Benutzer: Gast  Login
Dokumenttyp:
Masterarbeit
Autor(en):
Julia Konrad
Titel:
Reduced-dimension Context-aware Multi-fidelity Monte Carlo Sampling
Abstract:
Multi-fidelity Monte Carlo sampling has proven to be an efficient method for quantifying uncertainty in applications with a large number of stochastic input parameters and computationally expensive models. The method consists of evaluating low-fidelity models in addition to the given high-fidelity model in order to speed up the computation of high-fidelity model statistics. In the regular multi-fidelity Monte Carlo sampling approach, low-fidelity models are static and cannot be changed. Context-...     »
Aufgabensteller:
Bungartz, Hans-Joachim
Betreuer:
Ionut-Gabriel Farcas; Tobias Neckel; Frank Jenko
Jahr:
2023
Quartal:
1. Quartal
Jahr / Monat:
2023-01
Monat:
Jan
Sprache:
en
Hochschule / Universität:
Technical University of Munich
Fakultät:
TUM School of Computation, Information and Technology
 BibTeX