberman, Stochastic gradient descent with Polyak’s learning
rate, J Sci Comput, 89 (2021), pp. Paper No. 25, 16. [Cited on page 69]

[119] L. Q. Qi and J. Sun, A nonsmooth version of Newton’s method, Math Program, 58
(1993), pp. 353–367. [Cited on page 9]

[120] S. J. Reddi, S. Kale, and S. Kumar, On the convergence of Adam and beyond, in
International Conference on Learning Representations, 2018. [Cited on page 22]

[121] L. Rivera-Muñoz, A. Giraldo-Forero, and J. Martinez-Vargas, Deep matrix
factorization models for estimation of missing data in a low-cost sensor network to measure
air quality, Ecol Inform, 71 (2022), p. 101775. [Cited on page 82]

[122] H. Robbins and S. Monro, A stochastic approximation method, Ann. Math. Statistics,
22 (1951), pp. 400–407. [Cited on pages 1, 11, 14, and 19]

[123] R. T. Rockafellar, Convex analysis, Princeton Mathematical Series, No. 28, Princeton
University Press, Princeton, N.J., 1970. [Cited on pages 5, 6, and 8]

[124] , Augmented Lagrangians and applications of the proximal point algorithm in convex
programming, Math Oper Res, 1 (1976), pp. 97–116. [Cited on pages 2, 27, 28, and 31]

[125] , Monotone operators and the proximal point algorithm, SIAM J Control Optim, 14
(1976), pp. 877–898. [Cited on pages 2, 27, and 28]

[126] R. T. Rockafellar and R. J.-B. Wets, Variational analysis, vol. 317 of Grundlehren
der mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences],
Springer-Verlag, Berlin, 1998. [Cited on pages 5, 6, 7, 29, and 60]

[127] R. Rombach, A. Blattmann, D. Lorenz, P. Esser, and B. Ommer, High-resolution
image synthesis with latent diffusion models, in Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition (CVPR), 2022. [Cited on page 13]

[128] O. Ronneberger, P. Fischer, and T. Brox, U-net: Convolutional networks for
biomedical image segmentation, in Lecture Notes in Computer Science, Springer Inter-
national Publishing, 2015, pp. 234–241. [Cited on page 127]

[129] L. Rosasco, S. Villa, and B. C. Vũ, Convergence of stochastic proximal gradient
algorithm, Appl Math Optim, 82 (2020), pp. 891–917. [Cited on page 18]

[130] F. Rosenblatt, The perceptron: a probabilistic model for information storage and orga-
nization in the brain., Psychological review, 65 6 (1958), pp. 386–408. [Cited on page 12]

[131] V. Roulet and M. Blondel, Dual gauss-newton directions for deep learning, (2023).
[Cited on page 62]

[132] F. Schaipp, R. M. Gower, and M. Ulbrich, A stochastic proximal Polyak step size,
Transactions on Machine Learning Research, (2023). Reproducibility Certification. [Cited

on pages 3, 67, 73, 88, and 103]

[133] F. Schaipp, R. Ohana, M. Eickenberg, A. Defazio, and R. M. Gower, Pytorch
implementation of MoMo methods. https://github.com/fabian-sp/MoMo, 2023. Ac-
cessed: 2023-09-15. [Cited on pages 3 and 112]

https://github.com/fabian-sp/MoMo

Bibliography 141

[134] F. Schaipp, R. Ohana, M. Eickenberg, A. Defazio, and R. M. Gower, MoMo:
Momentum models for adaptive learning rates, in Proceedings of the 41st International
Conference on Machine Learning, R. Salakhutdinov, Z. Kolter, K. Heller, A. Weller,
N. Oliver, J. Scarlett, and F. Berkenkamp, eds., vol. 235 of Proceedings of Machine Learn-
ing Research, PMLR, 21–27 Jul 2024, pp. 43542–43570. [Cited on pages 3 and 101]

[135] F. Schaipp, O. Vlasovets, and C. L. Müller, Gglasso - a Python package for general
graphical lasso computation, Journal of Open Source Software, 6 (2021), p. 3865. [Cited on

page 60]

[136] M. Schmidt, N. Le Roux, and F. Bach, Minimizing finite sums with the stochastic
average gradient, Math Program, 162 (2017), pp. 83–112. [Cited on page 19]

[137] R. M. Schmidt, F. Schneider, and P. Hennig, Descending through a crowded valley
- benchmarking deep learning optimizers, in Proceedings of the 38th International Con-
ference on Machine Learning, M. Meila and T. Zhang, eds., vol. 139 of Proceedings of
Machine Learning Research, PMLR, 18–24 Jul 2021, pp. 9367–9376. [Cited on pages 2, 39,

67, and 112]

[138] B. Schölkopf and A. J. Smola, Learning with Kernels: support vector machines,
regularization, optimization, and beyond, Adaptive computation and machine learning
series, MIT Press, 2002. [Cited on page 12]

[139] O. Sebbouh, R. M. Gower, and A. Defazio, Almost sure convergence rates for
stochastic gradient descent and stochastic heavy ball, in Proceedings of Thirty Fourth
Conference on Learning Theory, M. Belkin and S. Kpotufe, eds., vol. 134 of Proceedings
of Machine Learning Research, PMLR, 15–19 Aug 2021, pp. 3935–3971. [Cited on pages 102

and 118]

[140] S. Shalev-Shwartz and T. Zhang, Stochastic dual coordinate ascent methods for reg-
ularized loss minimization, J Mach Learn Res, 14 (2013), p. 567–599. [Cited on page 19]

[141] A. Shapiro, On concepts of directional differentiability, J Optim Theory Appl, 66 (1990),
pp. 477–487. [Cited on page 33]

[142] A. Shtoff, Efficient implementation of incremental proximal-point methods, (2022). [Cited

on page 62]

[143] N. Simon, J. Friedman, T. Hastie, and R. Tibshirani, A sparse-group Lasso, J
Comput Graph Statist, 22 (2013), pp. 231–245. [Cited on pages 2 and 43]

[144] K. Simonyan and A. Zisserman, Very deep convolutional networks for large-scale image
recognition, in 3rd International Conference on Learning Representations, ICLR 2015, San
Diego, CA, USA, May 7-9, 2015, Conference Track Proceedings, Y. Bengio and Y. LeCun,
eds., 2015. [Cited on pages 13 and 126]

[145] S. Sra, S. Nowozin, and S. J. Wright, Optimization for Machine Learning, The MIT
Press, 2011. [Cited on page 1]

[146] N. Srebro, J. Rennie, and T. Jaakkola, Maximum-margin matrix factorization, in
Advances in Neural Information Processing Systems, L. Saul, Y. Weiss, and L. Bottou,
eds., vol. 17, MIT Press, 2004. [Cited on page 80]

[147] R.-Y. Sun, Optimization for deep learning: An overview, J Oper Res Soc China, 8 (2020),
pp. 249–294. [Cited on page 104]

142 Bibliography

[148] I. Sutskever, J. Martens, G. Dahl, and G. Hinton, On the importance of initializa-
tion and momentum in deep learning, in Proceedings of the 30th International Conference
on Machine Learning, S. Dasgupta and D. McAllester, eds., vol. 28 of Proceedings of Ma-
chine Learning Research, Atlanta, Georgia, USA, 17–19 Jun 2013, PMLR, pp. 1139–1147.
[Cited on page 3]

[149] I. Sutskever, O. Vinyals, and Q. V. Le, Sequence to sequence learning with neu-
ral networks, in Advances in Neural Information Processing Systems, Z. Ghahramani,
M. Welling, C. Cortes, N. Lawrence, and K. Weinberger, eds., vol. 27, Curran Associates,
Inc., 2014. [Cited on page 1]

[150] R. Tibshirani, Regression shrinkage and selection via the Lasso, J. Roy. Statist. Soc. Ser.
B, 58 (1996), pp. 267–288. [Cited on pages 12, 42, and 59]

[151] J.-B. Tien and O. Chapelle, Display advertising challenge, 2014. [Cited on pages 113

and 126]

[152] P. Toulis, T. Horel, and E. M. Airoldi, The proximal robbins–monro method, Jour-
nal of the Royal Statistical Society Series B: Statistical Methodology, 83 (2020), pp. 188–
212. [Cited on pages 2 and 28]

[153] M. Ulbrich, Semismooth Newton methods for variational inequalities and constrained
optimization problems in function spaces, vol. 11 of MOS-SIAM Series on Optimization,
Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA; Mathematical
Optimization Society, Philadelphia, PA, 2011. [Cited on pages 5, 9, 30, 33, 34, and 60]

[154] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez,
L. Kaiser, and I. Polosukhin, Attention is all you need, in Advances in Neural Infor-
mation Processing Systems, I. Guyon, U. V. Luxburg, S. Bengio, H. Wallach, R. Fergus,
S. Vishwanathan, and R. Garnett, eds., vol. 30, Curran Associates, Inc., 2017. [Cited on

pages 13 and 117]

[155] S. Vaswani, A. Mishkin, I. H. Laradji, M. Schmidt, G. Gidel, and S. Lacoste-
Julien, Painless stochastic gradient: Interpolation, line-search, and convergence rates, in
Advances in Neural Information Processing Systems 32: Annual Conference on Neural
Information Processing Systems 2019, NeurIPS 2019, December 8-14, 2019, Vancouver,
BC, Canada, H. M. Wallach, H. Larochelle, A. Beygelzimer, F. d’Alché-Buc, E. B. Fox,
and R. Garnett, eds., 2019, pp. 3727–3740. [Cited on page 103]

[156] X. Wang, M. Johansson, and T. Zhang, Generalized Polyak step size for first or-
der optimization with momentum, in Proceedings of the 40th International Conference
on Machine Learning, A. Krause, E. Brunskill, K. Cho, B. Engelhardt, S. Sabato, and
J. Scarlett, eds., vol. 202 of Proceedings of Machine Learning Research, PMLR, 23–29 Jul
2023, pp. 35836–35863. [Cited on pages 103 and 120]

[157] L. Xiao and T. Zhang, A proximal stochastic gradient method with progressive variance
reduction, SIAM J Optim, 24 (2014), pp. 2057–2075. [Cited on pages 2, 20, 21, 27, 29, 30, 31,

32, 37, and 45]

[158] L. Yang, D. Sun, and K.-C. Toh, SDPNAL+: a majorized semismooth Newton-CG
augmented Lagrangian method for semidefinite programming with nonnegative constraints,
Math Program Comput, 7 (2015), pp. 331–366. [Cited on page 29]

[159] M. Yang, A. Milzarek, Z. Wen, and T. Zhang, A stochastic extra-step quasi-newton
method for nonsmooth nonconvex optimization, Math Program, (2021). [Cited on page 49]

Bibliography 143

[160] X. Zhai, A. Oliver, A. Kolesnikov, and L. Beyer, S4l: Self-supervised semi-
supervised learning, in 2019 IEEE/CVF International Conference on Computer Vision
(ICCV), 2019, pp. 1476–1485. [Cited on page 12]

[161] G. Zhang, C. Wang, B. Xu, and R. B. Grosse, Three mechanisms of weight decay
regularization, in 7th International Conference on Learning Representations, ICLR 2019,
New Orleans, LA, USA, May 6-9, 2019, 2019. [Cited on pages 2 and 83]

[162] J. Zhang and L. Xiao, Stochastic variance-reduced prox-linear algorithms for nonconvex
composite optimization, Math Program, (2021). [Cited on page 62]

[163] N. Zhang, Y. Zhang, D. Sun, and K.-C. Toh, An efficient linearly convergent regu-
larized proximal point algorithm for fused multiple graphical Lasso problems, SIAM J Math
Data Sci, 3 (2021), pp. 524–543. [Cited on page 60]

[164] Y. Zhang, N. Zhang, D. Sun, and K.-C. Toh, An efficient Hessian based algorithm for
solving large-scale sparse group Lasso problems, Math Program, 179 (2020), pp. 223–263.
[Cited on pages 2, 29, 38, and 60]

[165] , A proximal point dual Newton algorithm for solving group graphical Lasso problems,
SIAM J Optim, 30 (2020), pp. 2197–2220. [Cited on page 28]

[166] P. Zhao and T. Zhang, Stochastic optimization with importance sampling for regular-
ized loss minimization, in Proceedings of the 32nd International Conference on Machine
Learning, F. Bach and D. Blei, eds., vol. 37 of Proceedings of Machine Learning Research,
Lille, France, 07–09 Jul 2015, PMLR, pp. 1–9. [Cited on page 18]

[167] X.-Y. Zhao, D. Sun, and K.-C. Toh, A Newton-CG augmented Lagrangian method
for semidefinite programming, SIAM J Optim, 20 (2010), pp. 1737–1765. [Cited on pages 2,

28, 29, 32, 34, and 35]

[168] J. Zhuang, T. Tang, Y. Ding, S. Tatikonda, N. C. Dvornek, X. Papademetris,
and J. S. Duncan, Adabelief optimizer: Adapting stepsizes by the belief in observed
gradients, in Advances in Neural Information Processing Systems 33: Annual Conference
on Neural Information Processing Systems 2020, NeurIPS 2020, December 6-12, 2020,
virtual, H. Larochelle, M. Ranzato, R. Hadsell, M. Balcan, and H. Lin, eds., 2020. [Cited

on pages 109 and 127]

[169] Z. Zhuang, M. Liu, A. Cutkosky, and F. Orabona, Understanding AdamW through
proximal methods and scale-freeness, Transactions on Machine Learning Research, (2022).
[Cited on pages 23, 70, 83, and 125]

	Abstract
	Acknowledgements
	List of Publications and Preprints
	Notation
	Introduction
	Background and Preliminaries
	Clarke Subdifferential
	Convexity and Fenchel Conjugate
	Proximal Operator and Moreau Envelope
	Smoothness and Semismoothness
	Supplementary Results

	Classical Results of Stochastic Optimization for Machine Learning
	Optimization in the Context of Machine Learning
	Problem Setup
	Stochastic Oracles and Empirical Risk Minimization
	Proximal Stochastic Gradient Descent
	Convergence Results

	Variance Reduction
	An Illustrative Variance-Reduced Method
	SVRG and SAGA
	Interpolation

	Adaptive Methods
	Model-based Stochastic Optimization
	Almost Sure Convergence for SPP
	The Weakly Convex Case

	A Semismooth Newton Stochastic Proximal Point Algorithm With Variance Reduction
	Introduction
	Background and Contributions
	The Stochastic Proximal Point Method
	Preliminaries and Assumptions
	Algorithmic Framework

	A Semismooth Newton Method for Solving the Subproblem
	Controlling the Inexactness of the Update
	Convergence Analysis
	Weakly Convex Case
	Strongly Convex Case

	Numerical Experiments
	General Setting
	Logistic Regression with 1-Regularization
	Sparse Student-t Regression

	Supplementary Material and Missing Proofs
	Bounding the Variance
	Proof for the Weakly Convex Case
	Proof for the Strongly Convex Case
	Parameter Choices
	Additional Plots

	Extension: Additional Loss and Regularization Functions
	Loss Functions and their Conjugate
	Regularization Functions

	Extension: Prox-linear Algorithm
	Background and Related Work
	Algorithmic Framework

	Conclusions and Open Questions

	A Stochastic Proximal Polyak Step Size
	Introduction
	Background and Contributions
	A Model-based Viewpoint for the Unregularized Case
	The Regularized Case
	The Special Case of 2-regularization
	Comparing the Model of SPS and ProxSPS

	Convergence Analysis
	Globally Bounded Subgradients
	Lipschitz Smoothness

	Numerical Experiments
	General Parameter Setting
	Regularized Matrix Factorization
	Regularized Matrix Completion
	Deep Networks for Image Classification

	Conclusions and Open Questions
	Supplementary Material and Missing Proofs
	Update Lemmas for the Truncated Model
	Proof of proxsps:thm:convex-smooth-reg
	Proof of proxsps:thm:exact-nonconv-reg
	Auxiliary Lemmas
	Model Equivalence for SGD and 2-regularization

	Supplementary Material on Numerical Experiments
	Matrix Factorization
	Imagenet32 Experiment
	Interpolation Constant

	Momentum Models for Adaptive Learning Rates
	Introduction
	Background and Contributions
	Model-Based Momentum Methods
	Model-Based Viewpoint of Momentum
	Deriving MoMo
	The Coefficients j,k: To Bias or not to Bias

	Weight Decay and Preconditioning
	Convergence Analysis
	Estimating a Lower Bound
	Numerical Experiments
	Zero as Lower Bound
	Online Lower Bound Estimation

	Conclusions and Open Questions
	Supplementary Material and Missing Proofs
	Convergence Proofs
	Notes on the Averaging Coefficients
	Comparison of MoMo-Adam to AdamW
	Implementation details on MoMo

	Supplementary Material on Numerical Experiments
	Experimental Setup of momo:sec:stability-exps
	Models and Datasets
	Additional Experiments
	Illustrative Example of Online Lower Bound Estimation

