Benutzer: Gast  Login
Titel:

Ethical layering in AI-driven polygenic risk scores-New complexities, new challenges.

Dokumenttyp:
Journal Article
Autor(en):
Fritzsche, Marie-Christine; Akyüz, Kaya; Cano Abadía, Mónica; McLennan, Stuart; Marttinen, Pekka; Mayrhofer, Michaela Th; Buyx, Alena M
Abstract:
Researchers aim to develop polygenic risk scores as a tool to prevent and more effectively treat serious diseases, disorders and conditions such as breast cancer, type 2 diabetes mellitus and coronary heart disease. Recently, machine learning techniques, in particular deep neural networks, have been increasingly developed to create polygenic risk scores using electronic health records as well as genomic and other health data. While the use of artificial intelligence for polygenic risk scores may...     »
Zeitschriftentitel:
Front Genet
Jahr:
2023
Band / Volume:
14
Volltext / DOI:
doi:10.3389/fgene.2023.1098439
PubMed:
http://view.ncbi.nlm.nih.gov/pubmed/36816027
Print-ISSN:
1664-8021
TUM Einrichtung:
Institut für Geschichte und Ethik der Medizin (Prof. Buyx)
 BibTeX