User: Guest  Login
Title:

Sampling-Based Motion Planning with Online Racing Line Generation for Autonomous Driving on Three-Dimensional Race Tracks

Document type:
Konferenzbeitrag
Contribution type:
Textbeitrag / Aufsatz
Author(s):
Ögretmen, L.; Rowold, M.; Langmann, A.; Lohmann, B.
Pages contribution:
pp. 2064-2069
Abstract:
Existing approaches to trajectory planning for autonomous racing employ sampling-based methods, generating numerous jerk-optimal trajectories and selecting the most favorable feasible trajectory based on a cost function penalizing deviations from an offline-calculated racing line. While successful on oval tracks, these methods face limitations on complex circuits due to the simplistic geometry of jerk-optimal edges failing to capture the complexity of the racing line. Additionally, they only con...     »
Keywords:
autonomous driving, time-optimal planning, multi-vehicle racing; geometry; trajectory planning; jtracking; circuits; cost function; street scenarios
Dewey Decimal Classification:
620 Ingenieurwissenschaften
Editor:
IEEE
Book / Congress title:
IEEE Intelligent Vehicles Symposium (IV)
Organization:
IEEE
Date of congress:
02.-05 06.2024
Publisher:
IEEE
Publisher address:
New York
Date of publication:
15.07.2024
Year:
2024
Quarter:
3. Quartal
Year / month:
2024-07
Month:
Jul
Pages:
pp. 2064-2069
Covered by:
Web of Science
Print-ISBN:
979-8-3503-4882-8
E-ISBN:
979-8-3503-4881-1
Bookseries ISSN:
1931-0587
Reviewed:
ja
Language:
en
Publication format:
WWW
Fulltext / DOI:
doi:10.1109/IV55156.2024.10588726
TUM Institution:
Lehrstuhl für Regelungstechnik
Ingested:
31.07.2024
 BibTeX