Benutzer: Gast  Login
Titel:

Attention-based Saliency Maps Improve Interpretability of Pneumothorax Classification.

Dokumenttyp:
Journal Article
Autor(en):
Wollek, Alessandro; Graf, Robert; Čečatka, Saša; Fink, Nicola; Willem, Theresa; Sabel, Bastian O; Lasser, Tobias
Abstract:
PURPOSE: To investigate the chest radiograph classification performance of vision transformers (ViTs) and interpretability of attention-based saliency maps, using the example of pneumothorax classification. MATERIALS AND METHODS: In this retrospective study, ViTs were fine-tuned for lung disease classification using four public datasets: CheXpert, Chest X-Ray 14, MIMIC CXR, and VinBigData. Saliency maps were generated using transformer multimodal explainability and gradient-weighted class activa...     »
Zeitschriftentitel:
Radiol Artif Intell
Jahr:
2023
Band / Volume:
5
Heft / Issue:
2
Volltext / DOI:
doi:10.1148/ryai.220187
PubMed:
http://view.ncbi.nlm.nih.gov/pubmed/37035429
TUM Einrichtung:
Institut für Geschichte und Ethik der Medizin
 BibTeX