Benutzer: Gast  Login
Dokumenttyp:
Masterarbeit
Autor(en):
Michael Grad
Titel:
Efficient Parallel Setup of Eigenvalue Problems in the Manifold Learning Framework Datafold
Übersetzter Titel:
Effizientes Paralleles Aufstellen von Eigenwertproblemen im Manifold Learning Framework Datafold
Abstract:
In this thesis, portions of the datafold framework are optimized in regards to runtime duration. Bottlenecks that occur before the eigensolver are located, replaced with improvement candidates and assessed for performance gains. These include the acceleration of a modified min-max-Search as well as various distance calculation methods. In order to reduce the dimensionality of a dataset, the manifold machine learning framework datafold needs to set up an eigenvalue problem. The underlying dista...     »
Aufgabensteller:
Bungartz, Hans-Joachim
Betreuer:
Neckel, Tobias; Dietrich, Felix
Jahr:
2022
Quartal:
2. Quartal
Jahr / Monat:
2022-02
Monat:
Feb
Sprache:
en
Hochschule / Universität:
Technical University of Munich
Fakultät:
Fakultät für Informatik
 BibTeX