Benutzer: Gast  Login
Titel:

Automated Identification of Security-Relevant Configuration Settings Using NLP

Dokumenttyp:
Konferenzbeitrag
Art des Konferenzbeitrags:
Textbeitrag / Aufsatz
Autor(en):
Stöckle, Patrick; Wasserer, Theresa; Grobauer, Bernd; Pretschner, Alexander
Abstract:
To secure computer infrastructure, we need to configure all security-relevant settings. We need security experts to identify security-relevant settings, but this process is time-consuming and expensive. Our proposed solution uses state-of-the-art natural language processing to classify settings as security-relevant based on their description. Our evaluation shows that our trained classifiers do not perform well enough to replace the human security experts but can help them classify the settin...     »
Stichworte:
Hardening; Security Configuration; Natural Language Processing
Dewey-Dezimalklassifikation:
000 Informatik, Wissen, Systeme
Kongress- / Buchtitel:
Proceedings of the 37th IEEE/ACM International Conference on Automated Software Engineering
Ausrichter der Konferenz:
IEEE/ACM
Datum der Konferenz:
2022-10-10--2022-10-14
Verlag / Institution:
Association for Computing Machinery
Verlagsort:
New York City, NY, USA
Jahr:
2022
Seiten:
5
E-ISBN:
978-1-4503-9475-8/22/10
Serientitel:
ASE '22
Reviewed:
ja
Sprache:
en
Erscheinungsform:
WWW
WWW:
https://mediatum.ub.tum.de/doc/1685448/1685448.pdf
TUM Einrichtung:
Chair of Software and Systems Engineering / TUM School of Computation, Information and Technology
Copyright Informationen:
Format:
Text
 BibTeX