Benutzer: Gast  Login
Dokumenttyp:
Bachelorarbeit
Autor(en):
Veselina Vazova
Titel:
Scalable Manifold Learning through Landmark Diffusion
Übersetzter Titel:
Skalierbares Lernen von Mannigfaltigkeiten durch Diffusion auf Untermengen
Abstract:
Manifold learning by spectral embedding is a technique that can be used for non-linear dimensionality reduction and clustering. By extracting the spectral properties of high dimensional data, the intrinsic manifold where data is presumably located on, can be embedded into a lower dimension. A newly proposed algorithm in the field of spectral embedding that has the goal of providing a scalable and robust approach to dimensionality reduction is Roseland by Chao Shen and Hau-Tieng Wu. The algorithm...     »
Aufgabensteller:
Christian B. Mendl
Betreuer:
Felix Dietrich
Jahr:
2021
Quartal:
4. Quartal
Jahr / Monat:
2021-10
Monat:
Oct
Sprache:
en
Hochschule / Universität:
Technical University of Munich
Fakultät:
Fakultät für Informatik
 BibTeX