Benutzer: Gast  Login
Titel:

A Minimal Model for Compositional Generalization on gSCAN

Dokumenttyp:
Konferenzbeitrag
Autor(en):
Hein, Alice; Diepold, Klaus
Seitenangaben Beitrag:
1-15
Abstract:
Whether neural networks are capable of compositional generalization has been a topic of much debate. Most previous studies on this subject investigate the generalization capabilities of state-of-the-art deep learning architectures. We here take a more bottom-up approach and design a minimal model that displays generalization on a compositional benchmark, namely, the gSCAN dataset. The model is a hybrid architecture that combines layers trained with gradient descent and a selective attention mech...     »
Herausgeber:
Association for Computational Linguistics
Kongress- / Buchtitel:
Proceedings of the Fifth BlackboxNLP Workshop on Analyzing and Interpreting Neural Networks for NLP
Kongress / Zusatzinformationen:
Abu Dhabi, United Arab Emirates (Hybrid)
Jahr:
2022
Jahr / Monat:
2022-12
Monat:
Dec
Seiten:
15
Reviewed:
ja
Sprache:
en
Erscheinungsform:
WWW
WWW:
https://preview.aclanthology.org/emnlp-22-ingestion/2022.blackboxnlp-1.1.pdf
 BibTeX