Benutzer: Gast  Login
Dokumenttyp:
Bachelorarbeit
Autor(en):
Danylo Movchan
Titel:
Implementing a learning-rate scheduler in a Newton-CG Optimizer for Deep Learning
Abstract:
Nowadays, Deep Neural Networks models are at the peak of their popularity and find applications in a variety fields, e.g. in translation engines, where Natural Language Processing is used. Training such networks requires enormous computing resources and can take up to 2 weeks, and most often uses rather naive first-order optimization algorithms. Given the fact that modern deep neural networks have several millions of parameters, second-order methods have long been considered unfeasible beca...     »
Aufgabensteller:
Hans-Joachim Bungartz
Betreuer:
Severin Reiz
Jahr:
2022
Quartal:
2. Quartal
Jahr / Monat:
2022-05
Monat:
May
Seiten/Umfang:
65
Sprache:
en
Hochschule / Universität:
Technical University of Munich
Fakultät:
TUM School of Computation, Information and Technology
TUM Einrichtung:
Fakultät für Informatik
 BibTeX