Benutzer: Gast  Login
Titel:

Actor-critic reinforcement learning for the feedback control of a swinging chain

Dokumenttyp:
Konferenzbeitrag
Art des Konferenzbeitrags:
Textbeitrag / Aufsatz
Autor(en):
Dengler, C.; Lohmann, B.
Abstract:
Reinforcement learning offers a multitude of algorithms allowing to learn a nonlinear controller by interacting with the system without the need for a model of the plant. In this paper we investigate the suitability of online learning algorithms for a control task with incomplete state information. The system under consideration is a swinging chain that needs to be stabilized at a desired position, a problem that is occurring e.g. with bridge cranes with each change in the crane position. T...     »
Stichworte:
Learning algorithms, Dynamic modeling, Nonlinear control, Function approximation
Kongress- / Buchtitel:
2nd IFAC Conference on Modelling, Identification and Control of Nonlinear Systems (MICNON)
Jahr:
2018
Quartal:
2. Quartal
Jahr / Monat:
2018-06
Monat:
Jun
Nachgewiesen in:
Scopus
Volltext / DOI:
doi:10.1016/j.ifacol.2018.07.308
TUM Einrichtung:
Lehrstuhl für Regelungstechnik
 BibTeX