Diese Dissertation befasst sich mit der Modellierung und Vorhersage der Ionosphäre unter Einbeziehung von Weltraumwetterbeobachtungen und der Anwendung von Techniken des maschinellen Lernens. Es werden unter Berücksichtigung der Quantifizierung von Unsicherheiten, hochaufgelöste Ionosphärenmodelle für verschiedene Vorhersagehorizonte entwickelt. Die daraus resultierenden Konfidenzintervalle ermöglichen beispielsweise eine zuverlässige Bewertung der geschätzten Ionosphärenkorrekturen bei GNSS-Anwendungen.
«
Diese Dissertation befasst sich mit der Modellierung und Vorhersage der Ionosphäre unter Einbeziehung von Weltraumwetterbeobachtungen und der Anwendung von Techniken des maschinellen Lernens. Es werden unter Berücksichtigung der Quantifizierung von Unsicherheiten, hochaufgelöste Ionosphärenmodelle für verschiedene Vorhersagehorizonte entwickelt. Die daraus resultierenden Konfidenzintervalle ermöglichen beispielsweise eine zuverlässige Bewertung der geschätzten Ionosphärenkorrekturen bei GNSS-Anw...
»