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Abstract

Space weather describes the varying conditions between the Sun and the Earth, affecting in particular
the magnetosphere, the ionosphere, and the thermosphere. It can degrade Global Navigation Satellite
Systems (GNSS) operations, primarily through its effects on the ionosphere. The ionospheric GNSS
signal delay can affect the accuracy of position determination, especially for single-frequency observa-
tions. The ionosphere models broadcasted by the satellite systems (e.g., Klobuchar, NeQuick-G) do
not contain enough details to correct single-frequency observations with sufficient accuracy. During
solar storms, dual-frequency positioning may also be affected. Therefore, a reliable ionospheric model
is required to correct ionospheric effects in GNSS applications in a timely and accurate manner.
Dual-frequency observations can be used to calculate the integral of electron density along the GNSS
signal in the ionosphere, which can be mapped to the Vertical Total Electron Content (VTEC) to correct
for ionospheric effects in GNSS applications.

Traditional models for forecasting ionospheric parameters, such as the Auto Regressive Integrated
Moving Average (ARIMA), the Fourier series expansion, or the Principal Component Analysis (PCA),
have the major drawback of modeling only linear relationships and failing to describe nonlinear
relationships and abrupt changes in the ionosphere. Recently, Machine Learning (ML) methods have
attracted considerable interest in space weather and ionosphere research, with a focus on modeling
nonlinear relationships. Previous ML applications for the ionosphere have involved Deep Learning
(DL) methods, while other methods have rarely been discussed. DL methods can suffer from high
complexity and excessive parametrization and be difficult to understand and interpret. One of the
main issues of previous work is considering ML-based ionosphere models as a black box and the lack
of transparency and interpretability since there is no indication of when the results cannot be trusted.
Despite the widespread use of ML, there has been minimal discussion of quantifying the uncertainty,
thus lacking an indication of how confident and reliable the results of an ML system are.

This dissertation presents an ML approach for ionosphere modeling and forecasting, including
modeling the space weather component and quantifying the uncertainties of the results to obtain
95% confidence intervals. Thus, this work aims to develop accurate and reliable ionosphere models
that incorporate space weather information from various satellites and observatories, and apply ML
techniques to model and forecast VTEC to meet the needs of GNSS users for effective ionosphere
correction. Nonlinear relationships are modeled from data describing solar activity, the solar wind,
interplanetary and Earth’s magnetic fields, and the ionosphere. We discuss the ML-based VTEC
model development workflow and explain the learning algorithms applied, the data preparation
procedure, and input feature engineering, as well as the methods and approaches developed for model
building, uncertainty quantification, model training, and evaluation. Using ML, the VTEC function is
approximated from the input features to develop three ionosphere products of this dissertation: (1)
Regional Ionosphere Map (RIM) with ML-based spatiotemporal modeling, (2) ML-based ensemble
forecasting, and (3) ML-based probabilistic forecasting with uncertainty quantification.

In this dissertation and in P-I, RIMs are developed in several countries of the western Balkans based
on dense Continuous Operating Reference Stations (CORS) observations. Subsequently, a RIM for
the western Balkans is created using an Artificial Neural Network (ANN) that combines regional
ionosphere parameters estimated from the CORS data with spatiotemporal (latitude, longitude, hour
of day), solar (F10.7 index) and geomagnetic (Kp and Dst indices) input features. The RIMs are
tested during the solar maximum in March 2014, a geomagnetic storm in March 2015, and the solar
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minimum in March 2018. The developed RIMs mimic the integrated electron density much more
effectively than the Klobuchar model. In addition, the RIMs significantly reduce the ionospheric effects
on single-frequency positioning, demonstrating their necessity for use in positioning applications.

VTEC forecast is performed for selected ionospheric grid points at low, mid and high latitudes along
the same longitude. The ML-based VTEC models are developed using learning algorithms of Decision
Tree and ensemble learning of Random Forest, Adaptive Boosting, and Gradient Boosting in P-II.
Furthermore, ensemble learning models are combined into an ensemble meta-estimator to compensate
for their individual weaknesses and emphasize their strengths to produce a model with improved
accuracy and generalization. It also allows quantifying uncertainties propagated through an ensemble,
as is done in P-III and CP-II.

Unlike the standard K-fold cross-validation used in previous studies, the forecast models developed
in this dissertation are trained, optimized, and validated by modifying the K-fold cross-validation to
make it applicable to time series data. This is done because of the time dependency of the VTEC and
space weather observations, which must be considered for robust and accurate model training and
validation, which was not the case with the previously used method. Moreover, the relative importance
of input features to VTEC forecast is estimated using the decision tree approach to provide insight
into what the model has learned and to what extent our understanding of important predictors has
increased. Also, the impact of different learning algorithms and data on the accuracy of the ML-based
VTEC model is analyzed and discussed.

Several approaches to quantify uncertainties in ML-based VTEC models and provide 95% confidence
intervals are applied in P-III: (1) Ensemble of ML-based models, (2) Gradient Tree Boosting with
quantile loss function (QGB), (3) Bayesian neural network (BNN), and (4) BNN with estimated data
uncertainties. Techniques that consider only model parameter uncertainties in (1) and (3) estimate
narrow confidence intervals and over-optimistic results, whereas accounting for both model parameter
and data uncertainties with the BNN approach in (4) leads to wider confidence intervals and more
realistic quantification of VTEC forecast uncertainties. However, the latter approach suffers from a
high computational cost, while the QGB approach is the most computationally efficient solution with
still realistic uncertainties. As the feature importance analysis shows, the QGB confidence intervals are
largely determined by space weather indices. In addition, the QGB approach is extended to include
high-resolution VTEC, solar, and geomagnetic activity data to develop high-resolution VTEC models
for various forecast horizons of 15 minutes, 1 hour, 3 hours, 6 hours, and 24 hours ahead and to
forecast the effects of solar flares on the ionosphere.

The results demonstrate the feasibility of the ML-based VTEC forecast during quiet and storm periods
with reliable uncertainty quantification. Based on the investigations and results of this dissertation,
recommendations for future work are discussed.
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Kurzfassung

Das Weltraumwetter beschreibt die wechselnden Bedingungen zwischen der Sonne und der Erde,
die insbesondere die Magnetosphäre, die Ionosphäre und die Thermosphäre betreffen. Es kann
den Betrieb globaler Satellitennavigationssysteme (GNSS) beeinträchtigen, vor allem durch seine
Auswirkungen auf die Ionosphäre. Die ionosphärische GNSS-Signalverzögerung kann die Genauigkeit
der Positionsbestimmung beeinträchtigen, insbesondere bei Beobachtungen auf einer Frequenz. Die
von den Satellitensystemen ausgestrahlten Ionosphärenmodelle (z. B. Klobuchar, NeQuick-G) enthalten
nicht genügend Details, um Einfrequenzbeobachtungen mit ausreichender Genauigkeit zu korrigieren.
Bei Sonnenstürmen kann auch die Zweifrequenz-Positionierung beeinträchtigt werden. Daher ist ein
zuverlässiges Ionosphärenmodell erforderlich, um ionosphärische Effekte in GNSS-Anwendungen
zeitnah und genau zu korrigieren. Zweifrequenzbeobachtungen können zur Berechnung des Integrals
der Elektronendichte entlang des GNSS-Signals in der Ionosphäre verwendet werden, das auf den
absoluten vertikalen Elektroneninhalt (VTEC) abgebildet werden kann, um ionosphärische Effekte bei
GNSS-Anwendungen zu korrigieren.

Traditionelle Modelle für die Vorhersage von Ionosphärenparametern, wie z. B. Auto Regressive
Integrated Moving Average (ARIMA), die Fourier-Reihenentwicklung oder die Hauptkomponenten-
analyse (PCA), haben den großen Nachteil, dass sie nur lineare Beziehungen modellieren und abrupte
Veränderungen in der Ionosphäre nicht erfassen sowie nichtlineare Beziehungen nicht beschreiben
können. In letzter Zeit sind Methoden des maschinellen Lernens (ML) in der Weltraumwetter- und
Ionosphärenforschung auf großes Interesse gestoßen, wobei der Schwerpunkt auf der Modellierung
nichtlinearer Beziehungen liegt. Bei früheren ML-Anwendungen für die Ionosphäre wurden Deep Lear-
ning (DL)-Methoden eingesetzt, während andere Methoden kaum diskutiert wurden. DL-Methoden
können leiden unter hoher Komplexität und übermäßiger Parametrisierung, und können schwer zu
verstehen und zu interpretieren sein. Eines der Hauptprobleme früherer Arbeiten besteht darin, dass
ML-basierte Ionosphärenmodelle als Blackbox betrachtet werden und dass es an Transparenz und
Interpretierbarkeit mangelt, da es keine Hinweise darauf gibt, wann den Ergebnissen nicht vertraut
werden kann. Trotz des weit verbreiteten Einsatzes von ML wurde die Quantifizierung der Unsicher-
heiten bisher kaum diskutiert, so dass es keinen Hinweis darauf gibt, wie sicher und zuverlässig die
Ergebnisse eines ML-Systems sind.

In dieser Dissertation wird ein ML-Ansatz für die Modellierung und Vorhersage der Ionosphäre
vorgestellt, einschließlich der Modellierung der Weltraumwetterkomponente und der Quantifizierung
der Unsicherheiten der Ergebnisse, um 95%iger Konfidenzintervalle zu erhalten. Ziel dieser Arbeit ist es
also, genaue und zuverlässige Ionosphärenmodelle zu entwickeln, die Weltraumwetterinformationen
von verschiedenen Satelliten und Observatorien einbeziehen, und ML-Techniken zur Modellierung
und Vorhersage von VTEC anzuwenden, um den Bedürfnissen der GNSS-Nutzer nach einer effektiven
Ionosphärenkorrektur gerecht zu werden. Nichtlineare Beziehungen werden aus Daten modelliert,
die die Sonnenaktivität, den Sonnenwind, interplanetare und geomagnetische Felder sowie die
Ionosphäre beschreiben. Wir diskutieren den ML-basierten Arbeitsablauf zur Entwicklung des VTEC-
Modells und erläutern die angewandten Lernalgorithmen, das Verfahren zur Datenaufbereitung
und das Input-Feature-Engineering sowie die Methoden und Ansätze, die für die Modellbildung,
die Quantifizierung der Unsicherheit, das Modelltraining und die Evaluierung entwickelt wurden.
Mithilfe von ML wird die VTEC-Abbildungsfunktion aus den Eingangsmerkmalen approximiert, um
drei Ionosphärenprodukte dieser Dissertation zu entwickeln: (1) Regionale Ionosphärenkarte (RIM)
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mit ML-basierter räumlich-zeitlicher Modellierung, (2) ML-basierte Ensemble-Vorhersage und (3)
ML-basierte probabilistische Vorhersage mit Unsicherheitsquantifizierung.

In dieser Dissertation und in P-I werden RIMs in mehreren Ländern des westlichen Balkans auf
der Grundlage dichter Beobachtungen von kontinuierlich arbeitenden Referenzstationen (CORS)
entwickelt. Anschließend wird ein RIM für den westlichen Balkan mit Artificial Neural Network
(ANN) erstellt, das regionale Ionosphärenparameter, die aus den CORS-Daten geschätzt werden, mit
raum-zeitlichen (Breitengrad, Längengrad, Tageszeit), solaren (F10.7-Index) und geomagnetischen
(Kp- und Dst-Index) Eingangsmerkmalen kombiniert. Die RIMs werden während des Sonnenmaxi-
mums im März 2014, eines geomagnetischen Sturms im März 2015 und des Sonnenminimums im
März 2018 getestet. Die entwickelten RIMs ahmen die integrierte Elektronendichte viel effektiver
nach als das Klobuchar-Modell. Darüber hinaus verringern die RIMs die ionosphärischen Auswir-
kungen auf die Einzelfrequenzpositionierung erheblich, was ihre Notwendigkeit für den Einsatz in
Positionierungsanwendungen unter Beweis stellt.

Die VTEC-Vorhersage wird für ausgewählte ionosphärische Gitterpunkte in niedrigen, mittleren
und hohen Breitengraden entlang desselben Längengrads durchgeführt. Die ML-basierten VTEC-
Modelle werden unter Verwendung der Lernalgorithmen Entscheidungsbaum und Ensemble-Lernen
von Random Forest, Adaptive Boosting und Gradient Boosting in P-II entwickelt. Darüber hinaus
werden Ensemble-Lernmodelle in einem Ensemble-Meta-Schätzer kombiniert, um ihre individuellen
Schwächen zu kompensieren und ihre Stärken zu betonen, um ein Modell mit verbesserter Genauigkeit
und Generalisierung zu erzeugen. Es ermöglicht auch die Quantifizierung von Unsicherheiten, die
sich durch ein Ensemble ausbreiten, wie in P-III und CP-II.

Im Gegensatz zur standardmäßigen K-fachen Kreuzvalidierung, die in früheren Studien verwendet
wurde, werden die in dieser Dissertation entwickelten Prognosemodelle trainiert, optimiert und vali-
diert, indem die K-fache Kreuzvalidierung modifiziert wird, um sie auf Zeitreihendaten anwendbar zu
machen. Dies geschieht aufgrund der Zeitabhängigkeit der VTEC- und Weltraumwetterbeobachtungen,
die für eine robuste und genaue Modellschulung und -validierung berücksichtigt werden müssen, was
bei der zuvor verwendeten Methode nicht der Fall war. Darüber hinaus wird die relative Bedeutung der
Eingangsmerkmale für die VTEC-Vorhersage mit Hilfe des Entscheidungsbaum-Ansatzes geschätzt,
um einen Einblick zu erhalten, was das Modell gelernt hat und inwieweit sich unser Verständnis der
wichtigen Prädiktoren verbessert hat. Auch die Auswirkungen verschiedener Lernalgorithmen und
Daten auf die Genauigkeit des ML-basierten VTEC-Modells werden analysiert und diskutiert.

In P-III werden mehrere Ansätze zur Quantifizierung von Unsicherheiten in ML-basierten VTEC-
Modellen und zur Bereitstellung von 95%-Konfidenzintervallen angewendet: (1) Ensemble von
ML-basierten Modellen, (2) Gradient Tree Boosting with Quantile loss function (QGB), (3) Baye-
sian neural network (BNN) und (4) BNN mit geschätzten Datenunsicherheiten. Techniken, die nur
Modellparameter-Unsicherheiten in (1) und (3) berücksichtigen, schätzen enge Konfidenzintervalle
und zu optimistische Ergebnisse, während die Berücksichtigung sowohl von Modellparameter- als
auch von Datenunsicherheiten mit dem BNN-Ansatz in (4) zu breiteren Konfidenzintervallen und einer
realistischeren Quantifizierung der VTEC-Prognoseunsicherheiten führt. Der letztgenannte Ansatz lei-
det jedoch unter einem hohen Rechenaufwand, während der QGB-Ansatz die rechnerisch effizienteste
Lösung mit immer noch realistischen Unsicherheiten darstellt. Wie die Analyse der Merkmalsbedeu-
tung zeigt, werden die QGB-Konfidenzintervalle weitgehend durch Weltraumwetterindizes bestimmt.
Darüber hinaus wird der QGB-Ansatz um hochaufgelöste VTEC-, Sonnen- und geomagnetische
Aktivitätsdaten erweitert, um hochaufgelöste VTEC-Modelle für verschiedene Vorhersagehorizonte
von 15 Minuten, 1 Stunde, 3 Stunden, 6 Stunden und 24 Stunden im Voraus zu entwickeln und um die
Auswirkungen von Sonneneruptionen auf die Ionosphäre vorherzusagen.

Die Ergebnisse zeigen die Machbarkeit der ML-basierten VTEC-Vorhersage in ruhigen und stürmischen
Zeiten mit zuverlässiger Unsicherheitsquantifizierung. Auf der Grundlage der Untersuchungen und
der Ergebnisse dieser Dissertation werden Empfehlungen für die zukünftige Forschung diskutiert.
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Preface

This cumulative dissertation consists of the following three first-author peer-reviewed journal papers:

P-I Randa Natras, Andreas Goss, Dzana Halilovic, Nina Magnet, Medzida Mulic, Michael Schmidt,
Robert Weber (2023): Regional Ionosphere Delay Models based on CORS data and Machine
Learning In: NAVIGATION: Journal of the Institute of Navigation, 70 (3) navi.577, https:
//doi.org/10.33012/navi.577

P-II Randa Natras, Benedikt Soja, Michael Schmidt (2022): Ensemble Machine Learning of Random
Forest, AdaBoost and XGBoost for Vertical Total Electron Content Forecasting In: Remote
Sensing, 14 (15), https://doi.org/10.3390/rs14153547

P-III Randa Natras, Benedikt Soja, Michael Schmidt (2023): Uncertainty Quantification for Machine
Learning-based Ionosphere and Space Weather Forecasting: Ensemble, Bayesian Neural
Network and Quantile Gradient Boosting In: Space Weather, 21, e2023SW003483, https:
//doi.org/10.1029/2023SW003483

In the Appendix, the three original publications mentioned above are included with a statement about
each author’s contribution.

In addition to journal publications, the first-author peer-reviewed conference papers complement the
dissertation:

CP-I Randa Natras, Michael Schmidt (2021): Machine Learning Model Development for Space
Weather Forecasting in the Ionosphere In: CEUR Workshop Proceedings of the CIKM 2021
Workshops co-located with 30th ACM International Conference on Information and Knowledge
Management (CIKM 2021), Vol. 3052, pp. 1-7, https://ceur-ws.org/Vol-3052/short10.pdf

CP-II Randa Natras, Benedikt Soja, Michael Schmidt (2022): Machine Learning Ensemble Approach
for Ionosphere and Space Weather Forecasting with Uncertainty Quantification In: IEEE
Xplore Proceedings of 3rd URSI Atlantic and Asia Pacific Radio Science Meeting (AT-AP-
RASC), Gran Canaria, Spain, 2022, pp. 1-4, https://doi.org/10.23919/AT-AP-RASC54737.
2022.9814334

CP-III Randa Natras, Dzana Halilovic, Medzida Mulic, Michael Schmidt (2023): Mid-latitude Iono-
sphere Variability (2013–2016), and Space Weather Impact on VTEC and Precise Point
Positioning In: Ademović, N., Mujčić, E., Mulić, M., Kevrić, J., Akšamija, Z. (eds) Advanced
Technologies, Systems, and Applications VII. IAT 2022. Lecture Notes in Networks and Systems,
vol 539. Springer, Cham., pp. 471–491, https://doi.org/10.1007/978-3-031-17697-5_37

A summary of the conference papers is provided in the Appendix.

Within this dissertation, the findings from the first-author publications are placed into context. The
publications within this dissertation are cited, and each is identified with the letter P, CP (P for journal
publication, CP for conference publication), and the corresponding Roman number. Furthermore,
parts of the publications are cited in direct form, with numbering for equations, figures, and tables
adapted to the scope of this dissertation. These direct quotes are written indented in the main body of
the dissertation.

In addition, the findings of the following co-author peer-reviewed publication are incorporated into
the dissertation:

https://doi.org/10.33012/navi.577
https://doi.org/10.33012/navi.577
https://doi.org/10.3390/rs14153547
https://doi.org/10.1029/2023SW003483
https://doi.org/10.1029/2023SW003483
https://ceur-ws.org/Vol-3052/short10.pdf
https://doi.org/10.23919/AT-AP-RASC54737.2022.9814334
https://doi.org/10.23919/AT-AP-RASC54737.2022.9814334
https://doi.org/10.1007/978-3-031-17697-5_37
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C-I Veronika Barta, Randa Natras, Vladimir Srećković, David Koronczay, Michael Schmidt, Desanka
Šulic (2006): Multi-instrumental investigation of the solar flares impact on the ionosphere
on 05–06 December 2006 In: Frontiers in Environmental Science, 904335, https://doi.org/10.
3389/fenvs.2022.904335

A summary of the co-author publication is provided in the Appendix.

Moreover, the studies conducted during the author’s research stays at Royal Observatory of Belgium,
Brussels (ROB) on forecasting the solar flare impact on the ionosphere and at Universitat Politècnica de
Catalunya; Technical University of Catalonia, Spain (UPC) on high-temporal probabilistic ionosphere
forecast with uncertainty quantification using Quantile Gradient Boosting are incorporated into the
dissertation.

The main body of this dissertation begins with the motivation, research objectives, and questions,
followed by an introduction to the subject of the ionosphere and space weather, geodetic observational
techniques, and Vertical Total Electron Content (VTEC) modeling. The explanation and examples of
ionosphere variabilities and space weather effects are mainly based on the publication CP-III Natras
et al. (2023b). Thereafter, an introduction to machine learning for VTEC is provided, the fundamental
theory of learning from data and learning algorithms adapted to VTEC problem, based on publications
P-I Natras et al. (2023a), P-II Natras et al. (2022a), CP-I Natras & Schmidt (2021), including the
developed approaches to quantify uncertainties in VTEC forecasting, based on publications P-III
Natras et al. (2023d), CP-II Natras et al. (2022b). Subsequently, the applied procedures for developing
machine learning-based VTEC models, such as data selection (time periods and features preparation),
training, cross-validation and testing phases, and model architecture selection, are explained. The
whole chain of machine learning-based VTEC model development is demonstrated, mainly based
on publication P-II. The machine learning approach to spatio-temporal VTEC modeling for regional
ionosphere estimation and its application in positioning is afterward discussed, based on publication
P-I. The forecasting results by ensembling the models are analyzed, based on P-II, including the
estimation of 95% confidence intervals from the ensemble, based on CP-II, P-III. Then, the uncertainty
quantification results from different approaches based on P-III are compared and analyzed, followed
by the development of the high-resolution probabilistic VTEC model during the author’s research stay
at UPC. In addition, a first attempt to forecast the solar flare impact on the ionosphere is presented,
including a description of the processing and integration of solar observations covering the EUV and
X-ray spectra of solar irradiance to allow short-term forecast of the ionosphere response to strong solar
flares, which was conducted during the author’s research stay at ROB. VTEC modeling and forecasting
results are discussed for selected quiet and disturbed test periods regarding solar and geomagnetic
activity. Finally, conclusions and an outlook on future work are provided.

viii
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1 Introduction

1.1 Motivation

Imagine a scenario in which the electric power suddenly goes out, navigation services, mobile phones,
and the internet stop working, and public transport systems and airports shut down. And no one
knows how long it will last - a few hours, a week, a month, a year, or even longer. It sounds more like
a story from a science fiction movie. But it can suddenly become our reality. The leading cause of
such a catastrophe would be our star, the Sun, which can create time-varying conditions in near-Earth
space produced by space weather. The term space weather refers to dynamic changes in interplanetary
and interstellar space, which are caused by the Sun and affect in particular the magnetosphere, the
ionosphere, and the thermosphere. As space weather events, we mainly distinguish between solar
flares and Coronal Mass Ejection (CME); for details, see Section 2.2. Space weather can disable the
power supply, communications, and navigation systems across the country or around the world.
Similar examples have already happened in the past.

In March 1989, the Sun released a cloud of gas from a solar flare equivalent to the energy of thousands
of nuclear bombs exploding simultaneously. It caused a 12-hour power outage in Quebec, Canada,
with millions of people suddenly finding themselves in dark buildings, underground pedestrian
tunnels, and stuck elevators; schools, stores, businesses, and the airport closed; and the Montreal
Metro stopped running(1). Yet this storm was only about one-third the size of the Carrington Event, the
largest recorded solar event, which hit the Earth in 1859 and caused the failure of telegraph systems
across America and Europe. The telegraph is now a thing of the past, but many new technologies
we increasingly rely on are equally vulnerable to space weather bursts. Another solar storm, in 2003,
known as the Halloween storm, caused the radio and Global Positioning System (GPS) blackouts,
substantial financial losses for airlines that had to reroute hundreds of flights around the world, the
loss of track of low Earth orbit satellites for days, and left people in Malmö, Sweden, without electricity
(Pulkkinen et al., 2005). An extreme solar storm as strong as the 1859 Carrington event occurred in
July 2012 and fortunately missed the Earth(2). If it had come just a week earlier, it would have hit the
Earth, and the consequences would have been catastrophic.

Given modern technology and the fact that today’s world depends on electric power, communications,
and navigation, a solar storm of the same magnitude as the Carrington event or even larger would cause
widespread disruptions. Such an event would be a serious threat to our highly vulnerable, technology-
dependent society and our modern way of life. It would damage satellites or make them inoperable
for some time, drag them out of orbit, damage power grids, and disrupt satellite communications,
navigation and surveillance systems, timing, mobile phone networks, and internet connections.
Banking systems, aviation, trains, and autonomous vehicles would also be affected. According to
experts, it could even take several years up to decades before all information, communication, and
navigation systems are fully functional again, electronic systems are repaired, and everything is back
online. The total economic damage could run into the trillions of dollars.

Numerous impacts and significant economic losses due to space weather events have already been
observed in space-based and ground-based technical systems such as satellites, power grids, aviation,

(1)Source: https://www.nasa.gov/topics/earth/features/sun_darkness.html
(2)Source: https://science.nasa.gov/science-news/science-at-nasa/2014/23jul_superstorm

https://www.nasa.gov/topics/earth/features/sun_darkness.html
https://science.nasa.gov/science-news/science-at-nasa/2014/23jul_superstorm
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communications, and navigation systems (see, e.g., Lanzerotti (2017); Baker et al. (2004); Eastwood et al.
(2017)), as illustrated in Figure 1.1. Consequently, space weather is identified as the most significant

Figure 1.1: Solar storms have many noticeable impacts on and near Earth, including communications
and navigation disruptions, radiation hazards, spacecraft damage, power system outages,
and pipeline corrosion. Illustration source: National Aeronautics and Space Administration,
USA (NASA).

risk to technology and society, such as in the 2019 US National Space Weather Strategy and Action
Plan (Knipp & Gannon, 2019).

Of particular concern is the disruption of the Global Navigation Satellite System (GNSS), which is
ubiquitous in mobile phones, airplanes, and automobiles. Numerous industries and the military rely on
satellite-based positioning and navigation for accurate navigation, orientation, tracking, and guidance.
The ionosphere, the upper part of the Earth’s atmosphere, plays a critical role in the propagation of
electromagnetic waves in satellite-based navigation systems. It causes a signal delay and bending,
including signal scintillation, which is more pronounced during space weather events when irregular
and strong fluctuations can occur. These effects are challenging to model and adequately correct
in positioning solutions using conventional mathematical approaches, degrading the positioning
and navigation performances (see, e.g., Natras et al. (2019a, 2023b); Poniatowski & Nykiel (2020);
Zakharenkova & Cherniak (2021); Luo et al. (2018a)). Therefore, the space weather impact on the
ionosphere must be considered and estimated in GNSS applications.

Since our society is highly dependent on GNSS applications that require accurate positioning, nav-
igation, and timing, it is urgently necessary to develop advanced forecasting methods of space
weather events to mitigate the catastrophic consequences of this hazard and the failure of space- and
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ground-based technological systems.

However, we still do not know much about how solar storms form to predict them well. To make
more reliable space weather forecasts and assess potential impacts, a much better understanding of
the likelihood of space weather disturbances and their effects is needed. It involves a complex chain
of physical and dynamic processes between the Sun, interplanetary space, the Earth’s magnetic field,
and the ionosphere, which must be considered when modeling and predicting space weather impacts
(Figure 1.2). However, due to our limited understanding of these coupled processes, we do not have

Figure 1.2: Illustration of the chain of space weather processes. (Source: European Space Agency,
Germany (ESA) (background image) and Deutsches Geodätisches Forschungsinstitut der
Technischen Universität München (DGFI-TUM) (ionosphere map)).

functional relations that can accurately describe them.

In recent decades, more and more satellites have been launched to study the Sun and the space
weather processes from the Sun to the Earth, such as Solar Orbiter (Müller et al., 2013), Solar TErrestrial
RElations Observatory (STEREO) (Kaiser & Adams, 2007) and PRoject for Onboard Autonomy (PROBA)
(Dominique et al., 2013). In addition, solar and geomagnetic observatories are developing various
indices to quantify the intensity and effects of solar storms, such as the F10.7 index (Tapping, 1987),
the Kp index (Matzka et al., 2021) and the Disturbance storm time (Dst) index (Wanliss & Showalter,
2006a). With growing computational capabilities and new computational techniques such as Artificial
Intelligence (AI), these data can be used in ways that overcome shortcomings in traditional modeling
and forecasting solar events and their effects on Earth.

The last few years have witnessed a massive growth in the use of AI to predict space weather
phenomena, from conditions on the Sun to their effects on Earth, including the ionosphere. AI offers
a new possibility to "learn" these complex, dynamical relationships directly from data and to find
functions that describe nonlinear space weather processes. The state of the art of AI application to the

3
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ionosphere is described in Section 1.5. Previous studies’ challenges and research gaps are discussed in
Section 1.6 and addressed with the research objectives outlined in Section 1.7.

The dissertation focuses on the problem of ionosphere modeling and forecasting using AI with
special emphasis on modeling the space weather impact on the ionosphere. This task is defined by
modeling and forecasting the electron content of the ionosphere, which can be estimated from dual- or
multi-frequency GNSS observations and used as external correction information in positioning and
navigation.

Considering the problems outlined above, the major motivations for this dissertation are

■ Development of ionosphere models considering nonlinear relationships and the space
weather effects on the ionosphere, with particular emphasis on the forecasting of space
weather-induced ionosphere perturbations,

■ Quantifying the uncertainties of the developed models,

■ Using such solutions as an early-warning system for space weather disturbances in the
ionosphere and correcting ionospheric delays in positioning and navigation.

1.2 Machine Learning: Definition, Types and Phases

Machine Learning (ML) is a subfield of AI and one of the fastest growing fields today. It offers
the possibility to learn functions and relationships from historical data, unlike traditional modeling
approaches that require explicitly defined functions to describe relationships and patterns in data
(Natras & Schmidt, 2021). The first mathematical models of AI/ML emerged in the 1940s. However,
the significant rise of ML did not begin until the 21st century, when the availability and affordability of
computing power increased tremendously, enabling exponential growth of ML (Figure 1.3). The new
term Deep Learning (DL) was introduced in the ML community in the last few decades. It represents
a subfield of ML that includes a particular type of learning algorithm called Artificial Neural Network
(ANN) with numerous intermediate layers between the input and output layers. In recent years, ML

Figure 1.3: Timeline of AI, ML and DL history.
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and DL have attracted considerable interest in space weather research (Camporeale et al., 2018), with
a focus on finding nonlinear relationships that can describe the underlying physical behavior of the
Sun-Earth system.

Machine learning consists of three components:

(1) Learning algorithm: It is a set of procedures. An algorithm learns to recognize patterns after
being trained on a large set of examples in the training data.

(2) Training data: They are used to train a learning algorithm.

(3) Model: Once a learning algorithm has been trained, the result is an ML-based model repre-
senting an ML or DL system. It has a determined architecture and parameters and specifies a
function that maps the input to the output.

The main types of ML implementations, based on whether an output variable is available to the
learning system, can be divided into supervised and unsupervised learning (Figure 1.4). In supervised

Figure 1.4: The main types of ML implementations depend on the type of learning or whether the
output is available to a learning system: supervised learning (output is given, i.e., the data
is labeled) and unsupervised learning (no labeled data is available to a system).

learning, the goal is to learn a mapping from input to output, given a set of input-output pairs in the
learning phase, and it can be considered as a function approximation task. It is called "supervised"
because the outcome variable is given and guides the learning process. In an unsupervised learning
problem, we only observe the features and have no outcome measurements. Here, the task is to analyze
how the data are organized or clustered, to find patterns in the data, or to reduce the dimensionality
of the data. This is sometimes called a knowledge discovery technique. A brief explanation of the
supervised learning technique and associated terminology is provided in the following.

The output variable in supervised learning can be: (1) quantitative, such as the ionospheric quantity
of electron density, which is called the regression problem; (2) categorical, such as binary categories
"ionospheric storm" and "no ionospheric storm", which is called the classification problem. Regression
methods are used to model relationships between the input and the output variables, which can be
described using linear and/or nonlinear methods. In contrast to linear regression, nonlinear regression
offers flexible curve fitting capabilities, whereas linear regression may be inadequate. Both regression
and categorical methods used in supervised learning are mainly nonlinear methods for estimating

5



1.2. MACHINE LEARNING: DEFINITION, TYPES AND PHASES CHAPTER 1. INTRODUCTION

parameters, where the results are expressed as nonlinear functions of the unknown parameters, and
the models can be univariate or multivariate.

As shown in Figure 1.5, three phases can be distinguished in the ML model development:

1. Training, learning or parameter estimation,

2. Hyperparameter tuning or model selection,

3. Prediction, forecast, point estimation or inference.

Figure 1.5: Three main phases in the development of an ML model: training/learning, tuning of
hyperparameters/model selection, and prediction/forecast.

The learning process aims to find a model, i.e., a mapping function between input variables, called
features or covariates, and output data, called the response variable, with optimized parameters so
that the resulting model performs well on new data. In the training or parameter estimation phase,
the model is fitted using the available data. First, the input data and the corresponding output, i.e.,
ground truth, are observed from historical data, referred to as training data. The term "ground truth"
refers to the "real" information or "correct" answer to a particular problem or question determined
by observations. The training data are used to build a model during the learning process, which
leads to a function that maps input to output. Given training data, model parameters are adjusted
based on some quality measures. This is done by an objective or cost minimization, which provides an
optimization problem for searching optimal parameters. The ultimate goal is to optimize the model to
perform well on new, future data. Therefore, it is not enough for the model to fit the training data
well; it must also perform well on unseen data. The cross-validation method simulates the model’s
behavior on future data.

To perform well on unseen data, we need to strike a balance(3) between fitting the data and finding a
general function to describe the problem. This includes deciding on the structure of the model, such
as the number of model components or free parameters, known as hyperparameters. The separation
between model parameters and hyperparameters is usually determined by distinguishing between

(3)This is called a bias-variance tradeoff in ML. Further information can be found in Section 4.3.1.
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what can be optimized numerically versus what must be determined using search techniques. More
precisely, parameters result from fitting or an adjustment during training, while hyperparameters have
to be set manually and tuned. Another way to distinguish is to consider the parameters as the explicit
internal parameters of a model and hyperparameters as external configuration variables. The choice of
hyperparameters significantly affects the performance of the model. The problem of choosing a model
from a set of models obtained with different values of hyperparameters and learning algorithms is
called model selection.

Estimating the output from new input observations using a function obtained as a result of the learning
process is usually referred to as prediction. Thus, observations are predicted for times or locations
where no measurements have been made. In this case, a trained model is applied to new input data,
such as test or operational data. These data are not seen during the learning process, i.e., for which
the output is unknown or assumed to be unknown. In other words: At this stage, the parameters and
choice of the model are already fixed, and the model is applied to new vectors representing new input
data points. When a future value is estimated based on the past and most recent data records and
their trends, this can be called a forecast. Forecasting is a subdiscipline of prediction in which future
outcomes are estimated based on time series data. Thus, the main difference between forecasting and
prediction is the consideration of the time dimension.

1.3 Machine Learning: Applications and Issues

ML is increasingly used across various disciplines and application domains. The use of ML is especially
necessary or helpful in the following cases:

• For modeling nonlinear relationships.

• For predictions and forecasts.

• For processing multidimensional and multivariate data.

• For detecting patterns and anomalies and gaining insights into complex problems (e.g., data
clustering, data analysis, data segmentation, etc.).

• Complex problems for which there is no satisfactory solution using a traditional approach and
a solution can be found using ML methods (e.g., speech, face and handwriting recognition,
autonomous driving, image processing, computer vision, etc.).

• For the automated processing of large amounts of data (e.g., large databases from the growth of
automation, continuous acquisition of data from satellites, etc.).

• For developing self-customizing programs (e.g., personalized product recommendations).

However, there are also challenges and concerns with the application of ML that need to be mentioned
and considered when developing ML-based models and using their results for decision making:

• Challenges in obtaining a comprehensive data set for training that is inclusive, unbiased, and of
good quality.

• The performance of models derived from the training data depends on the quality of that data.

• Noisy, low-quality, biased, imprecise, unreliable, or problematic data given to an ML system or
problematic instructions given in training a model, lead to problematic results(4) and jeopardize
the validity of the resulting model.

(4)The classic adage for this concept in the AI and ML community is "Garbage in, garbage out", meaning that nonsense/garbage
input data and/or nonsense instructions to an AI system produce nonsense output.
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• Treating the models as a black box(5), whose results are not questioned and taken as given.
Although ML/DL models can be undoubtedly complex, they should not be treated as black
boxes if the algorithms are known, if the training data and training procedures are transparent,
and if the model is available to look inside it and examine what its components do.

• In the absence of external, human-given information about the data relationship, ML may make
incorrect assumptions.

• Challenges in accurately interpreting and explaining the results.

• Ethics, fairness, accountability and transparency in ML-based model development.

To address the problem of using ML as a "black box" and the challenges of ethics, fairness, account-
ability, and transparency, new types of interactions between humans and ML algorithms are defined,
commonly referred to as human-in-the-loop machine learning (Mosqueira-Rey et al., 2023). This
involves close interaction between users and the learning system so that a human domain expert can
be involved in and have control over the learning process. Explainable AI techniques, physics-informed
ML, and the Uncertainty Quantification (UQ) can improve the interpretation and explanation of ML
results, as well as reduce or prevent incorrect assumptions from an ML system. In this dissertation,
explainable AI techniques are applied to analyze the contributions of input variables to the results. To
improve the explanation and interpretability, the uncertainties of the results from the data and model
are quantified and compared using different approaches. To ensure transparency and reproducibility,
all ML and UQ methods and approaches used, modified, and developed in this dissertation are
explained in Chapter 3 with the corresponding mathematical formulations. To address the data issue,
the curation and labeling of the data sets need to be examined and transparently reported, e.g., how
the data were cleaned and preprocessed and how reliable and reproducible the data are. Therefore,
data acquisition, processing, feature extraction, data partitioning, model training, and validation,
including model parameter selection, are reported in Chapter 4.

1.4 Machine Learning vs. Geodetic Estimation

The following presents the main similarities and differences between approaches commonly used in
geodetic parameter estimation and ML. However, a detailed elaboration is beyond the scope of this
dissertation.

One of the optimization methods for estimating unknown parameters in geodesy is the least squares
method, which is used to estimate linear model parameters by minimizing the sum of squares of the
measurement errors. Implementations of the traditional approaches for solving nonlinear estimation
problems in geodesy are associated with a significant increase in computational costs and can, therefore,
be effective only for a small number of data, according to Sholokhov et al. (2020). On the other hand,
ML methods are generally applied as nonlinear methods, i.e., for modeling nonlinear relationships on
large data sets. For parameter optimization, numerical methods such as gradient descent are often
used in ANN to approximately construct the solution to a problem. Gradient descent is used to find
the minimum of a differentiable loss function and can be applied to any method, not limited to ML.
For instance, it is also applied in geodesy, such as in ionosphere electron density modeling using the
constraint optimization approach (Lalgudi Gopalakrishnan & Schmidt, 2022).

Supervised learning in ML can be somewhat equated with a point estimation method in geodesy, where
the vector of unknown parameters is computed from measurements. The set of parameter vectors
spans a vector space containing all possible values for the parameters, called the parameter space

(5)The term black box refers to a system where we can only observe the input and output variables, but not the internal processes.
The opposite of a black box is sometimes called a glass box. An AI glass box would be a system with algorithms, training
data, and models available for anyone to see.
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(Koch, 1999). Similarly, we can establish equivalence and say that we have both the parameter space
and the hyperparameter spaces in ML. The latter contains all possible values of the hyperparameters.
The weights in ANN and the value of the split point in the decision tree are examples of parameters,
while the number of hidden layers and hidden neurons in ANN or the maximum depth of the decision
tree are examples of hyperparameters. The hyperparameter space is searched using methods such as
grid search or random search, while the parameters are estimated numerically from the given data
using optimization techniques.

The unknown parameters can be estimated by an estimator. An estimator in geodetic terminology
refers to the function of the observations (Koch, 1999), while an estimator in ML is commonly referred
to as a learning algorithm (Hastie et al., 2009). When the interval in which the values of the parameters
lie with a given probability is estimated, we speak of interval estimation, where the limits of the
intervals are called confidence limits, and the interval is called a confidence interval in both geodetic
(Koch, 1999) and ML (Murphy, 2012) terminology.

Bayesian statistics has been used in geodesy (Koch, 2018) as well as in ML (Neal, 2012). It allows
the estimation of uncertainty expressed in terms of probability by applying Bayes’s theorem. It
can be applied to both linear and nonlinear stochastic systems. The latter is commonly used in
the ML approach, where in most cases Bayesian inference is combined with ANN (Neal, 2012). In
Bayesian statistics, a confidence interval can be derived in which the unknown parameters lie with
a certain probability. The unknown parameters here are random variables, whereas in traditional
statistics, they are treated as fixed quantities. Bayesian statistics is often used in geodesy together with
the Monte Carlo method, which generates random variables from given distributions (Koch, 2018).
Furthermore, Monte Carlo simulation allows the propagation of uncertainties and has been used to
estimate nonlinear errors in geodetic computations (Wyszkowska, 2017; Zou et al., 2022). Monte Carlo
can also propagate uncertainties through ANN, e.g., by dropping neurons in the neural network’s
hidden layers, approximating Bayesian inference (Gal & Ghahramani, 2016). Moreover, the Markov
Chain Monte Carlo method is applied to estimate the distribution function of deterministic and
stochastic parameters for geodetic time series (Olivares-Pulido et al., 2020). In ML, the Markov Chain
Monte Carlo approximates the posterior probability distribution of the parameters in the Bayesian
ANN approach. Another faster method is variational inference, which is applied in this dissertation in
Section 3.3.4.

The maximum likelihood method is also used for parameter estimation in geodesy, where the
density function of the observations must be specified (Koch, 1999). This method estimates unknown
parameters of probability distributions of random parameters or weights by minimizing the negative
log-likelihood and is applied in geodesy as well as in ML.

1.5 State of the Art

Before the use of ML for ionosphere modeling, traditional or conventional models to forecast iono-
spheric parameters have been used, e.g., the Autoregressive Integrated Moving Average (ARIMA)
(Krankowski et al., 2005), the Fourier series expansion (Badeke et al., 2018), or the method of empirical
orthogonal functions (Chen et al., 2020) also known as Principal Component Analysis (PCA), to name
a few. However, the major drawback of the traditional linear models is that they do not capture
abrupt changes in the ionosphere and cannot describe nonlinear relationships. The development of a
more accurate and reliable ionosphere forecasting model remains an essential challenge in the field of
ionospheric and GNSS research.

Recently, ML methods have attracted considerable interest in space weather and ionosphere research,
emphasizing modeling nonlinear relations. Previous ML applications for the ionosphere mostly involve
DL methods, i.e., the ANN. Various ANN architectures have been proposed, such as the feed-forward
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ANN (e.g., Adolfs & Hoque (2021); Tebabal et al. (2019)), Recurrent Neural Network (RNN) as the
Long Short-Term Memory (LSTM) and RNN combined with Convolutional Neural Network (CNN),
LSTM-CNN (e.g., Liu et al. (2020b); Tang et al. (2020a); Kaselimi et al. (2022)), Encoder-Decoder LSTM
Extended (ED-LSTME) (e.g., Xiong et al. (2021)), conditional Generative Adversial Network (cGAN)
(e.g., Lee et al. (2020)), as well as Adaptive Neuro-Fuzzy Inference System (ANFIS) (e.g., Ghaffari Razin
& Voosoghi (2020)). Only a few of the previous ionosphere forecasting studies have applied ML
methods outside of DL, such as Gradient Boosting Decision Tree (GBDT) (Han et al., 2022), eXtreme
Gradient Boosting (XGB) (Zhukov et al., 2021), Support Vector Machine (SVM) (Xia et al., 2021) and
nearest neighbor (Monte-Moreno et al., 2022).

The results of the previous research demonstrate that ML-based ionosphere models can find nonlinear
patterns in the data and outperform traditional linear methods, such as the PCA (Uwamahoro &
Habarulema, 2015) and the ARIMA models (Tang et al., 2020a). According to Kaselimi et al. (2022),
feedforward neural networks can approximate nonlinear Autoregressive Moving Average (ARMA)
relationships and improve ionosphere modeling. Researchers using ML techniques other than ANN
reported improved accuracy compared to DL-based ionosphere models, e.g., the XGB-based global
ionosphere model (Zhukov et al., 2021) and the GBDT-based local ionosphere model (Han et al.,
2022) outperformed the commonly used ANN and LSTM approaches. The largest errors in both the
ML-based and traditional linear ionosphere models were observed in the equatorial anomaly region
and for space weather events such as geomagnetic storms. However, the ML models outperform
the traditional linear models (e.g., PCA (Uwamahoro & Habarulema, 2015) and ARIMA (Tang et al.,
2020b)).

1.6 Research Gaps

A review of previous work reveals that most of the proposed ML-based ionosphere approaches utilize
different types of ANN, i.e., DL methods. However, many other ML methods have either not yet been
investigated for ionosphere modeling or have been limitedly discussed. Moreover, this limited number
of studies is restricted to only a few ML methods. The probable reason for this gap is that DL methods
are widely known as breakthrough methods for highly complex problems, such as automotive driving,
face recognition, and speech recognition. However, it can be argued that other ML methods can be
applied to small data sets, as opposed to DL methods that require large datasets to reach their full
potential. In this context, results from Han et al. (2022) and Zhukov et al. (2021) confirm improved
performance of other ML methods for ionosphere forecasting than ANN. This is likely due to a limited
training data set in Han et al. (2022) and the fact that DL models are often overparametrized, which
leads to overfitting of the data (Hastie et al., 2009). As a result, a model may correspond too close to the
training data to the extent that it negatively affects the model’s performance on new data by reducing
its ability to generalize. As the amount of data increases, DL methods for ionosphere forecasting
improve their performance, as reported in Srivani et al. (2019) and Ruwali et al. (2021). In this context,
dense data, e.g. GNSS observations collected over a region or a globe over a long period of time, can
lead to a large amount of data for ionosphere modeling suitable for DL approaches.

How the data is partitioned and the model is validated can introduce additional biases by affecting
ML model architecture and the choice of parameters and hyperparameters. In the modeling and
forecasting ionosphere quantities, a time dependence between observations must be preserved when
partitioning the data. Previous studies have implemented simple hold-out or classic K-fold validation
techniques (Figure 1.6). In the hold-out validation procedure, the data are divided into subsets of fixed
data points: training data, which is mainly 60% to 70% of the data, while the remaining part of the
data is divided equally into validation and test data sets. In K-fold cross-validation, on the other hand,
the data is randomly partitioned into k equally sized folds containing different training and validation
data points at each iteration. K-fold cross-validation has been shown to be more accurate than the
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Figure 1.6: Data partitioning. Left: hold-out validation, right: K-fold validation.

simple hold-out validation because it can reduce the variance and thus the overfitting problem (Blum
et al., 1999). However, simple K-fold cross-validation can be problematic when the observations are
time-dependent, as it randomly splits the data. When applied to time series data, a model can be
trained using the subsequent observations and predicted using the previous observations. It makes
no sense to train the model using observations from the future and forecast values in the past. Also,
we want to avoid looking into the future when training the model, which can lead to model bias.
The aforementioned validation approaches can lead to more optimistic forecasting results and cause
bias in model selection and architecture due to the abovementioned problems. For these reasons, this
dissertation does not pursue the previous approaches. Instead, a new method is proposed in Section
4.2.2, K-fold time series cross-validation, shown in Figure 4.7.

The choice of input data for an ML model significantly impacts the model performance. Previous
ML-based ionosphere models incorporated some observations or indices of solar and geomagnetic
activity, using a similar set of input variables for most studies, e.g., geomagnetic indices Kp and Dst at
the 3-hour and 1-hour resolution, respectively, and solar radio flux F10.7 at daily resolution. However,
there are also models based solely on ionosphere input variables, such as in Monte-Moreno et al.
(2022). The temporal resolution of earlier ML-based ionosphere models is 2 hours or 1 hour.

One of the main issues of previous work is the consideration of ML-based ionosphere models as a
black box and the lack of transparency and interpretability, as there is no indication when the results
cannot be trusted, which can lead to scientific skepticism toward ML and DL solutions. Despite the
widespread use of ML and DL methods, there has been very little or no discussion on probabilistic
ML/DL and UQ in the space weather and ionosphere domain. Previous ML-based ionosphere studies
have focused only on a single prediction for each input, while probabilistic assessment has not been
addressed, resulting in a lack of information on how confident and reliable the models and results are.

1.7 Research Objectives and Questions

This dissertation has three main goals:

■ Adapt and develop new ML-based ionosphere modeling and forecasting approaches to
improve accuracy, explainability, and computational efficiency.

■ Model and forecast the effects of space weather on the ionosphere, i.e., ionosphere perturba-
tions caused by strong geomagnetic storms and powerful solar flares.

■ Develop high-resolution ML-based probabilistic ionosphere solutions for different forecast
horizons that integrate quantification of uncertainties and provide confidence intervals.

11
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These general goals lead to the following research objectives:

1. Not to treat and view ML model as a black box, but rather to understand the mathematical and
statistical theories and concepts of the model development. In addition to the transparency and
understanding of the learning algorithms, the transparency of the model training, the selection
of hyperparameters, and the data on which it is trained are also essential here.

2. Contribute to closing the gap between DL and other ML methods(6) for ionosphere and space
weather modeling by implementing less or not at all examined learning algorithms for this task.

3. Develop simpler, computationally efficient, and more interpretable ML approaches for iono-
sphere in terms of complexity, data requirements, input features contribution analysis, and
parametrization.

4. Quantify the uncertainties in ML-based ionosphere models, provide information on how certain
the results are and where most of the uncertainty comes from to improve the explainability and
interpretability of the models and solutions.

5. Forecast the space weather effects on the ionosphere, such as geomagnetic storms and solar
flares.

6. Increase the temporal resolution of ML-based ionosphere models by integrating high-resolution
data.

Research questions are defined below to demonstrate how the corresponding objectives are addressed.

Q-1 What is the impact of the data on ML-based ionosphere modeling and forecasting in terms
of the input features, data length, and observations resolution? On the other hand, what is
the impact of using different learning algorithms?

This question is analyzed in P-I through P-III as well as in CP-II and Chapter 5. The data set
preparation in terms of input observations, features, length, and period is discussed in Section 4.1.
The computational efficiency of the ML-based ionosphere models developed with different learning
algorithms is compared in Section 4.5.

Q-2 Can reduction of regular ionosphere variations and background ionosphere information in
the data through daily differencing improve the learning and generalization of the ML-based
ionosphere model?

In P-II, models are trained solely on daily differenced data and compared to models trained on the
original, i.e., the non-differenced, data set. The idea behind using daily differencing is to reduce or
eliminate the dominant regular daily ionosphere fluctuations and to model just the remaining signal
in which other sources of fluctuations, such as space weather effects, can be more easily extracted.
The Root Mean Square (RMS) analysis of ML-based ionosphere models trained with differenced or
non-differenced data and their combination is presented in Section 4.1.3.

Q-3 How efficient are ML methods other than ANN, such as decision trees or ensemble learning
techniques, in modeling and forecasting the ionosphere?

This question is addressed in P-I, P-II and P-III, where different ML methods from the decision tree,
ensemble learning of decision trees to ANN are used and the results are analyzed and compared.
Chapter 3 discusses the ML algorithms and modeling approaches in this dissertation, while their
results are summarized in Chapter 5.

Q-4 How can data and model uncertainties be modeled, and how do uncertainties change when
the ionosphere is perturbed by a geomagnetic storm?

(6)Here, DL refers to methods based solely on ANN algorithms, while other ML methods include algorithms other than ANN.
Since DL is a subset of ML, DL methods are also considered as ML methods.

12



CHAPTER 1. INTRODUCTION 1.8. OUTLINE

P-III examines this question in detail by developing different approaches and comparing them for
a quiet period and a space weather period, while CP-II provides results of one of the developed
approaches for a space weather period. Section 3.3 presents the uncertainty estimation approaches
developed and applied in this dissertation, while Chapter 5 analyzes and summarizes the results.

Q-5 How do forecast accuracy and uncertainties change as the forecast horizon expands and
concerning quiet and storm ionosphere conditions?

This question is analyzed in Chapter 5, which provides a detailed analysis of different forecast horizons.

Q-6 Is it possible to forecast the ionosphere response to a strong solar flare by incorporating
high-resolution ionosphere, solar, and geomagnetic activity data?

An analysis is presented in Chapter 5 to answer this question.

Q-7 What is the contribution of the different input features to the model result?

P-I, P-II, P-III, and CP-II contain analyses of the feature importance. The method for computing
feature importance is explained in Section 3.4, while the results are summarized in Section 4.6.

The answers to the above research questions are provided in Chapter 6.

1.8 Outline

This dissertation discusses various aspects and steps of ionosphere modeling and forecasting using
ML techniques. A flowchart of the ML-based ionosphere model development with an overview of the
processing chain is presented in Figure 1.7, with the corresponding dissertation sections discussing
the respective part of the processing chain. The first-author journal and conference publications
cover all levels of the processing chains, except that P-III and CP-II also include the quantification of
uncertainty.

Following the processing chain, five processing levels can be identified in which the developments
within the scope of this dissertation intervene:

(1) Data level: it includes data acquisition, selection of input observations and time periods, data
preprocessing, and input feature preparation to form a suitable data set.

(2) Modeling level: it involves the selection of learning algorithms for developing the ML-based
ionosphere model, training and cross-validating on a prepared data set, and the hyperparameters
tuning. Techniques to estimate uncertainties are also incorporated.

(3) Product level: it represents an ML-based ionosphere model resulting from the modeling level.
There are three main ionosphere products of this dissertation: (a) Regional Ionosphere Map
(RIM) with ML-based spatiotemporal modeling, (b) grid point ML-based ensemble forecasting,
and (c) grid point ML-based probabilistic forecasting.

(4) Evaluation level: a final evaluation or model test performed on the data that was not used at
the modeling level.

(5) Interpretation level: a feature importance analysis is performed to provide information on the
important input features of the developed model.

Chapter 2 provides an introduction to the ionosphere and space weather, ionosphere variability,
observation and modeling techniques, as well as the necessity for ionosphere models. Afterward, this
dissertation introduces new ML methods for ionosphere forecasting, such as Random Forest in Section
3.2.2, Adaptive Boosting in Section 3.2.3, Quantile Gradient Boosting in Section 3.3.3 and Bayesian
Neural Network in Section 3.3.4, while GBDT and eXtreme Gradient Boosting (XGBoost) in Section
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Figure 1.7: Flowchart of the processing chain for the ML-based ionosphere models development
with reference to the first-author journal and conference publications in blue and orange,
respectively, and the corresponding dissertation sections in dark red.

3.2.3 have previously only been reported in one paper each (Han et al., 2022; Zhukov et al., 2021). In
addition, several models are combined into a super-ensemble to create a model with higher accuracy
and improved generalization in Section 3.2.4. The dissertation also quantifies uncertainties in ML-
based ionosphere models for the first time in Section 3.3. Thus, several UQ techniques are developed
for the probabilistic forecast of ionosphere and space weather effects on the ionosphere, specifically,
for forecasting the impacts of geomagnetic storms and strong solar flares on the ionosphere in this
dissertation. Their performance and effectiveness in estimating uncertainties and 95% confidence
intervals under quiet and extreme space weather conditions are tested and presented in Sections 5.3
and 5.4. Since the accuracy of an ML model is highly dependent on the data, this dissertation pays
special attention to selecting and deriving suitable input features that can accurately describe complex
ionosphere variations. Therefore, new input variables are introduced, such as solar wind plasma
speed, interplanetary magnetic field index, derived features of first and second derivatives and moving
averages, daily differenced data, high-resolution solar X-ray and EUV observations, a high-resolution
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geomagnetic activity index, and high-resolution ionosphere data (Table 3.1). The related feature
engineering is presented in 4.1.3, the exploratory data analysis in 4.1.4, and the impact of data and
feature selection on the developed ML-based ionosphere models are analyzed in 5.6. Section 4.1
addresses the systematic analysis, selection, and preparation of input data, data partitioning, and the
choice of data time frames in a way to enhance model performance, particularly in learning signatures
of space weather events. The modified cross-validation method for time series data in Section 4.2.2
further contributes to reliable training, hyperparameters tuning, and validation in this dissertation.

As mentioned earlier, one of the aims of this dissertation is not to treat and view ML as a black-box
model, as is usually emphasized in previous applications of ML. Instead, the aim is to understand
the mathematical and statistical theories and concepts of how the ML-based ionosphere models are
developed in this dissertation, how modeling functions are "learned" from the data, to understand
the results obtained, to provide information on the most important input variables in the developed
models, and how and why they are selected. Furthermore, by providing information on how uncertain
the results are and where most of the uncertainty comes from, the explainability of the ML-based
ionosphere models and solutions in this dissertation is further increased.
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2 Ionosphere Variability and Models

2.1 Ionosphere Formation and Layers

Depending on the temperature, the atmosphere is divided into the following layers: troposphere,
stratosphere, mesosphere, thermosphere, and exosphere (Figure 2.1, left). The region of the atmosphere
above ∼50 to 1000 km or more is also called the ionosphere and depends on ionization. It represents
the ionized region of the upper atmosphere that contains free electrons and positive ions. The source
of its ionization is solar radiation during the day, e.g., X-ray and Ultraviolet (UV) emissions from the
Sun, and cosmic radiation at night. The ionosphere layers are defined by the electron density profile
(Figure 2.1, right), and can be divided into:

• D layer: between ∼50 km and ∼90 km above the Earth;

• E layer: between ∼90 km and ∼130 km;

• F1 layer: between ∼130 km and ∼250km;

• F2 layer: above ∼250 km.

Figure 2.1: Left: Representation of atmosphere layers based on the temperature and ionization vari-
ations, including an electron density distribution profile (red). Right: Idealized electron
density distribution in the Earth’s ionosphere and plasmasphere, as well as the characteris-
tic ionosphere layers during daytime. (Source: Limberger (2015)).

The most significant electron density values are given in the upper F layer, divided into the F1 and F2
layers during the daytime. The F1 layer is much weaker than F2 and merges into the higher F2 layer
at night, while the D layer disappears and the E layer weakens or vanishes altogether. Within the E
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layer, a sporadic layer of higher electron density can occur at any time of day, preferentially in the late
morning and early evening, especially in the summer months and briefly in winter, revealing strong
seasonal and diurnal patterns. Unlike all the other layers, the F2 layer is present during both day and
night.

The distinctive separation of layers in the ionosphere is the result of the energy of the solar spectrum at
different altitudes and its absorption in the atmosphere, as well as recombination processes, depending
on the atmospheric density and the composition of the upper atmosphere itself, varying with altitude
(Cander, 2019). The degree of ionization is subject to substantial variations that correlate with solar
activity and Earth’s rotation. In addition, geomagnetic activity and the perturbative solar-terrestrial
interaction also play an essential role and are discussed in the next section.

2.2 Space Weather

Space weather originates from active regions on the Sun, where many sunspots are located. Although
there is no universally accepted definition, it can be described as dynamic conditions on the Sun that
affect various parts of the spheres, such as the magnetosphere, ionosphere, and thermosphere, all of
which form a coupled system.

The level of solar activity and the solar cycle are usually presented by solar indices such as the Sunspot
number (Sn) and the solar radio flux of the solar emission at 10.7 cm wavelength (F10.7 index). Sn
as defined by Rudolf Wolf (Friedli, 2016) measures the number and groups of sunspots on the Sun.
The F10.7 index represents the integrated emission from the solar disc at 2800 MHz, i.e., 10.7 cm
wavelength (Covington, 1969), which is closely related to the Sn, UV, and visible solar irradiance
records (Tapping, 1987, 2013). The number of sunspots on the Sun increases and decreases in solar
cycles of approximately 11 years (Figure 2.2). The solar minimum refers to the years when the number
of sunspots is the lowest, while the solar maximum is in the years when sunspots are the most
numerous. The last solar maximum occurred in 2014, with a maximum 13-month smoothed Sn of
116.4 in April 2014, representing the peak of solar activity in solar cycle 24. Thereafter, there was a
gradual decline until the solar minimum in 2019. The magnitude of cycle 24 was about half the size of
cycle 23. In 2020, a new solar cycle began, and we are in the ascending phase approaching the next
solar maximum. Cycle 25 is predicted to reach its maximum in 2025.

Two main types of solar activity are significantly important: solar flare and CME. A solar flare is a
sudden and violent explosion on the Sun that releases energy from its inner region. It can be classified
based on the peak flux of X-rays, as given in Table 2.1(1). The frequency of solar flares coincides

Table 2.1: Classification of solar flares from the strongest to the weakest.

Class Intensity I(
Watt
m2

)

X 10−4 ≤ I
M 10−5 ≤ I < 10−4

C 10−6 ≤ I < 10−5

B 10−7 ≤ I < 10−6

A I < 10−7

(1)Within each class, there is a linear scale from 1 to 9; for instance, an X2 solar flare is twice as strong as an X1 solar flare and
four times as strong as an M5 solar flare.
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Figure 2.2: Top: the observed solar cycle Sn progression from 1750 to the present and the forecast
until December 2040. Bottom: The last two solar cycles, 23 and 24. The black line with
the rectangular data points represents the monthly averaged data overlaid by a 13-month
weighted smoothed line of monthly averaged data. The mean forecast for the current solar
cycle 25 is given by the red line with the gray-shaded region of expected uncertainties.
(Source: National Oceanic and Atmospheric Administration, USA (NOAA), Boulder, USA.)

with the 11-year solar cycle and increases as the solar maximum approaches. When analyzing the
impact of a solar flare on the Earth, i.e., its geo-effectiveness, two essential factors must be considered:
the intensity of a flare (Table 2.1) and the location on the solar disk. The Extreme Ultraviolet (EUV)
enhancement is lower for flares occurring near the solar limb, resulting in lower geo-effectiveness, i.e.,
lower ionosphere response, than for flares occurring in the center of the solar disk(2) (Qian et al., 2010;
Hernández-Pajares et al., 2012a). The reason is that the solar atmosphere absorbs the UV radiation, and
its absorption is larger at the limb of the solar disk due to the longer path lengths (Hernández-Pajares
et al., 2012a). However, the X-ray flux remains unaffected. This means that EUV observations are
affected by the location on the solar disk, while X-ray observations reflect only the intensity of a flare
(Table 2.1), regardless of its position. In other words, a strong solar flare occurring at the solar limb
will have a very poor geo-effectiveness, as in the case of the X28.0 class flare on November 4, 2003 (see
Hernández-Pajares et al. (2012a)). The expected geo-effectiveness for a limb flare is 2 to 3 times weaker
than that at the center of the solar disk (Qian et al., 2010). In addition, the radiation photons directed
towards the Earth from a solar flare cause a sudden increase in ionization in the daylight ionosphere,
depending on the solar zenith angle (Hernández-Pajares et al., 2012a).

On September 6, 2017, the Sun emitted an X9.3 flare, the strongest in solar cycle 24. The X9.3 flare was

(2)The EUV irradiance depends strongly on the distance of the solar flare location from the center of the solar disk.
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accompanied by solar radio emission and caused an increase in the dayside ionosphere (Berdermann
et al., 2018; Yasyukevich et al., 2018). Furthermore, the Precise Point Positioning (PPP) error increased
by three times, as reported in Yasyukevich et al. (2018), impacting both single and dual frequency PPP,
thus severely affecting GNSS positioning performance and navigation services in Europe (Berdermann
et al., 2018). These solar flares led to severe geomagnetic storms on September 8. The main findings
from previous studies of the ionosphere response to a solar flare can be summarized as follows:

• Ionization suddenly increased during the X9.3 flare occurrence at 12 Coordinated Universal
Time (UTC) on September 6, 2017 and lasted until 17 UTC (Yasyukevich et al., 2018). The
increase was much higher, at least about three times, in the ionosphere information derived
directly from the GPS observations than in the Global Ionosphere Map (GIM) (Yasyukevich
et al., 2018).

• The dependence between the increased ionization during a solar flare in the daylight ionosphere
and the solar zenith angle is reported in Barta et al. (2022); Hernández-Pajares et al. (2012b);
Yasyukevich et al. (2018).

• The most pronounced solar flare-induced effects on the ionosphere are observed around local
noon when the solar zenith angle is close to zero (Liu et al., 2004).

• C-I reported a latitude-dependent increase in ionization of 10% to 20% during a solar flare, with
the duration of the high ionisation increasing with decreasing latitude.

• A pure solar flare impact is expected to occur in a mid-latitude ionosphere region (Berder-
mann et al., 2018) because there are no overlapping disturbances as in the polar or equatorial
ionosphere regions.

• The geo-effectiveness of solar flares depends on the flare distance from the center of the solar
disk (Hernández-Pajares et al., 2012b; Qian et al., 2010), being 2-3 times stronger for a disk-center
flare than for a limb flare (Qian et al., 2010).

Solar flares can be accompanied by CMEs, which are ejections of magnetized solar plasma that usually
reach the Earth within 1 to 3 days and interact with the Earth’s magnetosphere (Figure 1.2). A
large cloud of plasma particles and the magnetic field, erupting from the Sun, plows through the
constantly outflowing ionized plasma of the upper solar atmosphere, the so-called solar wind. When
the cloud reaches the Earth, it can induce increased energy into the GeoMagnetic Field (GMF), leading
to temporary disturbances in known as geomagnetic storms. These storms can be quantified by
indices such as the Kp index, derived from geomagnetic observatories between 44◦and 60◦N or S
of geomagnetic latitude (Bartels, 1963), and the Dst index derived from a network of geomagnetic
observatories near the equator (Sugiura, 1964). The effect of a storm visually manifests at high
latitudes in the form of a bright aurora around local midnight, representing remarkable manifestations
of solar-terrestrial interaction.

As mentioned earlier, space weather events, including associated geomagnetic storms and ionosphere
disturbances, become more frequent as the solar maximum approaches. The probability of such events
during solar maximum is much larger because of the high number of sunspots, but their occurrence
during solar minimum is not excluded. The strongest space weather events in solar cycle 24 were the
St. Patrick’s storm in 2015, occurring near solar maximum, as well as a chain of intense solar flares
and CMEs for several consecutive days in September 2017 during the declining phase of the solar
cycle. However, this is not the only example of severe space weather events in the low phase of a
solar cycle. The most giant recorded solar storm to date, the Carrington event, occurred during solar
minimum in September 1859 (Hudson, 2021; Tsurutani et al., 2012).
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2.3 Observation Techniques

Electromagnetic measurements used in geodetic applications such as satellite-based positioning and
navigation are influenced by free electrons in the Earth’s ionosphere. With the modernization of satellite
systems and the use of multi-constellation and multi-frequency measurements, the ionosphere effects
can be reduced, and the ionosphere can continuously be monitored using globally distributed sensor
stations. The following geodetic satellite observation techniques are used to model the ionosphere:

• GNSS : US NAVigational Satellite Timing And Ranging (NAVSTAR) GPS, the Russian GLObal’naya
NAvigatsionnaya Sputnikovaya Sistem (GLONASS), the European Galileo, and the Chinese
BeiDou;

• Satellite altimetry(3): e.g. TOPEX-Poseidon, Jason-2 and Jason-3;

• Doppler Orbitography and Radiopositioning Integrated by Satellite (DORIS)(4): e.g. Jason-2 and
Jason-3, Cryosat-2;

• Radio occultation (RO) measurements(5): e.g. Formosat-3/COSMIC, CHAllenging Minisatellite
Payload (CHAMP).

The different space-geodetic observation techniques can be combined for more accurate ionosphere
modeling by exploiting the advantage of their different spatial and temporal distributions and the
different observation characteristics of each technique, e.g., Dettmering et al. (2011). In this dissertation,
ionosphere modeling and forecasting are performed using only ionosphere information derived from
GNSS observations.

GNSS refer to a constellation of satellites from all existing global navigation satellite systems that
provide worldwide coverage and transmit signals to GNSS receivers for positioning, navigation, and
timing. They currently include GPS, GLONASS, Galileo, and the BeiDou navigation satellite systems.
GNSS consist of three segments:

1. Space segment: it comprises a constellation of satellites in different orbital planes that transmit
the navigation message required for user positioning and navigation, which contains information
on satellite orbits and clocks, satellite health information, and ionosphere parameters of the
Klobuchar model(6).

2. Ground or control segment: it is responsible for monitoring the satellites and their signal
transmissions, performing analyses, estimating satellite orbits and clock errors, and generating
the navigation message sent to the space segment.

3. User segment: it includes the GNSS receivers that can be used anywhere around the world. The
user only receives the signals from the satellites and processes them without communicating
with the satellite.

GPS was originally developed for military purposes, but today GNSS signals are mostly used for
civilian purposes such as surveying, precision agriculture, and navigation in cars, aircraft, ships,
smartphones, etc. Although the primary application of GNSS is positioning and timing, GNSS is
today also used for remote sensing of the atmosphere by providing permanent monitoring and global
coverage that can be used for weather forecasting and climate modeling in both the troposphere and

(3)For more information on the concepts of satellite altimetry and the TOPography EXperimentTOPography EXperiment
(TOPEX)/POSEIDON mission, see Chelton et al. (2001), and on the combination of satellite altimetry and GNSS for
ionosphere modeling, see Todorova et al. (2008).

(4)For more information on the system, see Jayles et al. (2010); Auriol & Tourain (2010), and on its use for ionosphere modeling,
see Dettmering et al. (2014).

(5)For more information on the RO atmosphere sounding, see Wickert et al. (2001), and its use for ionosphere studies, see
Jakowski et al. (2002); Arras et al. (2008).

(6)For more details on the broadcasted Klobuchar model, see Section 2.6.
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ionosphere. Apart from affecting GNSS accuracy and performance, the information obtained from
the GNSS signals provides the opportunity to monitor and study the ionosphere and space weather
processes to understand and model their variations and mechanisms.

It is relevant to mention permanent ground-based networks of continuously operating GNSS reference
stations. The International GNSS Service (IGS) operates a global network of more than 500 permanent
quality stations. Regional GNSS station networks focus on specific regions, such as the EUREF
Permanent Network (EPN), with stations distributed exclusively in Europe. These two networks
provide freely and openly accessible high-precision GNSS data, products, and services in support of
the terrestrial reference frame, Earth observation and research, monitoring of tectonic deformations and
sea-level variations, positioning, navigation and timing, and other applications that benefit the scientific
community and society. Another permanent ground-based GNSS network type is the Continuous
Operating Reference Stations (CORS), which provides continuous real-time positioning data for a
given area. Government agencies, universities, or other organizations typically install and maintain
them. The GNSS data collected by the CORS stations are processed and transmitted to users via the
internet, usually through a web-based interface, allowing them to access high-precision positioning
data. The CORS networks consist of dense stations that provide more comprehensive GNSS coverage
and higher accuracy and reliability. However, not all CORS providers make their data available for
free, so subscription-based pricing options are available depending on service need and length of use.
CORS are used for surveying, mapping, and geodetic research, among other applications, as well as to
support autonomous vehicles and provide high-precision positioning data to other GNSS receivers in
the area.

2.4 Impact on GNSS Signals

Free electrons in the ionosphere interfere with the propagation of microwave signals generated by
communication and navigation systems such as GNSS, causing signal delay and bending. From Table
2.2, it can be seen that the ionospheric error can be 4 m (Table 2.2), making it the dominant GNSS error
source.

Table 2.2: GNSS ranging error sources (Parkinson, 1996).

Source Error range
(m)

Ephemeris data 2.1
Satellite clocks 2.1
Ionosphere 4.0
Troposphere 0.7
Multipath 1.4
Receiver measurement 0.5

Multi-frequency observations allow the reduction of the ionospheric range error by forming an
ionosphere-free linear combination L3 as

L3 =
1

f 2
1 − f 2

2

(
f 2
1 L1 − f 2

2 L2

)
, (2.1)

where f1, f2 are the frequencies associated with the carriers L1 and L2. The L3 combination can
eliminate the first-order ionospheric term, which accounts for more than 99.9% of the total ionospheric
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delay associated with phase and code GNSS measurements (Hernández-Pajares et al., 2011). However,
after applying the L3 combinations, the Higher Order Ionosphere terms (HOI) remain, which can cause
GNSS errors. Their magnitude depends mainly on the degree of solar activity and the geomagnetic
and ionosphere conditions (Hoque & Jakowski, 2008). They usually can be neglected, but in extreme
space weather conditions, they can reach tens of centimeters, especially at low altitude angles. So even
precise techniques such as the dual-frequency PPP and Real-Time Kinematic (RTK) can experience
a decrease in performance under extreme space weather conditions and ionosphere disturbances
(see, e.g., Jacobsen & Andalsvik (2016); Luo et al. (2018b); Bergeot et al. (2011)). On the other hand,
mass-market GNSS receivers typically operate at a single frequency, meaning that the ionospheric
range error must be corrected or mitigated by an external correction.

Moreover, space weather events can cause irregularities in electron density, such as ionospheric
scintillation. It leads to diffraction and scattering of GNSS signals, which can exhibit severe amplitude
fading and random carrier phase fluctuations, increasing range measurement errors, the probability
of signal lock loss, and signal acquisition failure (Linty et al., 2018). GNSS scintillation occurs most
frequently near the magnetic equator during solar maximum but can also occur anywhere on Earth
during any phase of the solar cycle (Kintner et al., 2007). In addition, the dispersive nature of the
ionosphere slows down a higher-frequency signal less than a lower-frequency signal. For example, the
f1 frequency is less affected by the ionosphere scintillation than the f2 frequency, which in turn is less
affected than the f5 frequency.

2.4.1 Total Electron Content

The ionosphere’s effect on GNSS signal propagation can be characterized by the Slant Total Electron
Content (STEC), which represents the integrated electron density along the signal ray path in the
ionosphere. It is defined as

STEC =
∫ p

r
Ne ds (2.2)

where Ne is the electron density along the signal ray path between the satellite p and the receiver r.
STEC is measured in Total Electron Content Unit (TECU), where 1 TECU= 1016 electrons/m2.

The ionosphere models derived from GNSS observations usually assume that the ionosphere layer
is a shell of infinitesimal thickness in which all free electrons are concentrated (Schaer, 1999). This
approach is referred to as Single Layer Model (SLM) and is shown in Figure 2.3. The intersection
point of the line of sight between the satellite and the receiver with the ionosphere layer is called the
Ionospheric Pierce Point (IPP). When modeling the ionosphere, STEC can be mapped to the Vertical
Total Electron Content (VTEC) as follows

F(z) =
STEC
VTEC

=
1

cos z′
with sin z′ =

R
R + H

sin z (2.3)

where

F(z) is the SLM mapping function that depends on the elevation,

H is the mean altitude of the ionosphere shell, i.e., the SLM height,

z′ is the zenith angle of the signal path at altitude H,

R is the mean radius of the Earth.

It is important to note that there are also many other mapping functions F(z), such as the modified
SLM mapping function (Schaer, 1999), Barcelona Ionospheric Mapping Function (BIMF) (Lyu et al.,
2018), and mapping function with ionosphere varying height (Xiang & Gao, 2019).
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Figure 2.3: Geometry of the SLM for the ionosphere modeling.

The SLM height is usually set to the expected height of the maximum electron density. It is typically
between 350 km to 450 km (Schaer, 1999; Jiang et al., 2017; Mannucci et al., 1998), while the IGS
analysis centers have adopted a fixed height of 450 km for the GIM (Feltens, 2003). From Equation
(2.3) it follows

VTEC = STEC cos
[

sin−1
(

R cos θ

R + H

)]
, (2.4)

where θ is the elevation angle at the receiver location. VTEC has been widely used to model, study
and monitor the ionosphere and correct GNSS observations for ionosphere effects in positioning.

2.4.2 Geometry-free Linear Combination L4

Dual-frequency GNSS observations facilitate the estimation of the ionosphere range delay by subtract-
ing observations at different frequencies, i.e., by forming the geometry-free linear combination L4. This
means that all frequency-independent effects, such as the satellite-receiver geometrical range, clock
errors, and tropospheric delay, among others, are canceled, while the ionospheric delay is preserved
(Ciraolo et al., 2007). The L4 combination allows the estimation of VTEC as a function of geographic
or geomagnetic latitude ϕIPP and Sun-fixed longitude sIPP at IPP. The observation equation can be
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outlined as

L4 = L1 − L2 = −α ·
(

1
f 2
1
− 1

f 2
2

)
· F(z) · VTEC (ϕIPP, sIPP)− β · ϕ + B4, (2.5)

where

α is a constant with α = 4.03 · 1017 m
s2TECU ,

f1, f1 are the frequencies associated with the carriers L1 and L2,

β · ϕ represents the wind-up term associated with the right-handed polarized GPS signal, typically a
centimeter-scale term,

B4 is a constant phase bias with B4 = λ1 · B1 − λ2 · B2 caused by the initial phase ambiguities B1 and
B2 with their corresponding wavelengths λ1 and λ2, i.e., an unknown integer number of cycles.
The initial phase ambiguities B1 and B2 are estimated as real-value parameters in the initial
least-squares adjustment using the L1 and L2 observations at both frequencies.

The carrier phase ambiguity term can be estimated by the carrier phase leveling (Mannucci et al., 1998).
In this method, the carrier phase measurements are "leveled" to the geometry-free combination of code
pseudoranges by averaging the difference between them for each continuous arc of the samples (see,
e.g., Wang et al. (2020); Goss (2021)).

2.5 VTEC variability

VTEC is a highly variable quantity concerning local time, season, receiver location, phase of the solar
cycle, solar activity, space weather processes, geomagnetic conditions, etc. To analyze the regular
and irregular VTEC variations in CP-III, VTEC values were derived(7) from GNSS (GPS+GLONASS)
observations of the EPN station SRJV, located in Sarajevo (43.87◦, 18.41◦) with a time sampling of
30 seconds. In addition, the SRJV station coordinates were estimated using dual-frequency PPP to
analyze the impact of the ionosphere on coordinate estimation during severe space weather.

Section 2.5.1 gives an overview of the geographical classification of the ionosphere regions. This
is followed by Sections 2.5.2 - 2.5.5 that examine daily, monthly, seasonal, and solar cycle VTEC
variations for the period from January 2013 to December 2016, as well as the space weather effects on
the ionosphere and positioning performance during the severe geomagnetic storm in 2015.

2.5.1 Geographical VTEC Variability

The ionosphere exhibits considerable geographical variations depending on the geomagnetic latitudes.
The generally accepted division of the ionosphere is into high-latitude/auroral region, mid-latitude
region, and low-latitude/equatorial region (Figure 2.4). There are also transitional regions between the
mid-latitude and auroral regions. The high-latitude ionosphere extends over the 60◦of geomagnetic
latitude. However, during geomagnetic storms, it can expand toward the equator and reduce the width
of the mid-latitude ionosphere region. The low-latitude ionosphere lies within 20◦ of geomagnetic
latitude and includes the equatorial anomaly. An equatorial anomaly or equatorial plasma bubble
occurs at the magnetic equator up to about ±15◦ latitude. It includes the higher-density ionosphere
irregularities associated mainly with the equatorial spread of the F layer, which develops shortly after
sunset at equator ∼19:00 Local Time (LT), rises vertically, extends poleward, and reaches the anomalies
a few hours later.
(7)For more details, see Section 4.1.1 in this dissertation or Section 2.1 in CP-III Natras et al. (2023b).
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Figure 2.4: Ionosphere regions according to their geomagnetic latitudes overlaid on a GIM from
the NASA Jet Propulsion Laboratory, USA (JPL). (Source: https://eartharxiv.org/
repository/view/1092/).

2.5.2 Diurnal VTEC Variability

The diurnal VTEC values within each month with the average VTEC of each month and the standard
deviations are analyzed for the solar maximum year in Figure 2.5. The diurnal VTEC variations are

Figure 2.5: VTEC from the GNSS EPN SRJV from January to December 2014. The 24-hour VTEC
values for each day are presented with solid lines in different colors. Dashed black line:
the average VTEC of each month. Dotted black line: VTEC standard deviation.
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characterized by lower values at night and higher values during the day. More specifically, VTEC
reaches its lowest value before sunrise and its highest around local noon, from 12:00 up to 14:00 UTC.
In between, there is a gradual rise and fall from sunrise to noon and from noon to sunset, respectively.
The longer the days, the wider the 24-hour VTEC curve, and vice versa. This effect is directly related
to the solar irradiance and zenith angle, as the daily variations in the ionosphere are mainly controlled
by fluctuations in the solar EUV/UV irradiance (Vaishnav et al., 2021).

The magnitude of peak VTEC values varies monthly. In the first half of the year, January - April 2014,
there is an evident increase in the peak VTEC values, while the VTEC curve flattens from May to
August, only to rise again from September - October. The VTEC variations in the different months are
analyzed in more detail in the next section.

2.5.3 Solar Cycle and Monthly VTEC Variability

The largest monthly VTEC values and standard deviations within the period from January 2013 to
December 2016 are recorded in 2014, i.e., in the solar maximum year (Figure 2.6). Moderate VTEC

Figure 2.6: Top left: monthly VTEC values of the GNSS EPN SRJV with standard deviations from
January 2013 to December 2016. Top right: bar chart of monthly VTEC for EPN GNSS SRJV
for the years 2013, 2014, 2015, and 2016. Bottom: NOAA observed F10.7 solar radio in solar
flux unit (sfu) from January 2013 to December 2016.

values and standard deviations can be observed in the previous and the following years, i.e., 2013
and 2015. The months closer to the solar maximum have higher VTEC values, such as August to
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December in 2013 and January to July in 2015. These months are characterized by an increased
solar activity, reflected in the F10.7 solar radio flux. A significant decrease in monthly VTEC values
and their standard deviations are observed in 2016. They are at least twice as low as in the year of
solar maximum. This is because the year 2016 represents the descending phase of the solar cycle,
characterized by lower solar activity, as shown by the F10.7 index, leading to a decrease in VTEC
values. These results show the apparent effect of the solar cycle, as the VTEC values and their standard
deviations increase and decrease significantly as the solar cycle progresses.

The months with the highest VTEC values within a year are March, April, and May, while the lowest
values are in January and December. A VTEC increase can be observed from January to spring.
Thereafter, VTEC values decrease from June until September, when they slightly increase again until
they decrease in December. These trends result from seasonal VTEC variability.

2.5.4 Seasonal VTEC Variability

To analyze seasonal VTEC variations, the months are divided into four groups (Figure 2.7) as

Figure 2.7: Seasonal VTEC variability with diurnal variations: spring equinox (top left), summer
solstice (top right), autumn equinox (bottom left), winter solstice (bottom right).
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• Spring equinox: March and April;

• Summer solstice: May, June, July and August;

• Autumn equinox: September and October;

• Winter solstice: November, December, January and February;

and VTEC is averaged in each group to obtain the seasonal VTEC values as in Cander (2019).

The highest seasonal VTEC values are in 2014, followed by 2013, 2015, and 2016, from the highest to
the lowest seasonal VTEC values. The exception is the spring equinox, where the VTEC values of 2015
are higher than those of 2013. In 2014, the spring equinox VTEC values increase to over 50 TECU
around local noon, which corresponds to a total daily increase of around 30 TECU. In contrast, VTEC
in 2016 is below 20 TECU during the day, with the total daily increase being twice as low.

Comparing the different seasons, the VTEC values are the highest during the spring equinox and show
an enormous change from the lowest to the highest values within 24 hours, while they are much lower
during the other seasons. The summer solstice VTEC is higher than the winter solstice VTEC in 2015
and 2016, but in 2013 and 2014, the situation is reversed. This effect is known as the winter anomaly
(Pandit et al., 2021), which is usually observed during higher solar activity. It occurs due to the Earth’s
shorter distance from the Sun (Shimeis et al., 2014), the seasonal variations in thermospheric O/N2
concentration(8) (Zhang et al., 2005), and the transport of ionization from the summer to the winter
hemisphere (Pandit et al., 2021), resulting in a change in the composition of ionosphere constituents
and a lower electron recombination rate in winter. Consequently, VTEC is higher at the winter solstice
than at the summer solstice during high solar activity.

2.5.5 Geomagnetic Storm and Impact on PPP

VTEC variations during a geomagnetic storm, including the effects on the PPP, are presented for the
case of one of the strongest geomagnetic storms of solar cycle 24, known as the St. Patrick’s storm.
The storm was characterized by a main phase on March 17, 2015 during which the Kp index reached a
value of 8 and the Dst index was less than -200 nT. This was followed by a recovery phase on March 18,
which lasted several days (see Figure 8 in P-I and Figure 8 in CP-III). The Earth remained under the
high-speed solar wind flow until March 27, resulting in unsettled to sporadically active geomagnetic
conditions.

After the arrival of the CME in the Earth’s magnetic field and the onset of the geomagnetic storm, the
VTEC fluctuates considerably (Figure 2.8). During the main storm phase on March 17, an increase
in VTEC can be observed with two significant peaks: more than 50% shortly after local noon and
150% in the evening, i.e., shortly before 18:00 UTC. The following recovery days are characterized
by VTEC decrease of 50% around local noon and 60% to 80% at night. Such anomalous VTEC
variations during a space weather event are the result of physical processes such as the change in
thermospheric composition O/N2, ionospheric disturbance dynamo, prompt penetration of electric
fields, thermospheric winds, or their combination (Astafyeva et al., 2015; Nava et al., 2016).

The positioning errors and their daily RMS values in the east, north, and up components of the EPN
station SRJV are estimated from the 300-sec PPP solutions processed in the Bernese GNSS software
and the weekly combined EPN solutions according to Equations (9) and (10) in CP-III, and shown in
Figure 2.9. In March 2015, positioning errors are mostly within 4 cm in the east component, within
2 cm in the north component, and below 10 cm in the up component. They increase suddenly from
March 5 to 7 and March 18 to 23. The first period of increase, March 5 - 7, coincides with heavy

(8)The thermospheric O/N2 (density ratio of atomic oxygen number to molecular nitrogen number) is an important indicator
for determining the prevailing composition and is used to study the perturbations during geomagnetic storms.
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Figure 2.8: VTEC rate of change (ROC) between the observed and regular VTEC for March 15-23,
2015, calculated from Equation (7) in CP-III. The regular VTEC is the average over the five
days of the quietest geomagnetic activity in March 2015. The orange dashed line indicates
the local noon time, while the red dotted line represents the arrival of the CME on Earth,
signifying the Sudden Storm Commencement (SSC).

snowfall in Sarajevo, where precipitation and accumulation of snow on and around the GNSS antenna
contributed to the amplification of signal scattering and degradation of positioning performance
(Natras et al., 2019b). Thus, the cause of coordinate deviations there is not the ionosphere but the
meteorological conditions in the lower atmosphere, and further discussion of these effects is beyond
the scope of this dissertation. The largest errors after the CME arrival are 6 cm, 7 cm, and 20 cm for
the east, north, and up components, respectively. This represents an increase of 1.5 times for the east
component, three times for the north component, and more than two times for the up component in
terms of positioning errors for the entire March 2015. Consequently, the daily RMS values increase by
up to 5 cm in the up component and about 2 cm in the east and north components.

2.5.6 Summary

The analyses in Sections 2.5.2 to 2.5.5 show diurnal, monthly, seasonal, and solar cycle phase-dependent
VTEC variations, as well as sudden and intense irregular VTEC changes during a geomagnetic storm.
The VTEC variability follows the solar cycle progression, which is most significant during solar
maximum and gradually decreases towards the solar minimum. As for the seasonal dependence, an
increasing VTEC trend is observed in the equinox months, with the largest VTEC values and standard
deviations during the spring equinox, while the decrease occurs mainly in the solstice months. In
addition, an ionospheric winter anomaly is detected during solar maximum. Space weather caused
severe perturbations in the ionosphere, leading to significant deviations of 50% to 150% from regular
ionosphere conditions and affecting the accuracy of the dual-frequency mid-latitude GNSS positioning,
resulting in increased coordinate deviations. These deviations can be attributed to HOI terms that the
L3 linear combination cannot remove. Therefore, the space weather effects cannot be ignored in the
study of the ionosphere as well as in the GNSS applications.
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Figure 2.9: From top to bottom: positioning errors of the GNSS pseudo-kinematic processing results
for the east, north, and up components, and daily RMS values of positioning errors. The
results refer to the EPN SRJV station and March 2015. GNSS observations for March 24,
2015 from 08:50 to 23:59:30 UTC are missing.

These results demonstrate the necessity for an accurate and precise ionosphere model to correct
ionospheric effects in positioning solutions. Therefore, the work in this dissertation aims to
develop ionosphere models that incorporate space weather information from various satellites
and observatories and apply ML techniques to model and forecast VTEC in order to meet the
needs of GNSS users for effective ionosphere correction.

In the following Section 2.6, the main categories of existing ionosphere models are briefly discussed,
followed by the main mathematical approaches that have been used to date for GNSS-based regional
and global ionosphere modeling in the context of the dissertation.
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2.6 Ionosphere Models

Existing ionosphere models can be categorized as physical, empirical, or mathematical (Schmidt et al.,
2015; Farzaneh & Forootan, 2018) as shown in Table 2.3. Physical ionosphere models are based on

Table 2.3: Overview of different ionosphere models and their main characteristics.

Model Category Characteristics

GAIM Physical
Represent physical laws, complicate numerical calculations

GITM Physical

IRI Empirical
Represent average conditions: ionosphere "climate"

NeQuick Empirical

Klobuchar Broadcasted Empirical Simple, corrects ∼50% of the ionosphere error in GPS
NeQuick-G Broadcasted Empirical Simple, corrects ∼70% of the ionosphere error in Galileo

GIM Mathematical GNSS-VTEC, e.g., spherical harmonics, B-splines
RIM Mathematical GNSS-VTEC, e.g., Taylor series, B-splines

AI/ML-based "Learning" from data GNSS + space weather data, nonlinear modeling

physical and chemical processes in the ionosphere, requiring complicated numerical procedures with
high computation cost, such as the Global Assimilation of Ionospheric Measurements (GAIM) model
(Schunk et al., 2004) and the Global Ionosphere-Thermosphere Model (GITM) (Ridley et al., 2006).
In contrast, empirical models describe the ionosphere using mathematical functions derived from
historical observational data and statistics (Radicella & Nava, 2020). These models represent average
conditions and regular ionosphere variations, i.e., its "climate". Examples of such climatological models
include the International Reference Ionosphere (IRI) (Bilitza, 2018) and NeQuick (Nava et al., 2008). To
correct the ionospheric delay in single-frequency observations, navigation satellite systems broadcast
coefficients in the navigation message based on the empirical approaches. For instance, the well-known
Klobuchar model (Klobuchar, 1987), which has been adopted in GPS, or a particular version of the
NeQuick model, called NeQuick-G, implemented in Galileo (Orus Perez et al., 2018).

The ionospheric delay can be more accurately modeled using GNSS observations, where VTEC is
modeled using a variety of mathematical approaches and thus can be classified as mathematical models.
GNSS-derived ionosphere maps are recognized as useful external sources that can provide information
to single-frequency GNSS users to mitigate the first-order ionospheric delay and consequently reduce
the ionospheric range error (Petit & Luzum, 2010), where we can distinguish between GIM and RIM.

GIMs are routinely generated by the Ionosphere Associated Analysis Centers (IAAC) of the IGS that
include the Center for Orbit Determination in Europe, University of Bern, Switzerland (CODE), ESA,
JPL, Universitat Politècnica de Catalunya; Technical University of Catalonia, Spain (UPC), Geodetic
Survey of Natural Resources Canada (NRCan), Wuhan University, China (WHU) and Chinese Academy
of Sciences (CAS). The GIM products of the IAAC are used to generate a combined weighted solution
of the IGS with a spatial sampling of 2.5◦× 5◦in latitude and longitude, respectively, and a temporal
resolution of two hours (Hernández-Pajares et al., 2009). It generally has a global relative error of 10%
to 20% compared to the VTEC estimated from observations of the TOPEX satellite (Orús et al., 2002).
The final GIM products typically have a latency of up to 3 weeks, while the rapid GIMs are generated
with a latency of 1 to 2 days (Li et al., 2020; Liu et al., 2021), which may limit their use in real-time
positioning applications.
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The global VTEC distribution can be mathematically represented by spherical harmonics as

VTEC(θ, S, t) =
nmax

∑
n=0

n

∑
m=0

P̃nm( sin θ) ( anm(t) cos(m · S) + bnm(t) sin(m · S)) , (2.6)

where

θ, S, t are the geographic/geomagnetic latitude, the Sun-fixed longitude, and time, respectively,

nmax is the maximum degree of the spherical harmonic expansion,

P̃nm are the normalized Legendre functions of degree n and order m,

anm, bnm are the unknown coefficients of the spherical harmonics, i.e., the global ionosphere model
parameters to be estimated.

CODE applies, for instance, a spherical harmonics expansion up to degree and order of 15 to produce
GIMs.

Another approach to global VTEC modeling is based on localizing basis functions, for instance, B-spline
functions, such as in the DGFI-TUM GIMs. They are modeled as a series expansion in trigonometric
and polynomial B-spline functions. Since B-splines are localizing functions, this approach copes with
data of heterogeneous density, i.e., unevenly distributed observations and data gaps (Schmidt et al.,
2011). It can also be used to generate a multi-scale representation (Schmidt, 2012; Goss et al., 2019).
The global VTEC model with B-spline functions reads

VTECglob(ϕ, λ, t) =
KJ1−1

∑
k1=0

KJ2−1

∑
k2=0

dJ1,J2
k1,k2

(t)N J1
k1
(ϕ)T J2

k2
(λ), (2.7)

where

ϕ, λ, t denote the geomagnetic latitude and longitude, and time, respectively,

N J1
k1
(ϕ) are polynomial B-splines as a function of the geomagnetic latitude,

T J2
k2
(λ) are trigonometric B-splines as a function of the geomagnetic longitude,

dJ1,J2
k1,k2

are initially unknown time-dependent series coefficients,

J1, J2 are the resolution levels.

The total numbers of B-spline functions are estimated as KJ1 = 2J1 + 2 and KJ2 = 3 · 2J2 , where
the numerical values for two levels J1 and J2 are determined by the average sampling interval of
the data and spectral content of the VTEC signal (see Schmidt et al. (2015); Goss et al. (2019)). By
simultaneously estimating coefficients of the B-spline representation and the biases of the carrier
phases, and integrating them into an adaptive Kalman filter, (near) real-time VTEC maps can be
generated (Erdogan et al., 2017, 2020, 2021)).

In contrast to GIMs, RIMs can be more accurate because they have higher spatial and, in some cases,
higher temporal resolution as they incorporate observations from dense GNSS networks. A regional
VTEC B-spline model can be set up as the sum of the global model (Equation 2.7) and the regional
correction part as

VTECreg(ϕ, λ, t) = VTECglob(ϕ, λ, t) + ∆VTECreg(ϕ, λ, t) (2.8)

with

∆VTECreg(ϕ, λ, t) =
KJ3−1

∑
k3=0

KJ4−1

∑
k4=0

dJ3,J4
k3,k4

(t)N J3
k3
(ϕ)N J4

k4
(λ) (2.9)

where
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J3, J4 denote the resolution levels,

k3, k4 are shift parameters applied to geographic latitude and longitude, respectively,

N J3
k3
(ϕ), N J4

k4
(λ) are polynomial B-splines as a function of geographic latitude and longitude, respec-

tively, defined within the study region.

Similar to the global VTEC definition in (2.7), the values for the regional levels J3 and J4 must be
determined, see Goss et al. (2020).

Another mathematical approach for regional modeling is the Taylor series expansion. It is used to
develop the regional VTEC model named RIM IONOsphere model for the Western Balkans (IONOWB)
in P-I, which is defined as follows

VTEC(θIPP, SIPP, t) =
nmax

∑
n=0

mmax

∑
m=0

cnm(t)(θIPP − θ0)
n(SIPP − S0)

m (2.10)

where

θIPP, SIPP, t are the geographic latitude, the Sun-fixed longitude at the IPP, and time, respectively(9),

θ0, S0 denote the geographic latitude and the Sun-fixed longitude of the origin of the Taylor series
expansion,

n, m are the degree values of the Taylor series expansion in geographic latitude and Sun-fixed
longitude, respectively,

nmax, mmax are the maximum degree values of the Taylor series expansion in geographic latitude and
Sun-fixed longitude, respectively(10),

cnm stands for the unknown coefficients of the Taylor series expansion, i.e., the regional ionosphere
model parameters to be estimated (Dach et al., 2015; Natras et al., 2023a).

The choice of the maximum degree of Taylor series expansion for RIM development depends on
the distribution of the available data and the local rates of VTEC change. In practice, it is usually
performed at very low degree values (Magnet, 2019).

In recent years, state-of-the-art AI methods, in particular ML, have been used to identify and model
nonlinear relationships between space weather and ionosphere quantities to improve modeling and
forecasting of space weather processes, leading to a new generation of ionosphere models: ML-based
data-driven models. The techniques and procedures for developing ML-based ionosphere models in
this dissertation are discussed in Chapters 3 and 4.

2.7 Necessity of the Models

The ionosphere models in the form of GIMs, RIMs, or location/station-specific models can help in
GNSS data processing in the following cases:

1. If only single-frequency data are available.

2. When single-frequency positioning is applied using the broadcasted ionosphere model, which
can deviate from the actual ionosphere conditions.

3. When large ionosphere gradients occur, which can strongly affect differential positioning (see,
e.g., Abdullah et al. (2007)), and ground-based augmentation systems (see, e.g., Caamano et al.
(2021); Supriadi et al. (2022);

(9)For the calculation of θIPP and SIPP, see Equations (6) and (7) in P-I.
(10)nmax is set to 1 and mmax to 2; see Table 2 in P-I.
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4. To shorten the convergence time of carrier phase ambiguities, i.e., to enable fast integer ambiguity
resolution in PPP (see, e.g., Psychas et al. (2018); Zhang et al. (2022c)) and improve ambiguity
resolution for medium-length and long baselines in a network processing (see, e.g., Wanninger
(1995); Odijk (2000); Zhang et al. (2022a)).

5. For a small-scale and high-precision network with a maximum extent of about 10 km, it is
recommended to use only L1 observations(11) in combination with an ionosphere model, even
if dual-frequency data are available, in order to obtain precise solutions and eliminate or
significantly reduce the ionosphere-induced scale bias(12) under homogeneous and moderate
ionosphere conditions (see, e.g., Dach et al. (2015); Schaer et al. (1996) ).

6. To account for HOI corrections by providing an external ionosphere model. This is also relevant
when applying the ionosphere-free linear combination(13) (Dach et al., 2015).

7. During ionospheric scintillations, the f1 frequency experiences less scintillation effect than the
f2 frequency, and tracking the L2 signal becomes difficult. In this situation, combining the L1
signal with an ionosphere model may provide better results than dual-frequency positioning
(Kintner et al., 2007).

In addition to the need for GNSS applications, ionosphere models can contribute to the understanding
of the processes in Earth’s upper atmosphere and are a critical component in the study of space
weather processes and their effects on Earth since the ionosphere is a final link in the space weather
chain (Figure 1.2).

Chapter 3 details the learning algorithms and approaches developed, modified, and applied in this
dissertation for the ML-based regional and forecasting VTEC models, including the uncertainty
estimation. It concludes by presenting how the relative feature importance is calculated to provide an
insight into what the model has learned based on the important input variables.

(11)For very short baselines, 1-10 km, L1/L2-based solutions perform significantly better than L3 linear combination, although
using only L1 and ignoring L2 often leads to even better results (Dach et al., 2015).

(12)Using only single-frequency observations without an ionosphere model leads to ionosphere-induced scale bias resulting in
apparent contraction of the network, i.e., baseline shrinkage.

(13)After applying the L3 combinations, the HOI terms remain, which depend mainly on the degree of solar activity, geomagnetic
and ionosphere conditions, and can reach tens of centimeters during extreme space weather events (Hoque & Jakowski,
2008).
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3 Machine Learning for VTEC

3.1 Learning from VTEC-related Data

In this dissertation, supervised learning is used for ionosphere modeling and forecasting, where the
model "learns" from historical data, i.e., from given examples of input and output data that can be
understood as past experiences. The term learning here refers to finding an approximation function
that maps input variables to the output of VTEC (Figure 3.1). Thus, supervised learning can be viewed
as a function estimation problem (Friedman, 2001). The learning is performed by optimizing the
performance of a learning algorithm for the task of VTEC modeling and forecasting.

Figure 3.1: Supervised learning scheme for VTEC forecast.

A well-posed ML problem can be defined as by Mitchell (1997): "A computer program is said to learn
from experience E with respect to task T and a performance measure P, if its performance on T, as
measured by P improves with experience E". In the context of this work, the ML problem is identified
with the task of VTEC modeling and forecasting, where the experience is provided in the form of
training data, and an objective cost function defines a performance measure.

Let us define a training sample for the VTEC forecasting problem, which includes p input features in a
vector xi and an output yi = F(xi) for each of the N observations at time stamp i with i = 1, 2, . . . , N as
in Equation (3.1). The vectors xi can be interpreted as the rows of the N × P predictor matrix X = (xT

i ),
whereas the columns represent the input features x̃p with p = {0, 1, 2, . . . , P − 1}. The components xi,p
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of the N × 1 column vector x̃p = [x1,p, x2,p, . . . , xN,p]
T represent a time series of the pth input features.

X =




xT
1

xT
2

. . .
xT

N


 =




x0,1, x1,1, x2,1, . . . , xP−1,1
x0,2, x1,2, x2,2, . . . , xP−1,2

. . .
x0,N , x1,N , x2,N , . . . , xP−1,N


 =




DOY1, HOD1, R1, . . . , VTEC′′
1

DOY2, HOD2, R2, . . . , VTEC′′
2

. . .
DOYN , HODN , RN , . . . , VTEC′′

N


 , (3.1)

=
[
x̃0, x̃1, x̃2, . . . , x̃P−1

]
,

y = VTEC(i + t) =




y1
y2
. . .
yN


 =




VTEC1+t
VTEC2+t

. . .
VTECN+t


 ,

where t stands for values of a forecast horizon, with t = 1 for the 1-hour forecast in P-II, t = 24 for
the 24-hour forecast in P-II, P-III, CP-II, and t also includes {1/4, 3, 6} for the 15-minute, 3-hour and
6-hour forecasts, respectively, in Section 5.4. For abbreviations in (3.1), see Table 3.1. Note that yi
refers to the VTEC for a single forecast horizon i + t. However, yi can be modified to consider multiple
forecast horizons simultaneously, which was not done in this work. Exponential Moving Average
(EMA) in Table 3.1 gives more weight and, therefore, more importance to the most recent data points,
so that the most recent data have more influence than the oldest, and can be formulated as in Equation
(4.1). d stands for days and takes the values d = {1, 4, 7}.

The learning task for VTEC forecasting can be formulated as follows: given the values of an input
vector xi the goal is to find an approximation F̂(xi) of the function F(xi) that maps the input xi to the
output yi, and estimates ŷi as

yi + ei = ŷi = V̂TEC(i+t) = F̂(xi) (3.2)

xi = [DoYi, HODi, Ri, F10.7i, SWi, Bzi, Dsti, Kpi, AEi,

VTECi, VTECEMA(30)i, VTECEMA(4)i, VTEC′
i , VTEC′′

i ]
T ,

where ei is an error. F̂(·) refers to the approximation function of the nonlinear relationship between the
VTEC output and the input vector consisting of solar, interplanetary and geomagnetic indices, as well
as the previous VTEC values, defined in P-II. This function is unknown and is therefore approximated
by optimizing learning algorithms for the task of VTEC forecasting.

A general formulation of the approximation function can be expressed using a series expansion as

ŷi = F̂(xi; {βm, γγγm}M
1 ) =

M

∑
m=1

βmh(xi; γγγm), (3.3)

where βm with m = {1, 2, ..., M} are the expansion coefficients and h(xi; γγγm) are a suitable set of basis
functions of the input vector xi parametrized by a set of coefficients γγγ. They allow a more flexible
representation for F(x). Traditional examples are polynomial and trigonometric expansions. An
example of nonlinear expansions is the sigmoid function, often used in ANN. For example, for the
single hidden layer neural network, it is h(xi; γγγ) = σ(γ0 + γT

1 xi), where σ(.) is the sigmoid function
formulated in (3.25) and γγγ parametrizes the linear combination of the input variables. In a decision
tree algorithm, h(xi; γγγm) represents a small tree, where γγγm parameterizes the splitting variables, the
splitting point and the results at the terminal nodes. The function h(xi; γγγm) is also called the "base
learner" (Friedman, 2001), and the Equation (3.3) is the basis of many ML methods.

Using prepared training samples of input features and output as defined in (3.1), an approximation
F̂(xi) is obtained by minimizing the objective cost function

Cost =
1
N

N

∑
i=1

L(yi, F̂(xi)), (3.4)
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Table 3.1: Overview of input and output data for ML-based VTEC models.

Paper / Input Output
Diss. Section
P-I (i) (i)
1-hour Regional ionosphere coefficients
data Latitude, Longitude
sampling Hour of Day (HoD) VTEC

Solar radio flux F10.7 index
GMF Dst index
GMF Kp·10 index

P-II (i) (i + 1 h, i + 24 h)
1-hour Day of Year (DoY)
data HoD
sampling Sunspot number (Sn/R)

F10.7 index VTEC
Solar Wind Speed (SWS)
Interplanetary Magnetic Field (IMF) Bz index
GMF Dst index
GMF Kp·10 index
AE index
VTEC
VTEC EMA over previous 30 days

(
VTECEMA(30)

)

VTEC EMA over previous 4 days
(

VTECEMA(4)

)

First VTEC derivative (VTEC′)
Second VTEC derivative (VTEC′′)

P-III (i) (i + 24 h)
1-hour as in P-II VTEC
data σ / Confidence interval
sampling
Sec. 5.4 {i - d · 24 h, ..., i − 30 min, i − 15 min, i} (i + 15 min, i + 1 h

i + 3 h, i + 6 h, i + 24 h)
15-minute GMF SYM/H index VTEC
data VTEC 95% confidence interval
sampling

(i) (i + 15 min, i + 1 h
i + 3 h, i + 6 h, i + 24 h)

GMF SYM/H index
VTEC
VTECEMA(30) VTEC
VTECEMA(4) 95% confidence interval
VTEC′

VTEC′′

PROBA2 LYRA solar data
Geostationary Operational Environmental Satellite
(GOES)
Lyman-alpha (Ly-α) solar data

39



3.2. VTEC-ADAPTED LEARNING ALGORITHMS CHAPTER 3. MACHINE LEARNING FOR VTEC

which represents the loss function L averaged over the training data. The loss function used in P-I,
P-II, and partly in P-III is the squared error ei

2 (1)

L(yi, F̂(xi)) = e2
i = (yi − ŷi)

2. (3.5)

Substituting (3.5) into (3.4), the resulting objective cost is the Mean Squared Error (MSE). In this way,
the function that describes the input-output relationship is modified as a response to differences
between the original yi and generated output ŷi. This represents learning by examples commonly
referred to as learning or training. The ability of a model to make predictions for new data not seen
during training is called generalization. By learning from ionosphere and space weather data, we aim
to build a model that approximates VTEC close enough to real values, can generalize, and is applicable
to data likely to be encountered in practice.

3.2 VTEC-Adapted Learning Algorithms

Learning approaches for VTEC modeling and forecasting developed in this dissertation and discussed
in the publications are summarized in Table 3.2. The learning algorithms are ordered by complexity,
i.e., from a simple decision tree (item 1), moderately complex ensemble learning algorithms (items 2
- 5), and more complex ensemble modeling (items 6 - 7), to highly complex neural networks (items
8 - 10). They are explained in a similar order in the dissertation by first discussing ML solutions
that provide a single VTEC output for each input observation (Sections 3.2.1 to 3.2.5), and then ML
solutions for probabilistic VTEC output (Sections 3.3).

Decision tree-based algorithms are conceptually simple but are powerful learning techniques that can
be easily adapted to solve both linear and nonlinear modeling problems in either classification or
regression tasks. In this thesis, several tree-based learning algorithms have been applied, namely the
Regression Decision Tree and ensemble learning such as Random Forest, Gradient Boosting (GBoost),
and Adaptive Boosting (AdaBoost). Decision trees can handle mixed discrete and continuous input
variables, perform automatic selection of input variables, are relatively robust to outliers, and can
work with both small and large data sets. A single tree is simple and easy to interpret but has lower
accuracy. However, by combining a large number of trees into an ensemble, the accuracy can be
improved significantly, but this comes with a loss of some interpretation ability (Hastie et al., 2009).
Thus, ensemble learning aims to combine the predictions of multiple simple models or base learners,
such as a decision tree, to improve generalization and robustness.

ANN is a state-of-the-art technique with widespread applications in many fields today. Inspired by
networks of biological neurons, the central idea of ANNs is to extract linear combinations of the input
variables as derived features and then model the target output as a nonlinear function of these features
(Hastie et al., 2009). ANNs can handle extensive and high-dimensional data and solve highly complex
tasks but are generally overparameterized.

3.2.1 Decision Tree

Decision trees can be classified according to the type of output variables as classification trees, i.e., trees
with categorical output, and regression trees, i.e., trees with numerical output. Within this study, the
regression tree was grown on the training data using recursive binary splitting. A small regression tree
with a depth of 3 is shown in Figure 3.2 for ease of illustration. There, the tree for VTEC nowcasting
was grown using time information, solar and geomagnetic indices as input, and VTEC as output.

(1)Other loss functions used in this work are the quantile loss (Section 3.3.3) and the negative-log likelihood loss (Section 3.3.4),
which are used to quantify uncertainties and provide probabilistic VTEC forecasts.
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Each regression tree model can be formally expressed as

T(X; Θ) =
J

∑
j=1

γj(X ∈ Rj) (3.6)

with a set of parameters Θ = {γj, Rj}J
j=1. {Rj}J

1 are disjoint regions that collectively cover the space
of all joint values of the input variables X. j = 1, 2, ..., J stands for the number of distinct and non-
overlapping regions {R1,R2,. . . ,RJ}. The regions represent the nodes in Figure 3.2. The parameters of a
single tree are the coefficients {γj}J

1 and the quantities that define the boundaries of the regions {Rj}J
1:

the split variables x̂t with t ∈ {0, 1, 2, ..., J − 1}, and the values of the split variables, called split points,
s, that split the nodes of the tree. Since the regions are disjoint, Equation (3.6) is equal to

T(X) = γj. (3.7)

Figure 3.2: A small decision tree with a maximum depth of three for VTEC nowcast at 10°E 10°N. The
input features x̃p are denoted by indices 0, 1, and 3 corresponding to DoY, HoD and F10.7,
respectively. Since the tree is small, only input features with the largest impact on VTEC
are considered. A larger tree would increase the number of input features considered and
the complexity of the interactions modeled. The color shading of the nodes corresponds to
the magnitude of the VTEC output. Nodes with a larger VTEC are colored darker, while
nodes with a smaller VTEC are colored brighter. (Taken from P-II)

The approach begins at the top of the tree, called the root node, as presented in Figure 3.2. At this point,
all observations belong to a single region R. The root node contains 14,036 observation samples. The
mean VTEC value γ of all observations within the region R is 17.642 TECU. The decision splitting in the
root node is given as x̃1 ≤ 6.5, which represents the split point s, while input variable x̃1, representing
HoD, is the split variable of the region R. The input space is then divided into two distinct and
non-overlapping regions R1, where the condition is True, i.e., x̃1 ≤ 6.5, and R2, where the condition is
False, i.e., x̃1 > 6.5. Therefore, considering a split variable x̂t = x̃p with p ∈ {1, 2, . . . , P − 1} and split
point s, two regions can be defined, based on a decision splitting, as

R1(p, s) = {X | x̃p ≤ s}, R2(p, s) = {X | x̃p > s} (3.8)

(Hastie et al., 2009). The split variable x̃p and split point s are found in a way to solve

min
p,s

[min
γ1

∑
xp,i∈R1(p,s)

(yi − γi)
2 + min

γ2
∑

xp,i∈R2(p,s)
(yi − γi)

2], (3.9)
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and the inner minimization is solved by

γ1 =
1
N ∑

xi∈R1(p,s)
yi, γ2 =

1
N ∑

xi∈R2(p,s)
yi. (3.10)

The procedure continues further down the tree so that the input space, which covers all the joint values
of the predictor variables, is divided into J distinct and non-overlapping regions {R1,R2,. . . ,RJ}. This
means that the space of the input variables is successively split, i.e., a node is partitioned into two
subnodes or regions further down the tree. A sub-node that is subdivided into further sub-nodes is
called a decision node. The values in each rectangle in Figure 3.2 represent the mean VTEC output γj
of the yi falling in the region Rj as in Equation (3.10). A tree stops growing when a node has fewer
than the minimum number of observations required for the split or when it reaches the maximum
depth of the tree, if specified. This node represents the terminal node or leaf. As can be seen, a
decision tree is a simple and interpretable method, easily visualized by a two-dimensional graph, and
is an example of a white-box model.

3.2.2 Random Forest

Random Forest (Breiman, 2001) represents a modification of the so-called bagging or bootstrap aggre-
gation technique, where a large collection of decorrelated trees is created and averaged (Figure 3.3).
When building each tree, a random sample of v input variables is considered as split candidates from a
complete set of P input features. As the VTEC time series forecasting is performed, each new training
set is drawn from the original training set without replacement, as opposed to the standard Random
Forest procedure with replacement. Thus, a single regression tree Tb for b = {1, 2, . . . , B} for VTEC
forecasting is grown by recursively repeating the following steps for each tree node until the minimum
node size is reached:

1. Select a random sample of v input variables from the full set of P input variables;

2. Find the best splitting variable and split point among the v input variables;

3. Split the node into two subnodes.

The procedure is applied to all B trees. The function can be expressed as an average of all B trees

V̂TEC(i+t) = F̂(xi) =
1
B

B

∑
b=1

T(xi; Θb), (3.11)

where Θb characterizes the bth tree in terms of split variables, split points at each splitting node, and
terminal node values of VTEC. Breiman (2001) demonstrated that randomness and diversity in tree
construction lead to a lower generalization error and a model with reduced variance.

3.2.3 Adaptive and Gradient Boosting

The motivation for developing boosting was to combine the outputs of various base learners such
as an J-node tree to produce a powerful "committee" (Breiman et al., 1984). In the boosting method,
the trees are grown sequentially using the information from previously grown trees with modified
versions of the training data (Figure 3.3).

Each boosted tree can be expressed as a sum of M trees

FM(xi) =
M

∑
m=1

T(xi; Θm), (3.12)
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Figure 3.3: Diagrams of bagging (Random Forest) and boosting (AdaBoost and GBoost) methods.
(Source: P-II)
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where Θm = {γjm , Rjm
}Jm

jm=1 according to Equation (3.6). The final model can be expressed as a sum of
such trees

V̂TEC(i+t) = F̂(xi) = FM(xi) = FM−1(xi) + γjM (xi ∈ RjM ), (3.13)

where FM−1(xi) represents the model consisting of M − 1 trees, while the right-hand side of Equation
(3.13) represents the current Mth tree.

At each step, the following should be solved

Θ̂m = arg min
Θm

N

∑
i=1

L(yi, Fm−1(xi) + T(xi; Θm)), (3.14)

where L is the loss function. Given the region Rjm , the optimal constants γjm in each region can be
found as

γ̂jm = arg min
γjm

∑
xi∈Rjm

L(yi, Fm−1(xi) + γjm). (3.15)

In Adaptive Boosting (AdaBoost) (Freund & Schapire, 1997), the data are modified by applying
weights {w1, w2, . . . , wN} to each of the training example/pairs (xi, yi). In the first step, m = 1,
all weights are initialized to wi = 1

N , i.e., the data are equally weighted. For each successive
step, m ∈ {2, 3, . . . , M}, the weights are modified individually, and the training is repeated using
the weighted observations. More specifically, at steps m ∈ {2, 3, . . . , M}, the weights increase for
the wrongly predicted observations in the previous step, while the weights for correctly predicted
observations decrease. Therefore, observations that are difficult to predict receive an increasing
attention during training as the iterations proceed. In the end, the weighted predictions from all trees,
i.e., steps, are combined to produce the final model output, the VTEC forecast, as in Equation (3.13).

Gradient boosting (GBoost) offers a generalization of boosting to an arbitrary differentiable objective
function in Equation (3.5). A tree is trained on the original training data in the first step. Then the
negative gradient is computed as

−gim = −[
∂L

∂F(xi)
] F=Fm−1 . (3.16)

For the squared error loss, the negative gradient represents the residual between the original and the
estimated output −gim = yi − Fm−1(xi). For each successive iteration m ∈ {2, . . . , M}, a regression
tree is fitted to the residuals gim from the previous iteration within terminal regions Rjm . Afterwards,
the function is updated as in Equation (3.13). XGBoost(2) (Chen & Guestrin, 2016) is an optimized
GBoost algorithm that applies the shrinkage technique as a regularization strategy to avoid overfitting
a model. This is implemented by scaling the contribution of each tree by a factor 0 ≤ ν < 1 in (3.12) as

Fm(xi) = Fm−1(xi) + ν ·
Jm

∑
jm=1

γjm(xi ∈ Rjm), (3.17)

where the parameter ν represents the learning rate of the boosting procedure.

Boosting approaches have proven to work also on small data sets with structured input data (Duan
et al., 2020) and to be a powerful winning method in many data science competitions (Chen & Guestrin,
2016). The main reason is that it can be seen as a form of regularization that helps prevent overfitting
by eliminating irrelevant features.

(2)In P-II it is referred to as XGB, while in P-III it is referred to as GB and GBoost. All GBoost VTEC models developed in this
thesis use the shrinkage technique.
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3.2.4 Ensemble Meta-Estimator

The idea behind ensemble modeling in this work is to combine multiple VTEC models that use either
different learning algorithms or different training data sets, or both. An ensemble meta-estimator then
aggregates the results of each ensemble member and combines them into a final output. This method
is helpful for a set of various models to compensate for their individual weaknesses and create a single
model with improved generalization ability.

Voting Regressor (VR) in P-II stands for the VTEC ensemble meta-estimator that incorporates multiple
ML-based VTEC models with different ensemble learning, namely Random Forest, AdaBoost, and
GBoost form the VR1 model as shown in Figure 3.4, while Random Forest and GBoost form the
VR2 model (see Table 3 in P-II). Subsequently, the individual VTEC results across all models are
averaged to produce a final VTEC forecast. In P-III, the ensemble meta-estimator is referred to as
a Super-Ensemble (SE), which combines various ML-based VTEC models that use both different
ensemble learning algorithms and different data sets. Therefore, the main difference between VR and

Figure 3.4: Overview of the development of two ensemble meta-estimators: VR1 (left) and SE (right).

SE approaches developed in this dissertation is that VR combines VTEC models trained on the same
data set, while SE combines VTEC models trained on altered data set and is further used to quantify
the uncertainty propagated through an ensemble. For a detailed description of ensemble modeling to
quantify uncertainty, see Section 3.3.2.

3.2.5 Artificial Neural Network

The main principle of the ANN learning method is to extract linear combinations of the input variables
as derived features and then model the target output as a nonlinear function of these features. The
ANN usually consists of an input layer with input variables, an output layer with an output value, and
one or more layers in between. These layers in the mid of the network are called hidden layers because
they are not directly observed. They contain hidden neurons that model nonlinear combinations of
the original input variables by computing the derived hidden features. These derived features can
be viewed as a series expansion of the original input X, with the parameters of the basis functions
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learned from the data. The parameter or weight matrices can be defined as follows

W =




W(1)

W(2)

. . .
W(K−1)


 and W(k−1) =




w(k−1)T

1

w(k−1)T

2
. . .

wSL
(k−1)T

k



=




w(k−1)
1,0 , w(k−1)

1,1 , . . . , w(k−1)
1,PLk−1

w(k−1)
2,0 , w(k−1)

2,1 , . . . , w(k−1)
2,PLk−1

. . .
w(k−1)

SLk ,0 , w(k−1)
SLk ,1 , . . . , w(k−1)

SLk ,PLk−1




, (3.18)

where the matrix W contains all weights in the network. w0 is the bias. W(k−1) is the weight
matrix assigned to neurons from the previous layer (k − 1) containing PLk−1 neurons to estimate
the values of SLk neurons in the next layer (k) with k ∈ {2, 3, . . . , K}, slk ∈ {1, 2, . . . , SLk} and
plk−1 ∈ {0, 1, . . . , PLk−1}.

The linear model that consists of an input layer and an output layer given a vector of input xi and
weights w(1)

slk ,plk−1
with SLk = 1 for the single output neuron can be expressed as

yi + ei = ŷi = F̂(xi) =
PLk−1

∑
plk−1=0

w(1)
1,plk−1

· xplk−1,i = q(w(1)T

1 · xi), (3.19)

where q is the activation function, which in this case is linear. In the input layer, the neurons plk−1 are
equal to the input features p in Equation (3.1). In the matrix X in (3.1), an element x0,i = 1 is added in
each row. This is convenient to include because of the bias term wslk ,0 to obtain the above equation
in vector form as a scalar product. The weights are determined in the training phase using the least
squares method to minimize the sum of the squares of the errors ei.

In a fully feed-forward connected network, all neurons in one layer are connected to all neurons
in the next layer, also known as a MultiLayer Perceptron (MLP) network. A feed-forward network
means that neurons are connected in one direction from the input layer to the output layer so that
information is propagated forward from one layer to the next, as shown in Figure 3.5. MLPs are
universal approximators, i.e., they can approximate any continuous function if there are sufficient
many hidden neurons and layers to any desired level of accuracy (Hornik, 1991).

The number of neurons in the first layer equals the length of the vector xp. The neurons in each layer

can be denoted as activation neuron vector a(k)i with k = {1, . . . , K}. The input layer can be expressed

as a(1)i = xi. Hidden layers propagate the derived features from a(2)i to a(K−1)
i as shown in Figure 3.5.

They create a nonlinear mapping between the input variables and the output of the network using a
nonlinear activation function as depicted in Figure 3.6. The last layer provides the output ŷi = a(K)i .
The activation neurons in the hidden layer can be calculated as

a(k)i = q(W(k−1)T · a(k−1)
i ), (3.20)

The network output ŷi is calculated as

ŷi = a(K)i = q(W(K−1)T · a(K−1)
i ). (3.21)

In the hidden layer, a nonlinear activation function is used. In the final layer, a linear activation
function is common for quantitative output. Afterward, backpropagation is applied to backpropagate
the error from the output layer to the input layer and to adjust the weights of the ANN using an
optimization algorithm to minimize the loss in (3.5).

Applying Equation (3.20) to the example shown in Figure 3.5, the first and last neuron in the first
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Figure 3.5: Illustration of an ANN architecture with an input layer with three neurons, two hidden
layers with four neurons each, and an output layer with one neuron. Note: The bias
neuron in the input and hidden layers is not shown in the diagram but is included in the
computation.

hidden layer can be estimated as follows

a(2)1,i = q
(

w(1)
1,0 · x0,i + w(1)

1,1 · x1,i + w(1)
1,2 · x2,i + w(1)

1,3 · x3,i

)
= q

(
3

∑
pl1=0

w(1)
1,pl1

· xpl1,i

)
= q

(
w(1)T

1 · xi

)
= q

(
w(1)T

1 · a(1)i

)

a(2)4,i = q
(

w(1)
4,0 · x0,i + w(1)

4,1 · x1,i + w(1)
4,2 · x2,i + w(1)

4,3 · x3,i

)
= q

(
3

∑
pl1=0

w(1)
4,pl1

· xpl1,i

)
= q

(
w(1)T

4 · xi

)
= q

(
w(1)T

4 · a(1)i

)
,

and in the second hidden layer as follows

a(3)1,i = q
(

w(2)
1,0 · a(2)0,i + w(2)

1,1 · a(2)1,i + w(2)
1,2 · a(2)2,i + w(2)

1,3 · a(2)3,i + w(2)
1,4 · a(2)4,i

)
= q

(
4

∑
pl2=0

w(2)
1,pl2

· a(2)pl2,i

)
= q

(
w(2)T

1 · a(2)i

)

a(3)4,i = q
(

w(2)
4,0 · a(2)0,i + w(2)

4,1 · a(2)1,i + w(2)
4,2 · a(2)2,i + w(2)

4,3 · a(2)3,i + w(2)
4,4 · a(2)4,i

)
= q

(
4

∑
pl2=0

w(2)
4,pl2

· a(2)pl2,i

)
= q

(
w(2)T

4 · a(2)i

)
.

where PLk−1 is the number of neurons in the previous layer, including one bias neuron. A general
formulation for each neuron in the hidden or last layer can be defined as

a(k)slk ,i = q




PLk−1

∑
plk−1=0

w(k−1)
slk ,plk−1

· a(k−1)
plk−1−1,i


 = q

(
w(k−1)T

slk
· a(k−1)

i

)
. (3.22)
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Figure 3.6: Simple representation of ANN procedure for VTEC modeling and forecasting, starting
from the input layer with three input neurons plus a bias neuron and multiplying by the
associated weights, summarizing in the second step, applying the activation function in the
third step, and estimating the value of an activation neuron in the next (hidden) layer, or
the final output in the output layer in the last step. Two activation functions are illustrated:
Sigmoid (top) and Rectified Linear Unit (ReLU) (below).

If we assume the sigmoid function for the activation function q as in P-III, the basis functions above
are then sigmoid basis functions. Then the hidden neurons can be considered as a basis expansion of
the input xi, where the parameters of the basis functions are learned from the data. For the last layer,
the output of an ANN can be defined as the weighted sum of basis functions of all previous layers as

ŷi = a(4)i = q

(
4

∑
pl3=0

w(3)
1,pl3

· a(3)pl3,i

)

= q

(
4

∑
pl3=0

w(3)
1,pl3

· q

(
4

∑
pl2=0

w(2)
1,pl2

· a(2)pl2,i

))

= q

(
4

∑
pl3=0

w(3)
1,pl3

· q

(
4

∑
pl2=0

w(2)
1,pl2

· q

(
3

∑
pl1=0

w(1)
1,pl1

· a(1)pl1,i

)))

= q

(
4

∑
pl3=0

w(3)
1,pl3

· q

(
4

∑
pl2=0

w(2)
1,pl2

· q

(
3

∑
pl1=0

w(1)
1,pl1

· xpl1,i

)))
. (3.23)
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If a linear activation function is used in the last layer as in P-I, then the output of the ANN becomes

ŷi =
4

∑
pl3=0

w(3)
1,pl3

· q

(
4

∑
pl2=0

w(2)
1,pl2

· q

(
3

∑
pl1=0

w(1)
1,pl1

· xpl1,i

))
. (3.24)

The equations (3.22) to (3.24) show that each hidden layer and the output layer are modeled by means
of basis functions of the neurons of the previous layer. A single-layer feedforward neural network
with linear activation in the last layer can be viewed as an adaptive basis function (Hastie et al., 2009).
Therefore, basis functions are building blocks for complex functions to approximate the mapping
between input and output in ANN.

To implement the backpropagation, an activation function must be differentiable to compute the
derivatives of the loss function with respect to the network weights and optimize the weights using
an optimization technique to reduce the network errors. In a smaller ANN, the sigmoid function is
usually used for the activation function, defined as

q(z) = σ(z) =
1

1 + e−z (3.25)

while in large/deep neural networks, the ReLU function is more common, formulated as

q(z) = ReLU(z) =
{

z, z > 0
0, otherwise

. (3.26)

In this work, the ReLU function is used in P-I for an ANN-MLP model with 32 input neurons, three
hidden layers with ten neurons each, and an output layer with one neuron. The sigmoid function is
used in P-III for the Bayesian ANN model with 14 input neurons, one hidden layer with 32 neurons,
and one output layer with one output neuron. ReLU is a computationally much simpler and faster
function that significantly reduces both training and evaluation time, which can be helpful for large
networks with many neurons. When using the ReLU function, not all neurons are activated at the
same time, i.e., they are deactivated when the output of the linear transformation is zero. On the other
hand, sigmoid activation requires an exponent to be calculated, which takes more time. Moreover, in
very deep networks, a saturation of the activation function can be a problem known as the vanishing
gradient problem. The ReLU function is less easy to saturate than the sigmoid activation function
(Sharma et al., 2020). It is also observed that the models trained with ReLU converge faster.

The most commonly used optimization algorithm in ANN is the Stochastic Gradient Descent (SGD)
(Bottou, 1991, 2004, 2012). Unlike standard gradient descent, which is applied to all training data
to update the weights once, SGD updates the weights after each data subset in each iteration, also
called a batch, according to the gradient of the cost function for the current example. The batch size
controls the number of training samples used for a single gradient update, i.e., an update of the model
weights. The number of epochs corresponds to the complete training data set passing through the
network, i.e., when an entire data set is passed forward and backward through the ANN. The SGD
algorithm is shown to be faster and more reliable in reaching minima than the standard gradient
descent and converges even when the loss function is not differentiable everywhere (Bottou, 1991).
The basic principle of SGD is to update the weights stepwise, controlled by the learning rate along a
preferred direction that is a function of the previous gradient evaluations. The weights are updated as

W(k)
new = W(k)

old − α · ∂Cost

∂W(k)
, (3.27)

where α is the learning rate, Cost is the objective cost function defined in (3.4), old represents the
values initialized in the first forward run of the ANN or the values from the previous backpropagation
iteration, while new are the values updated during the current ANN backpropagation. The learning
rate controls the size of the step that the gradient descent takes towards the minimum (Figure 3.7).
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Figure 3.7: Left: Convergence to the minimum cost if an appropriate size of learning rate is used.
Right: The effects of different learning rates versus ANN epochs. When the learning rate
is low, the cost decays slowly and linearly. At high learning rates, the cost looks more
exponential and can even oscillate between convergence and divergence. With an optimal
learning rate, the cost converges at a reasonable speed and reaches the minimum.

Consequently, it determines how much the weights will be adjusted with respect to the objective cost
gradient, i.e., how fast they will move toward the optimal ones. When α is too small, the gradient
descent converges slowly. On the other hand, if α is too large, the gradient descent can overshoot
the minimum. So it may fail to converge or even diverge. If the learning rate is low enough, the
algorithm converges to the minimum. α is usually kept constant. Convergence will also occur with a
fixed learning rate because the gradient descent automatically takes smaller steps as we approach the
minimum, i.e., the slope is less steep as the derivatives get closer to zero. The learning rate for the
ANN-based VTEC models in P-I and P-III is found by computing the objective cost function for a
range of learning rate values and choosing the one for which the minimum cost is achieved (Figure 3.8,
left). The convergence of the objective cost with the chosen learning rate is then checked with training

Figure 3.8: Left: The cost with respect to different learning rate sizes for the ANN-based VTEC model
in P-I. Right: The cost over time for training and cross-validation data for the same model.
The cross-validation cost follows the training cost. The gap between the training and
cross-validation costs indicates the extent of overfitting. The costs are reported in TECU.

and cross-validation data sets while increasing the number of epochs (Figure 3.8, right). The training
cost converges uniformly with increasing epoch number, while cross-validation cost converges to a
specific epoch value, here up to 300 epochs. The slight divergence thereafter is a consequence of the
variance increase as the model is better fitted to the data (see Section 4.3.1).
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3.3 Probabilistic VTEC Forecasting

This section introduces methods for representing uncertainty and developing probabilistic VTEC
forecasting. The main goal of producing a VTEC forecast in a probabilistic framework is to provide
information on how reliable the model results are and to quantify the corresponding uncertainties.

3.3.1 Classification of Uncertainty

The uncertainty can be classified into three categories (P-III):

• Model parameter uncertainty occurs due to incomplete knowledge, which can be due to a lack
of training data, or poor information in training data. This is the deterministic or systematic
part of uncertainty, which can be reduced with more knowledge about the system, e.g., by
adding more information-rich data. This uncertainty is often referred to as epistemic in the ML
literature.

• Data uncertainty: it is related to uncertainty in measurements due to the noise inherent in the
data or the stochastic nature of the process generating the data. This is the stochastic or random
part of uncertainty and, therefore irreducible. In the ML literature, it is also known as aleatoric
uncertainty.

• Uncertainty associated with the limitation of the learning models, i.e., the approximation of the
target function. For example, model selection involves a certain choice of free parameters/hy-
perparameters, and it is not possible to fully explore the hyperparameter space. Thus, it comes
down to a trade-off between the complexity of the model and its ability to generalize to unseen
data. Ultimately, the ML process consists of various steps of learning and approximating an
unknown mapping function from input to output, and the errors and uncertainties associated
with these steps may contribute to the uncertainty of the output.

This work focuses on estimating and evaluating model and data uncertainties, while the third type of
uncertainty is difficult to quantify. In the following Sections 3.3.2 to 3.3.4.1, various methods applied
in this dissertation for the probabilistic VTEC forecast with a 95% confidence interval are presented.

3.3.2 Ensemble Modeling

Ensemble modeling combines multiple diverse models to estimate an outcome using different algo-
rithms, data sets, or both. In this dissertation, the ensemble VTEC model aggregates the mean output
across all the base models, i.e., ensemble members, to produce a final VTEC forecast with reduced
error on previously unseen data. The model is referred to as SE as described by CP-II and P-III. The
developed SE model improves VTEC forecast compared to the single model within the ensemble by
averaging the results over a set of functions of well-performing ML models for VTEC forecast.

The developed SE model combines VTEC models based on learning algorithms of Random Forest
(Section 3.2.2), AdaBoost and GBoost (Section 3.2.3), each trained using three data sets with different
versions of input features and output. They are prepared from P-III data set in Table 3.1, here called
D-P-III, as:

1. Data set D-P-III;

2. Daily differences(3) for both input features and output;

(3)The idea behind computing the daily differences is to remove the dominant, regular daily VTEC variations so that a learning
algorithm is trained only on the remaining VTEC variations. In addition, differencing reduces temporal dependencies and
trends and stabilizes the mean of the data set, which can improve modeling.
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3. Input data combining the input features from D-P-III in item 1. and their daily differences from
item 2., while the output corresponds to the output from D-P-III in item 1.

As a result, nine ensemble member models are created within the SE for each selected VTEC grid
point. The randomness in the nine models is introduced by the learning algorithms and the data, i.e.,
by training the three algorithms mentioned above of the three data subsets individually.

The loss function used in all M = 9 ensemble member models is the squared error

Lm = e2
mi

= (yi − ŷmi )
2, (3.28)

where ŷmi is the VTEC forecast for each of the N observations at time i with i ∈ {1, 2, ..., N} from the
mth ensemble member with m ∈ {1, 2, ..., M}.

The ensemble approach can be viewed as an approximation of a distribution, and thus, its diversity can
be used as an indicator of the model parameter uncertainty (Hüllermeier & Waegeman, 2021). In this
case, the results of M independently trained base models are averaged, forming a joined distribution
p(y|X) as

p(y|X) = 1
M

M

∑
m=1

p(y|X, θm), (3.29)

where θ represents a set of model parameters. The ensemble output ŷi is estimated as the ensemble
mean µi

ŷi = µi =
1
M

M

∑
m=1

ŷmi , (3.30)

and the standard deviation of the ensemble members with respect to the ensemble mean is defined as

σi =

√√√√ 1
M

M

∑
m=1

(ŷmi − ŷi)2. (3.31)

The ensemble spread, i.e., the confidence interval, is represented in a probabilistic framework in terms
of lower bounds LB and upper bounds UB with 95% confidence as

UB = ŷi + 2σi, LB = ŷi − 2σi. (3.32)

3.3.3 Quantile Loss and Quantile Gradient Boosting

Quantile methods estimate the median and/or other quantiles of the response variable, in contrast to
the least squares method, which estimates the mean of the response variable. Quantile estimation is
integrated into the ML approach in this dissertation and in P-III by substituting the squared error
loss function from (3.5) with the error loss multiplied by selected quantile values as defined in (3.33).
This loss produces a parametric distribution shift, allowing a learning algorithm to learn a particular
quantile instead of the mean. More precisely, the quantile loss is obtained by multiplying quantile
values β by positive and negative residuals ei between the ground truth of the output variable yi and
the estimated output ŷi = F̂(xi) as

L(yi, F̂(xi)) =





β · ei if ei ≥ 0,

(β − 1) · ei if ei < 0

ei = yi − ŷi (3.33)

The quantile values of β are set to 0.025 and 0.975 for estimating the lower and upper confidence
bounds, respectively, to obtain a confidence interval of 95%. The mean quantile β = 0.50 provides the
median of the probabilistic VTEC forecast.
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The main properties of the quantile loss function according to the results in Chan (2021); Amell et al.
(2022); Tagasovska & Lopez-Paz (2019) can be summarized as follows

• It models heterogeneous variations in the objective distribution.

• It avoids the distribution assumption, which means that it can be used when the error distribu-
tion is not Gaussian.

• It can be easily combined with any learning algorithm by simply substituting its loss function.

• It can model data uncertainty.

P-III combines the quantile loss with the GBoost learning algorithm from Section 3.2.3, resulting in a
Quantile Gradient Boosting (QGB) VTEC model.

3.3.4 Bayesian Neural Network

The Bayesian Neural Network (BNN) represents a modification of an ANN in which probability
distributions of the network weights replace the deterministic/single value weights. The probability
distributions are used to model the uncertainty in the weights and consequently can be used to
estimate the uncertainty due to the model parameter uncertainty based on Bayes’ theorem. The
posterior parameters θ to be trained are the mean µ and the standard deviation σ of the posterior
weight distribution. The idea is to learn a distribution of the weights approximating the Bayesian
posterior distribution. The parameters θ can be learned by variational Bayesian inference facilitated
by a standard neural network backpropagation technique during the training process (Blundell et al.,
2015). This technique is called Bayes by Backprop.

Given a training data set D = (xi, yi) with i = 1, 2, ...N, the likelihood function p(D|w) can be
constructed, which is a function of the weights w (Blundell et al., 2015). Maximizing the likelihood
function yields the maximum likelihood estimate of w. The usual optimization objective in ML is to
minimize the negative log-likelihood. Multiplying the likelihood p(D|w) by a prior distribution p(w)
is proportional to the posterior distribution p(w|D) ∝ p(D|w)p(w) according to Bayes’ theorem (Koch,
2018). An analytical solution for the posterior p(w|D) in neural networks is not feasible. We can
approximate the true posterior with a variational distribution q(w|θ) of the function whose parameters
we want to estimate. This can be done by minimizing the Kullback-Leibler (KL) divergence between
q(w|θ) and the true posterior p(w|D).

KL divergence measures the dissimilarity of the variational probability distribution of the weights
q(w|θ) with the posterior probability distribution of the weights p(w|D). It is also called relative
entropy in probability and information theory (Murphy, 2012). For this problem, it can be defined as

KL[p(w|D)∥q(w|θ)] = p(w|D) · (log p(w|D)− log q(w|θ)) = p(w|D) · log
p(w|D)

q(w|θ) . (3.34)

Normally, the reverse KL divergence is used in the variational inference (Murphy, 2012), which is also
done here, and it is

KL(q(w|θ)∥p(w|D)) = q(w|θ) · log
q(w|θ)
p(w|D)

= q(w|θ) · log
q(w|θ)

p(w)p(D|w)

= q(w|θ) · log
q(w|θ)
p(w)

− log p(D|w)

= KL[q(w|θ)∥p(w)]− log p(D|w). (3.35)
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The idea behind variational inference is to choose an approximation q(w|θ) to the distribution and
then try to make this approximation as close as possible to the true posterior p(w|D). This reduces the
variational inference to an optimization problem, and from (3.35), the optimization objective function
can be defined as

Cost = − log p(D|w) + KL[q(w|θ)∥p(w)], (3.36)

which can be split into two parts: the left term on the right side corresponds to the negative log-
likelihood, and the right term on the right side is the KL divergence between the variational distribution
q(w|θ) and the prior p(w), which can also be seen as the regularization term (Blundell et al., 2015).
Here we assume a Gaussian distribution as in (3.39) and fixed data noise in (3.40), then the left term in
(3.36) corresponds to the standard MSE loss as in (3.5).

The prior weight distribution is defined as a Gaussian distribution with a mean µ = 0 and a diagonal
covariance with a standard deviation σ = 1. A sample of the weights w is obtained by randomly
sampling ϵ from N (0, 1), then scaling it by a standard deviation σ, and shifting it by a mean µ as

w = µ + σ · ϵ. (3.37)

For numerical stability, the network is parametrized with ρ instead of σ. ρ is transformed with the
so-called softplus activation function as

σ = log(1 + exp(ρ)) (3.38)

to ensure that σ is always non-negative (Blundell et al., 2015). The algorithm proceeds by sampling
from the variational posterior distribution, computing a forward pass through a network, and then
backpropagating through the model parameters to update them. The gradients are calculated with
respect to the mean and the standard deviation to update the previous distribution parameters
using the SGD optimization algorithm, similarly as in (3.27), except that here we use distributional
parameters σ and µ instead of deterministic weights.

Each time the model is run with the same input variables, a new set of parameters is sampled from
the distribution, and a result is produced. Running the model multiple times makes it possible to
examine how this affects the model results. For instance, running the model with 100 iterations result
in 100 ensemble members. If the results are consistent, it means that the model is confident. In this
dissertation and in P-III, the VTEC forecast is estimated as the mean of an ensemble of results from
100 iterations, while the 95% confidence interval is calculated as in (3.32).

The described BNN implementation is deterministic, i.e., it produces a single VTEC forecast for each
run, and the uncertainty is calculated from an ensemble of many iterations. The Bayesian approach to
neural network modeling aims to capture the model parameter uncertainty due to limited training
data. The BNN can be extended to a probabilistic implementation by enabling the model to output a
distribution described in the following section.

3.3.4.1 BNN including Data Uncertainty

To implement BNN in a probabilistic way, the normal distribution parameters, µ and σ, are modeled
as output. Usually, the observation noise is assumed to be fixed, as done in the BNN implementation
above. In this step, the noise will be data-dependent and learned as a function of the data. Therefore,
the Bayesian Neural Network including Data Uncertainty (BNN+D) will be able to capture also data
uncertainty due to irreducible noise in the data or due to the stochastic nature of the process of
generating the data.

As mentioned above, we assumed the Gaussian likelihood, parameterized by the mean and standard
deviation as

p(D|w) = l(y|µ, σ) =
1

σ
√

2π
e−

1
2 (

y−µ
σ )

2

. (3.39)
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The Negative Log-Likelihood (NLL) loss reads

L = − log l (yi|µ, σ)

= −
[

log
[

1
σ
√

2π

]
+ log

[
e−

1
2

(
yi−µ

σ

)2
]]

= −
[

log
1
σ
+ log

1√
2π

+

[
−1

2

(
yi − µ

σ

)2
· log(e)

]]

= −
[

log(1)− log(σ) + log(1)− log
√

2π +

[
−1

2
(yi − µ)2

σ2

]]

= −
[
− log(σ)− log

√
2π − 1

2
(yi − µ)2

σ2

]

= −
[
−1

2
· log(σ2)− 1

2
· log(2π)− 1

2
(yi − µ)2

σ2

]

=
1
2

[
log(σ2) + log(2π) +

(yi − µ)2

σ2

]

=
1
2

[
log(σ2) + C +

(yi − µ)2

σ2

]

≈ 1
2

[
log(σ2) +

(yi − µ)2

σ2

]
, (3.40)

where µ is the predicted mean and σ is the standard deviation of the output. C is a constant equal
to log(2π), which can be neglected. In this case, instead of the MSE loss in (3.36), the NLL loss in
(3.40), which accounts for the observation noise, is used to compute how likely the ground truth are
to deviate from the estimated distribution produced by the model. Also, the model can provide a
probability distribution as an output, i.e., µ and σ, instead of a single point estimate. To provide µ and
σ as the output of the VTEC probabilistic model, an output layer is created with two neurons: one for
the mean forecast output and one for the standard deviation output. The 95% confidence interval is
computed from the predictive standard deviation according to Equation (3.32).

3.4 VTEC Relative Feature Importance

It is often useful to provide information about the underlying relationships between the input variables
and the output of the model to improve the interpretation and understanding of what the model
has learned. In particular, this includes understanding the most influential input variables to the
approximation function F̂(X).

A decision tree-based method is used in this study to estimate the relative importance or contribution
of each input variable to the VTEC forecast. Let us define a decision tree with J terminal nodes and
J − 1 internal (non-terminal) nodes, e.g., the decision tree in Figure 3.9. The nodes of the tree are
partitioned during training by a particular split variable x̂t with t ∈ {0, 1, ..., J − 1}, and the value of
that variable s. Specifically, at each node t, one of the input variables x̃p is used as the split variable x̂t
to split the node into two subnodes, as described in 3.2.1.

The approach starts at the root node when all observations belong to a single region R, i.e., 17,488
observation samples in Figure 3.9. The mean VTEC of all observations within the region R is 10.34
TECU, and the squared error is 14 TECU. The decision split in the root node is given as x̃1 ≤ 6.5,
representing the split point, while the input variable x̃1, representing HoD, is the split variable of the
region R. The input space is then divided into two subregions: R1 (on the left, where the condition
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Figure 3.9: A decision tree of depth 3 for VTEC nowcast at 10°E 40°N. The input features used as split
variables consist of DoY, HoD, and F10.7 index. t enumerates the splitting nodes. Data
quantifies the percentage of data contained in each node relative to the total data set in
the root node. The percentage of the data in green is calculated relative to the data in the
"parent" node. A "parent" node is a node that is split into two "child" nodes, i.e., the right
and left subnodes. The color shading of the nodes from lighter to darker corresponds to
the size of the VTEC output from smaller to larger.

is true, i.e., x̃1 ≤ 6.5), and R2 (on the right, where the condition is False, i.e., x̃1 > 6.5). Therefore,
considering a splitting variable x̂t = x̃p and a split point s, two splitting regions are defined: R1 and
R2. The squared error loss is used to measure the improvement after the split.

The improvement after splitting a single region with the splitting variable x̃p can be calculated as the
importance of the splitting variable for that specific node as

impt(x̂t = x̃p) =
d(t) · SqE − (d1(t) · SqE1 + d2(t) · SqE2)

100%
, (3.41)

where d(t) represents 100% of the samples from the region R corresponding to node t, while d1(t) and
d2(t) are the percentages of the samples from d(t) that go into the left and right subnodes, respectively,
forming subregions R1 and R2. These percentages are shown in green in Figure 3.9. The term SqE
is the squared error in region R, SqE1 and SqE2 are squared errors in the subregions R1 and R2,
respectively. The term impt(x̂t = x̃p) represents the empirical improvement of the objective function
when x̃p is used as the splitting variable of node t in the tree, and it is calculated for each splitting
node in the tree.

The importance of the feature x̃p in the tree can be calculated as the summation of the importance in
each node where it is used as a splitting variable, weighted by the percentage of the data from the
entire data set as

ImpT(x̃p) =
∑J−1

t=0 impt(xt = x̃p) · D(T)t

100%
, (3.42)

where D(T)t is the percentage of data in node t relative to the entire training data set in the root node,
noted as data in Figure 3.9. The summation is performed over t internal nodes of the tree. ImpT(x̃p)
defines the importance of the input variable x̃p in a decision tree as the sum of the improvements in
minimizing the objective function as a result of using that variable for spliting a node multiplied by
the probability of using that node for new data sample.

The relative importance is calculated by dividing the importance of each feature in the tree by the sum
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of the importance of the features estimated for each node in Equation (3.41), expressed as

RelImpT(x̃p) =
ImpT(x̃p)

∑P−1
p=0 ∑J−1

t=0 impt(x̂t = x̃p)
. (3.43)

For a collection of decision trees {Tm}M
1 , Equation (3.43) can be generalized as the relative importance

averaged over all trees

RelImp(x̃p) =
1
M

M

∑
m=1

RelImpTm
(x̃p). (3.44)

In summary, the main components for calculating feature importance for a decision tree are: the
improvement of the objective cost function when x̃p is used as the splitting variable, the summation
over all nodes of the tree that use feature x̃p as the splitting variable, and the probability of using that
node for a sample data point, expressed as a percentage of the data in that node.

In the next part, the calculation of the relative feature importance for VTEC is demonstrated using the
example from Figure 3.9. Let us start from the root node. Firstly, we compute the improvement in the
loss after splitting the root node (t = 0) by the feature x̃1, i.e., HoD into two subnodes. Subsequently,
the improvement can also be calculated for other nodes (t = 1 and t = 2), where the feature x̃1 is again
used as a splitting variable. Starting from Equation (3.41), the improvements for each node t where x̃1
is used as the splitting point can be calculated as

imp0(x̂0 = x̃1) =
100% · 14.003 − (29.19% · 2.636 + 70.81% · 12.157)

100%
= 4.625

imp1(x̂1 = x̃1) =
100% · 2.636 − (85.72% · 1.815 + 14.28% · 4.716)

100%
= 0.407

imp2(x̂2 = x̃1) =
100% · 12.157 − (76.49% · 10.326 + 23.51% · 6.701)

100%
= 2.683

Similarly, the calculations can be performed for other nodes where the splitting variable is the feature
x̃0, i.e., DoY and the feature x̃2, i.e., F10.7, as

imp3(x̂3 = x̃0) =
100% · 1.815 − (54.31% · 1.846 + 45.69% · 1.451)

100%
= 0.150

imp6(x̂6 = x̃0) =
100% · 6.701 − (76.65% · 6.803 + 23.35% · 1.837)

100%
= 1.058

imp4(x̂4 = x̃2) =
100% · 4.716 − (48.42% · 2.688 + 54.58% · 4.565)

100%
= 0.923

imp5(x̂5 = x̃2) =
100% · 10.326 − (48.45% · 7.341 + 51.55% · 9.55)

100%
= 1.846

The importance ImpT of each input feature for the tree T in Figure 3.9 can be calculated according to
Equation (3.42) as

ImpT(x̃0) =
25.02% · 0.150 + 16.65% · 1.058

100%
= 0.214

ImpT(x̃1) =
100% · 4.625 + 29.19% · 0.407 + 70.81% · 2.683

100%
= 6.644

ImpT(x̃2) =
4.17% · 0.923 + 54.16% · 1.846

100%
= 1.038
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Finally, the relative importance of the features is computed, following Equation (3.43), as

RelImpT(x̃0) =
0.214

0.150 + 1.058 + 4.625 + 0.407 + 2.683 + 0.923 + 1.846
=

0.214
7.896

= 0.027

RelImpT(x̃1) =
6.644
7.896

= 0.841

RelImpT(x̃2) =
1.038
7.896

= 0.132

Figure 3.10 shows the numerical and graphical results of the feature importance calculation using the
Python scikit-learn library. The results are consistent with the calculation above.

Figure 3.10: Relative feature importance estimated with the library function f eature_importances_
from the library sklearn.tree.DecisionTreeRegressor. Since the tree is small, only three of
the six input features were considered for the growth of the tree.
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4 ML-VTEC Model Development

The ML-based VTEC model development is an iterative process. The workflow can be summarized
into four main phases, as shown in Figure 4.1:

1. Problem formulation and data acquisition;

2. Data exploration and preparation including feature engineering;

3. Model training and optimization;

4. Model evaluation and deployment.

Figure 4.1: The ML-based VTEC model development workflow begins with initial data selection,
feature engineering, and learning algorithm selection. The data and hyperparameters are
iteratively improved based on the cross-validation analysis. Once the process is complete,
the model is evaluated on new data and can be deployed. (adapted from CP-I).

The problem in this dissertation is defined and formulated in such a way that it can be solved using
ML and supervised learning techniques. The data needed for the problem is also defined and collected.
Other vital questions related to the data are: Is the data representative of the task, of high quality, and
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of sufficient size? The data should accurately reflect the real-world situation and be representative
of the ultimate goals of the modeling and forecasting. This dissertation addresses these questions as
much as possible before training a model.

The goal of data exploration and preparation in this dissertation is to analyze the data using visualiza-
tion and statistical methods, clean the data by finding missing values and outliers, remove duplicate
or irrelevant data, and prepare the data set for a learning algorithm. Feature engineering involves
transforming the raw data into suitable features that better represent the underlying problem, with
two main goals:

1. Preparation of an appropriate input data set compatible with the requirements of the modeling
problem and the learning algorithm, as discussed in Section 4.1.

2. Improve the performance of the ML models by properly selecting the input features, as discussed
in Sections 4.1.3, 4.1.4, and 5.6.

Data preparation is often the most time-consuming step in ML model development. In this dissertation,
the first attempt at model development uses initially cleaned data, and depending on the performance
of the model and problems encountered, the data are iteratively and systematically improved.

When building an ML model, it is necessary to decide which algorithms and model architecture to use.
In this dissertation, an initial model is trained, and the error analysis is used to improve and optimize
the model by tuning the hyperparameters, as explained in Section 4.3, and improving the data set in
terms of length, resolution, input feature selection, and so on. This process requires many iterations.

The developed models in this dissertation are evaluated at the end with data not used to build the
models to independently assess their accuracy. In the model implementation or deployment phase,
when the model is applied in real-time, the essential components are monitoring and maintaining the
model by tracking various metrics.

4.1 Data Acquisition and Preparation

The performance of an ML model is highly dependent on the data, and therefore the data should be
prepared and processed in a way that improves learning. To develop an ML-based VTEC model, it is
crucial to determine a combination of input and output data and perform data preprocessing.

4.1.1 VTEC Data

The VTEC values in P-II, P-III, CP-I and CP-II are extracted from the GIMs with hourly resolution
provided by CODE available in the Crustal Dynamics Data Information System (CDDIS) directory
of NASA’s archive of Space Geodesy data(1). VTEC values are prepared for three grid points at 10°E
70°N, 10°E 40°N, and 10°E 10°N, reflecting high-, mid- and low-latitude ionosphere regions.

For the high-resolution ML-based VTEC models in Sections 5.4 and 5.5, the VTEC data are obtained
from the GIM UQRG generated at UPC-IonSAT at 15-minute resolution by combining tomography
based on a multilayer voxel model with kriging interpolation (Hernández-Pajares et al., 2017; Roma-
Dollase et al., 2018). VTEC values are extracted at 10° longitude, and 40°, 45°, 50°, 55°, 60° latitude.

In P-I, VTEC data are estimated from observations of permanent GNSS stations belonging to the CORS
and the EPN (Figure 4.2). The RIM IONOWB for the region of the Western Balkans is developed
using GPS observations from the following CORS networks: the Albanian GNSS Permanent Stations

(1)https://cddis.nasa.gov/archive/gnss/products/ionex

62

https://cddis.nasa.gov/archive/gnss/products/ionex


CHAPTER 4. ML-VTEC MODEL DEVELOPMENT 4.1. DATA ACQUISITION AND PREPARATION

Figure 4.2: The locations of the CORS (blue dots) and the EPN (red dots) dual-frequency stations
whose observations are used for regional VTEC modeling. The names of the stations used
for the RIMs validation are indicated on the map. (adapted from P-I)

(AlbGNSS), the Bosnia and Herzegovina Positioning Service (BIHPOS), the Croatian positioning
system (CROPOS), the Macedonian positioning system (MAKPOS), and the Slovenia Geodesy Naviga-
tion Location (SIGNAL). In addition, observations from eight EPN stations in this region are used.
Observations from the CORS networks in Serbia, Kosovo, and Montenegro were unavailable for
the study. The network selected for the RIM IONOWB includes about 80 CORS and EPN stations
ranging from about 40°N to 47°N and 13°E to 23°E. The GNSS data are processed in the Bernese
GNSS software version v.5.2 (Dach et al., 2015)(2). The ionosphere mapping is performed at the
undifferenced/zero-difference level by analyzing the geometry-free linear combination L4 of phase
observations(3) formed by subtracting observational data at different frequencies as in Equation (2.5).
This means that all frequency-independent effects, such as the satellite-receiver geometrical range,
clock errors, and tropospheric delay, are eliminated, while the ionospheric range delay remains. Thus,
the L4 linear combination is used to estimate VTEC multiplied by the mapping function, and the
modeling is done by Taylor series expansion in (2.10).

In CP-III, VTEC values are estimated with a time sampling of 30 seconds from GNSS (GPS + GLONASS)
observations of the EPN station SRJV at 43.87°, 18.41°, and downloaded from the EPN File Transfer
Protocol (FTP) server: https://\gls{epn}cb.eu/ftp/obs/. The calibration method of Ciraolo et al.
(2007) is applied to the carrier phase measurements.

(2)Details of the processing steps in the Bernese GNSS Software are described in Section 2.2 of P-I.
(3)The carrier phases are not fitted to code observations, but only phase observations are utilized in P-I.
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4.1.2 Space Weather Data

To model solar-terrestrial processes and the effects of solar events and geomagnetic storms on the
ionosphere, solar and geomagnetic activity data are also entered as input variables into ML-based
VTEC models.

Data of solar activity, solar wind, the IMF, and the GMF fields are part of the NASA/Goddard Space
Flight Center, USA (GSFC) OMNI data set and can be obtained from OMNI-Web. The low-resolution
OMNI data used in P-II, P-III, CP-I and CP-II are available at https://omniweb.gsfc.nasa.gov/
form/dx1.ht\gls{ml}. The high-resolution OMNI data used in Section 5.4 and 5.5 are available at
https://omniweb.gsfc.nasa.gov/form/omnimin.ht\gls{ml}. The low-resolution OMNI-Web data
used consist of sunspot number R (daily resolution), F10.7 solar radio flux (daily resolution), solar
wind plasma speed (1-hour resolution), the IMF Bz index (1-hour resolution), the GMF Dst index
(1-hour resolution), the GMF Kp index (3-hour resolution), the AE index (1-hour resolution), as shown
in Table 3.1. From the high-resolution OmniWeb data, the GMF SYM/H index is used in this work. It
measures the intensity of the storm-time ring current similar to the Dst index, but with the advantage
of 1-minute resolution (Wanliss & Showalter, 2006b).

In P-II, P-III, CP-I, and CP-II, the data are prepared as 1-hour time samples. A few missing values are
replaced by the average of a previous and subsequent value. Data with a lower time resolution, such
as the F10.7 index, R, and Kp index, are interpolated with the previous values, as this technique is also
implemented in the OMNI-Web to create 1-hour samples. More specifically, the value of the Kp index
at a given time is used for the next two hours until the next value of Kp is available.

To model the solar activity with high-resolution data, two types of solar irradiance observations are
tested. One represents observations from the LYRA instrument on board the PROBA2 (PRoject for
Onboard Autonomy) satellite, which measures solar soft Xray + EUV wavelengths. The other is Ly-α
from the GOES (Geostationary Operational Environmental Satellite) satellite, which measures solar
UV irradiance. Using high-resolution solar data, this dissertation develops for the first time a forecast
model of the ionosphere response to a solar flare using an ML approach.

The chromospheric Ly-α emissions at 121.6 nm can represent a large fraction of the photon energy of
the solar flare reaching the Earth and describe the ionosphere enhancements caused by solar flares
(Milligan et al., 2020). In addition, Ly-α emissions are significantly dependent on the position of the
flare on the Sun, i.e., they are lower when the flare occurs near the limb of the Sun (Milligan et al.,
2020). This center-to-limb variation is consistent with the geo-effectiveness of solar flares depending
on the distance of the flare from the solar disk center, as explained in Section 2.2. Calibrated 1-min
Ly-α data are obtained from GOES-15(4) for the period January 2013 to December 2016, and GOES-16(5)

for the period February to December 2017. During preprocessing, the data are cleaned of flags such as
Earth eclipse. However, there are systematic drops in the Ly-α data from around 7:30 to 11:30 UTC for
GOES-15 and from around 2:30 to 8:30 UTC for GOES-16 data. These drops occur due to geocoronal
absorption by the Earth’s upper atmosphere and are removed.

The PROBA2 satellite with LYRA instrument orbits the Earth in a polar, dawn–dusk Sun-synchronous
orbit at an altitude of about 720 km. Based on the level of degradation and data availability, observations
from the Zirconium channel of the nominal unit 2 with a bandwidth 6 – 20 nm + <2 nm and purity
of 92.2% denoted as level 3 products are selected in this dissertation (Table 1 in Dominique et al.
(2013)). They are available from the PROBA2 Science Center, Royal Observatory of Belgium, Brussels
(ROB) at https://proba2.sidc.be/lyra/data/bsd/. The data are calibrated and averaged over 1
min. However, the level 3 data contain non-solar anomalies not corrected during calibration but must
be filtered out in data preprocessing (Figure 4.3). Thus, the following anomalies are filtered out during
(4)Calibrated GOES-15 data for the Ly-α channel are obtained from https://www.ncei.noaa.gov/data/

goes-space-environment-monitor/access/euvs/GOES_v4/G15/
(5)Calibrated GOES-16 data for the Ly-α channel are downloaded from https://data.ngdc.noaa.gov/platforms/

solar-space-observing-satellites/goes/goes16/l2/data/euvs-l2-avg1mscience/
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Figure 4.3: PROBA2 LYRA 1-min data: raw (blue) and cleaned (red) data for the period December
2014 - May 2015.

data preprocessing:

• Offpoint of PROBA2 during calibration or scientific campaigns, resulting in signal fluctuations.

• Calibration campaigns, on average once every two weeks.

• Wide-angle rotations of the spacecraft, which are systematic effects that occur four times per
orbit (one orbit is 100 minutes long) when the spacecraft rotates 90◦ around the axis facing the
Sun to avoid shadowing by the Earth.

• Winter UV occultations when PROBA2 transits the Earth’s shadow from November to February.
They last a maximum of 25 minutes per orbit. Because of their regularity, they are easy to spot.

• Slow stabilization or recovery of the detectors after they have been exposed to light during
calibration. It can take several hours. In this dissertation, 8 hours of data were cleaned after the
calibration phase.

• South Atlantic Anomaly (SAA) disturbances occur when electrons produced by high-energy
protons hit the detectors during the transit of the SAA, making the LYRA signal noisier.

• Moon in LYRA, i.e., solar eclipse.

• Spacecraft anomaly, which leads to anomalous and missing data.

To obtain 15-minute samples for the high-resolution ML-based VTEC forecasting in Sections 5.4 and
5.5, the SYM/H, LYRA, and Ly-α data are averaged over the preceding 15-minute period.

4.1.3 Feature Engineering

Feature engineering is the concept of deriving features from raw historical data to establish valid
relationships between the input features and the output. Calculating a derived feature from one
or more available variables and selecting the right ones can enhance learning performance. In this
dissertation, new features are derived from time information, lags, rolling windows, differentiation,
and scaling, which are explained in more detail below.
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Two datetime features are created from the timestamp value of each observation: the hour of the day
(HoD) and day of the year (DoY). By extracting these features, an ML-based VTEC model can capture
temporal patterns, such as diurnal and seasonal patterns prevalent in VTEC variability.

Lag input features are values from prior timesteps created under the assumption that events in the
past may influence the future or contain some inherent information about the future. For example,
the VTEC feature of the previous day at a particular time, e.g., 1:00 p.m., can be created to forecast a
similar VTEC value at 1:00 p.m. the next day, considering regular daily VTEC variations. Therefore,
the lagged VTEC from the previous hour is used for the 1-hour VTEC forecast, while the lagged VTEC
of the prior day is used for the 1-day VTEC forecast in this dissertation.

The main objective of using rolling window statistics in this dissertation is to create VTEC features
from a given data sample by defining a range, i.e., a rolling window of observations, that includes the
sample itself and some specified number of prior samples. One of the most popular rolling statistics
is the moving average, which uses a rolling time window to calculate the average of that window
as the current value. The EMA is a type of weighted moving average that gives more weighting or
importance to recent data as it is considered more relevant than older data. Since new data has a
larger weight, the EMA reacts more quickly to data changes than the simple moving average. The
EMA of the VTEC can be defined by assigning an exponentially increasing weight to each term in the
moving average window as

EMA(VTEC)t =
VTECt + (1 − w)VTECt−1 + (1 − w)2VTECt−2 + ... + (1 − w)tVTEC0

1 + (1 − w) + (1 − w)2 + ... + (1 − w)t , (4.1)

where t is the window size and w = 2
t+1 is a smoothing factor. The moving averages of the lagged

VTEC features are used to detect the overall trend of the VTEC time series data. Thus, the data are
shifted by 4 days and 30 days, and the EMAs of these lags are obtained.

In the high-resolution VTEC models in Sections 5.4 and 5.5, lag features of VTEC and the SYM/H
index from the previous seven days are used as input features instead of aggregated values. Adding
lag features can be referred to as a sliding window method. This dissertation uses a sliding window
method with a fixed window of 7 days of the previous timesteps.

The first and second VTEC derivatives are calculated as new features in P-II, P-III, CP-I, and CP-II.
The first derivative represents the rate of change of a variable, i.e., the velocity, while the second
derivative indicates how the rate of change/velocity of the variable changes, i.e., the acceleration.

In P-I, the regional ionosphere Taylor series coefficients of the RIM IONOWB are used as input features
for the ANN-based model called RIM IONOsphere model for the Western Balkans with Artificial
Intelligence (IONOWB_AI), along latitude and longitude, HoD, F10.7, Kp and Dst features; Table 3.1.

Feature engineering also includes the process of feature scaling, such as standardization, if required.
The input data for an ANN in P-I and P-III (Sections 3.2.5 and 3.3.4) are standardized to obtain data
with a zero mean and a standard deviation equal to one. That is a standard procedure in learning
algorithms sensitive to the scaling of input features, such as ANN. Feature scaling ensures that all
input variables are treated equally, even with different scales. It also allows faster convergence of the
gradient descent method. Feature standardization is defined as

xsp,i =
xp,i − x̄p

σp
(4.2)

where xp,i is the input value at timestep i of the pth feature with p = 1, 2, ..., P, x̄p and σp are the mean
value and the standard deviation of the pth feature, respectively, xsp,i is the resulting standardized
input value at timestep i of the pth feature. Scaling is performed independently for each feature.
The mean values and standard deviations calculated for the training data are stored to apply them
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to validation and testing data to perform the consistent transformation. On the other hand, the
learning algorithms based on decision trees, presented in Sections 3.2.1 to 3.2.3, do not require data
normalization because they are not sensitive to the scaling of the input data due to the completely
different learning methodology in which the decision tree is built on the partitioning of the data
according to the most influential features, see Section 3.2.1. So the data are not standardized in these
cases. Furthermore, sine and cosine transformations of time information, such as HoD and DoY, are
performed in ANN to preserve their cyclic meaning, as

HODsin = sin
(

2π · HOD
24

)
, HODcos = cos

(
2π · HOD

24

)

DOYsin = sin
(

2π · DOY
365.25

)
, DOYcos = cos

(
2π · DOY

365.25

)
. (4.3)

In P-II, P-III, and CP-II, two main approaches are undertaken to prepare the data sets:

1. After preprocessing, the data (xi, yi) for i = 1, 2, . . . , N are used in the learning algorithm. This
data set is referred to as non-differenced data.

2. The data, except HoD and DoY, are time-differenced ∆xi, ∆yi by calculating the difference
between an observation at time step ti + 24 and observation at time step ti, i.e., ∆xi = xi+24 − xi
and ∆yi = yi+24 − yi. The EMA and time derivatives are then calculated from the differenced
VTEC values. In the end, the forecasted VTEC differences are reconstructed by adding up the
VTEC values of the previous day. This data set is referred to as non-differenced data.

The idea behind creating daily differences is to remove the dominant daily VTEC variations, leaving
the learning algorithm with only the remaining signatures associated with other sources of VTEC
fluctuations to learn from. Also, differencing reduces time dependence and trends and stabilizes the
mean of the data set.

4.1.4 Exploratory Data Analysis

Exploratory data analysis is performed to identify significant relationships, patterns, and correlated
data and summarize their characteristics to support the selection of input data for the ML-based VTEC
model. It is crucial to prepare an appropriate data set for the task of VTEC modeling and forecasting.
The goal of the exploratory data analysis is to create training data with enough relevant input features,
not too many irrelevant and not too many correlated input features.

These properties are checked with the correlation matrix between the input features and the output in
Figure 4 in P-I and Figure 6 in P-II. The correlation matrix for strong and severe geomagnetic storms
with Kp≥ 7 show a weak to moderate relationship between VTEC and all input observations, i.e., the
relationship with the solar wind speed, Bz, Kp, AE data is significantly enhanced. These relationships
are not visible in the correlation matrices over the entire period of January 2015 - December 2016
because these events are rare and unrepresented. However, the correlations become apparent during a
Space Weather (SW) event. A scatter plot between two variables is used to analyze linear and nonlinear
relationships, as shown in Figures 4.4 and 4.5. The histogram is also used to visually represent the
data distribution, as in Figure 4.5. The correlations between the daily VTEC of the EPN SRJV station
(43.87◦, 18.41◦) and the solar indices show a moderate positive correlation (Figure 4.5), which is slightly
higher for F10.7 than for Sn.

The so-called Forward Feature Selection method is another method for selecting input features. This
is an iterative method used in P-I, where we started with basic features of regional ionospheric
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Figure 4.4: Scatter plots between the 1-hour VTEC and the observations of solar activity (daily data
samples), IMF and GMF activity (1-hour and 3-hour data samples), as well as, datetime
features of Hour and DoY for the period January 2015 - December 2016. The red line
represents the linear regression line.

Figure 4.5: Scatter plots and histograms of daily VTEC in TECU, F10.7 solar flux in sfu, and sunspot
number Sn from January 2013 to December 2016. The pink line represents the linear
regression line, (taken from CP-III).

coefficients, and added a new feature at each iteration. The new feature is kept only if it improves the
model’s accuracy. The results of this method are presented in Figure 5.12.

Another method for selecting input features could be the feature importance analysis explained in
Section 3.4. This procedure can estimate essential features for ANN-based models. However, it is
not mandatory for Decision Tree-based models, as automatic feature selection already occurs when
growing a decision tree. More precisely, it is done internally when training a decision tree. Therefore,
feature importance analysis is primarily used at the interpretation level in this dissertation to estimate

68



CHAPTER 4. ML-VTEC MODEL DEVELOPMENT 4.2. DATA PARTITIONING

the contribution of each input feature to the model results.

4.2 Data Partitioning

To develop VTEC models, the data is divided into three sets:

1. Training set: for training the model and optimizing its parameters;

2. Cross-validation set: for measuring the model performance and optimizing its hyperparameters;

3. Test set: holdout set used at the end to estimate the performance error on new data, called the
generalization error.

The model is fitted to the training set, and its performance is evaluated against the validation set to
select the model complexity. The cross-validation set is used repeatedly to tune the hyperparameters.
A popular solution is a K-fold cross-validation in Figure 1.6, where the training data is split into k
folds, with part of the folds used for training and part for cross-validation. In this dissertation, K-fold
cross-validation is implemented on a rolling basis to be suitable for time series data, as explained in
Section 4.2.2. The final performance of the model is evaluated on the test set, which was not used in
either training or validation of the model. Calculating the error on a test set approximates the expected
value for future or operational data. The test set is, therefore, used only once to evaluate the final
performance of the model and not to train or tune the model.

4.2.1 Selection of Time Periods

Figure 4.6 (top left) shows that 85% of the 3-hour Kp data from 2009 to 2019 indicate quiet conditions
in the geomagnetic field, while only 2% of the Kp data reached an index of 5 or higher. This means
that geomagnetic storms are largely underrepresented and can be considered as minority examples
since SW events occur relatively rarely compared to quiet periods, leading to a data imbalance. On the
other hand, the SW examples are of particular interest because they contain useful knowledge, e.g.,
about irregular ionosphere variations, and are essential for forecasting purposes in the case of an early
warning system. However, imbalanced data can lead to a model biased towards most cases (Krawczyk,
2016). Ensemble learning is a recognized method that can yield significant improvements in the case
of a skewed distribution (Krawczyk, 2016), and boosting learning algorithms have been shown to be
suitable for problems with imbalanced data (Esposito, 2020).

The number of geomagnetic storms (Kp ≥ 5) is the highest in the years after the solar maximum,
reached in April 2014, i.e., from 2015 to 2017, and in 2012, before the solar maximum (Figure 4.6,
top right). The years 2015 and 2016 have more of these events than other years (Figure 4.6, bottom).
They are also close to the solar maximum. Therefore, 2015 and 2016 are selected for training and
cross-validation to have more examples of storm events and conditions near the solar maximum. The
following year, 2017, is chosen for testing because the strongest storm of solar cycle 24 occurred in
September 2017. The training data set has 99 days with reported Kp ≥ 5, including 56 days in 2015
and 43 days in 2016. In the test data set, Kp ≥ 5 applies to 37 days.

4.2.2 K-fold Time Series Cross-Validation

Since the observations are time-dependent, this dissertation proposes the technique of time series cross-
validation on a rolling basis for VTEC forecasting in order to preserve the time dependence. Hence,
the VTEC model is trained and cross-validated using many folds of data. For reliable performance
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Figure 4.6: Percentage of Kp data with values Kp < 3, 3 ≤ Kp < 4, 4 ≤ Kp < 5 and Kp ≥ 5 denoting
quiet, moderate, active and storm conditions in the geomagnetic field, respectively, over
solar cycle 24 (2009-2019) (top left) and for years 2015, 2016 and 2017 (bottom). Top right:
Number of hours of Kp data with values Kp ≥ 5 vs. maximum values of sunspot number
R and solar flux F10.7 (both referenced to the right y-axis) from 2009 to 2019. (from P-II)

evaluation, it is recommended to adopt a large number of data folds (Wong & Yeh, 2020). The data is
divided into two sets at each iteration: one set represents the training data, and the other the cross-
validation data, as shown in Figure 4.7, both of which are defined in Section 4.2. The model is trained
using the training set, i.e., the parameters of the model are optimized, while the hyperparameters are
tuned using the cross-validation data. The training set in each fold consists only of observations made
prior to the observations that form the cross-validation set. The cross-validation set from the previous
iteration is included in the following training set, and subsequent data points are forecasted.

The effect of the k-fold size on the RMS of VTEC forecasting is analyzed for the Decision Tree and the
Random Forest using the varying k-fold sizes: k ∈ (6, 10, 20, 30, 40, 50), for the cross-validation and test
sets. The results are presented in Figure 8 in P-II. The RMS for low-latitude VTEC forecast is lowest for
k = 20, while the RMS for high and mid-latitude VTEC is similar for all values of k-folds. Therefore,
the k = 20 folds is selected for a two-year cross-validation period, January 2015 - December 2016, in
P-II, P-III, CP-I and CP-II. For a detailed analysis of the RMS on training and cross-validation data
sets for each k-fold within 20 folds, see Figures 8 and 9 in P-II. Figure 4.8 illustrates the mid-latitude
VTEC data with training and cross-validation sets for the first and last fold.
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Figure 4.7: Model performance evaluation by time series cross-validation with k = 20 folds to prevent
overfitting and evaluate model performance. The final metric is calculated as the average
RMS of all k = 20 folds (taken from P-II).

Figure 4.8: Time series cross-validation of VTEC at 10° 40° with the training data set in blue and the
cross-validation data set in red for the 1st fold and the 20th fold. Top: non-differenced
VTEC, bottom: daily differenced VTEC.
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4.3 Model Hyperparameters

Parameters, such as the splitting variable and the value of the splitting point in a decision tree or
the weights in an ANN, are estimated from the training data using an optimization procedure, as
already explained in Sections 3.2.1, 3.2.3 and 3.2.5. However, every learning algorithm has certain
parameters, known as hyperparameters, which cannot be estimated from the data but must be tuned
for a particular modeling problem, here VTEC estimation and forecasting. The hyperparameters
determine the model architecture and control the model complexity, see Table 4.1. Their values

Table 4.1: Hyperparameters tuned

Hyperparameters

ANN Number of hidden layers, Number of hidden neurons, Learning rate
Decision Tree Maximum tree depth, Minimum number of samples in split and leaf nodes
Random Forest Maximum tree depth, Maximum number of features, Number of trees
AdaBoost Maximum tree depth, Number of trees
XGBoost/GBoost Maximum tree depth, Number of trees, Learning rate

depend on the data and the problem. However, the space of hyperparameters cannot be fully explored.
Usually, the values of hyperparameters are found by trying different combinations within a specific
range of values and evaluating the performance of each model in a way to balance bias and variance,
as described in Sections 4.3.1 and 4.3.2. However, the residual sum of squares of the training data
cannot be used to determine their values, as this would reduce the ability of a model to generalize to
new data. Therefore, the cross-validation data set is introduced in Section 4.2, and K-fold time series
cross-validation in Section 4.2.2.

4.3.1 Bias-Variance Tradeoff

The generalization error can be decomposed into a bias and variance component. The bias term is
the squared difference between the average of the estimate and the true mean, while the variance is
the expected squared deviation of an average estimate around its mean. Model selection involves a
particular choice of hyperparameters, which have an enormous impact on the accuracy, complexity,
and computational cost of the model. Thus, it comes down to a trade-off between the complexity
of the model to capture higher-order nonlinear functions and its ability to generalize to previously
unseen data, which is called a bias-variance trade-off.

As can be seen in Figure 4.9, the training, the validation, and the test errors decrease with increasing
model complexity up to a certain point. However, in many cases, the training error continues to
decrease beyond that point, but the validation and test error increases. This is the point at which the
model begins to overfit the training data due to its excessive complexity and high variance. Overfitting
is a common problem in ML when a model matches a particular data set too closely or exactly to the
extent that negatively affects the model performance on new data and reduces its generalization ability.
A similar situation can occur for a fixed model complexity when training time is increased, especially
in the case of an ANN that can iterate over the training data many times. If a model is trained longer
with the same data, the learning algorithm will adapt better to the data (see Figure 3.8). In this case,
it is advisable to stop training before overfitting becomes a problem, i.e., before the validation error
increases, resulting in a model with an appropriate complexity. In the case of a high bias, the model is
not complex enough with its approximation function and, therefore, underfits the data.
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Figure 4.9: Training and validation/test errors as a function of model complexity. An optimal model
complexity yields a balanced model with neither a large bias, underfitting the data, nor a
large variance, overfitting the data (taken from P-II).

Figure 4.10 depicts a detailed flowchart of the ML-based VTEC model development in this dissertation.
Poor performance on the training and cross-validation data results from high bias, while poor
performance on the cross-validation data only is often the result of high variance. These issues are
addressed by increasing or decreasing the model complexity by adjusting the hyperparameters to
select the appropriate model architecture.

To overcome the problem of overfitting, neural networks often require large amounts of data to train
them properly and to find the parameters. Another method to solve the problem of overfitting is to add
some regularization or early-stopping procedure to stop training as soon as the model performance in
a validation set no longer improves (applied in P-I and P-III). On the other hand, the randomness used
in Random Forest tree construction in P-II, such as randomly selecting input features or combinations
of input features at each node to grow a tree, as explained in Section 3.2.2, reduces the problem of
overfitting. The high bias in decision tree-based is addressed in this dissertation by adding new input
features, increasing the size of a tree by increasing the maximum depth of the tree and decreasing the
minimum number of samples required to split a node in the tree, increasing the number of features
considered in the search for the best node split and increasing the number of trees. The high variance
in decision tree-based VTEC models is addressed by increasing the size of the data set, decreasing the
tree size, reducing the number of features to be considered when splitting a node in a tree, decreasing
the number of trees and decreasing the value of the learning rate.

The training data size also plays a vital role in model performance. The more data available for
training, the better the generalization ability of a model. If we use a small training data set, the model
tends to have a low training error. However, the test error will be very high because it has not learned
much about the variations in the data distribution to make predictions for cross-validation or test
instances. On the other hand, as more training data are used, the training error increases. This is
because the variance in the training data increases as new data examples are added, while the model
complexity remains the same. However, the test error decreases because the model can now generalize
better.
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Figure 4.10: Flowchart of ML-based VTEC model development from data exploration, selection, and
preparation through training and cross-validation to the resulting model with the targeted
approximation function. The model is optimized with respect to its performance. The
optimized VTEC model is used to forecast the VTEC for new input data, (taken from P-II).

The task is to find a balanced model that neither learns from the noise, i.e., overfits the data, nor makes
too poor assumptions about the data, i.e., underfits the data. The final model complexity is chosen
in a way to trade off the bias with the variance in order to minimize the cross-validation error and,
consequently, the test error.
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4.3.2 Model Architecture Selection

As already mentioned, the choice of hyperparameters is a special case of a more general problem
known as model architecture selection, where we have to choose between models with different levels
of complexity. For example, the size of a tree controls the complexity of the decision tree-based model,
while the number of hidden layers and hidden neurons controls the complexity of the ANN-based
model. The model complexity must be selected to balance bias with variance, as explained in the
previous subsection 4.3.1.

To reduce the problem of overfitting and improve accuracy, when building an ML-based VTEC model,
randomness is considered in the tree construction. So the size of the maximum number v = 6 of
features of the random subsets of input variables is considered when splitting a node of the tree. The
smaller the value of v, the correlations between any pair of trees in the Random Forest are reduced,
and also the overfitting. However, if there are only a few relevant input features among many, v should
be set to a high value to allow the algorithm to find the relevant variables. For XGBoost, a smaller
value of the learning rate ν results in a lower test error but requires a more significant number m of
iterations (Friedman, 2001). In addition, the data for each boosting procedure in this dissertation is
subsampled for each tree to further prevent overfitting. In an ANN, having more hidden units than
too few is better. With too few hidden units, the model may not be flexible enough to capture the
nonlinearities in the data. On the other hand, if there are many hidden units, the excess weights can
be shrunk towards zero with a suitable regularization technique. The use of multiple hidden layers in
ANN in P-I allows the construction of hierarchical hidden features at different levels of resolution.
Algorithms based on decision trees are relatively robust to the settings of the hyperparameters, so
small changes generally lead to similar results, and the search for the appropriate parameters and
hyperparameters does not take as much time as with an ANN.

To select the hyperparameters, the performance on the training data is plotted together with the
performance on the cross-validation data as a function of model complexity, as shown in Figure 4.11
for the developed QGB VTEC model. The performance on the validation set serves as a proxy for the

Figure 4.11: Learning curves: training and cross-validation RMS values against different values of the
hyperparameter number of trees of the QGB VTEC model for 10°E 70°N (left), 10°E 40°N
(mid), and 10°E 10°N (right).

performance of the test data. The training of ML-based VTEC models is stopped at the right point
of complexity, which is indicated by the purple dotted line and is referred to as "selected". The line
represents the hyperparameters selected that minimize the RMS on the cross-validation data. Selected
hyperparameters and the range of values used to search values for hyperparameters are provided in
Table 3 of P-I, Table 2 of P-II, Table 2 and Table S1 of P-III.
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4.4 Developed Models

The developed ML-based models for VTEC within the scope of this dissertation are:

1. ANN-MLP Model for Regional VTEC Modeling (P-I)

2. Decision Tree (DT) Model for VTEC Forecasting (P-II, CP-I)

3. Random Forest (RF) Model for VTEC Forecasting (P-II, CP-I)

4. XGBoost Model for VTEC Forecasting (P-II, CP-I)

5. Model for VTEC Forecasting (P-II, CP-I)

6. Voting Regressor (VR) Model for VTEC Forecasting (P-II, CP-I)

7. Super-Ensemble (SE) Model for Probabilistic VTEC Forecasting (P-III, CP-II)

8. QGB Model for Probabilistic VTEC Forecasting (P-III)

9. BNN Model for Probabilistic VTEC Forecasting (P-III)

10. BNN Model with Data Uncertainties for Probabilistic VTEC Forecasting (P-III)

4.5 Computational Efficiency

The training and validation time with 20 folds in the K-fold cross-validation for the single Decision
Tree model amounts to less than 5 seconds, while for the ensemble learning models, it increases from
30 seconds for XGB to about 5 minutes for Random Forest (Table 4.2). The VR approach consists of the
VR1 (Random Forest, AdaBoost, and XGB) and VR2 (Random Forest and XGB) models, see Section
3.2.4 and Table 3 in P-II, with a training time less than 5 minutes. The testing time for each model is
less than one second, demonstrating the proposed models computational efficiency in P-II.

On the other hand, the two BNN-based approaches are the most computationally intensive. A single
training iteration with two years of data takes about an hour or more, which can be considered a
drawback of the BNN method. The most computationally efficient model in P-III is QGB, which takes
only 1 minute for a single training iteration with two years of data. When the models are trained and
optimized, the execution using test data is fast and takes 1 second for one year of data.

Since the high-resolution VTEC models in Section 5.4 and 5.5 contain a larger amount of training
data, i.e., 15 minutes of data sampling instead of 1 hour and 4 years of data instead of 2 years, the
computational cost of training a model consequently increases. Therefore, the QGB approach was
selected, which is fast to train and tune as it has low computational costs. QGB VTEC models trained
with data from January 2013 to December 2016 are marked by "II", while the remaining models were
trained with data from January 2015 to December 2016. "-7d" means that the input features include the
lagged history of input observations over seven days prior to timestamp i (inclusive), as explained in
Section 4.1.3. When the seven-day history of input observations is taken as input features, the training
is extended by about 2 to 3 hours compared to other QGB VTEC models with input features at time i.
When the training data is extended from two to four years, the training time increases by 100 minutes
for the "-7d" models. However, execution on test data is only extended by 1 sec.

4.6 Model Interpretation

Relative feature importance analysis based on Decision Tree, explained in Section 3.4, is used to
estimate the contribution of each input feature to the ML-based VTEC model result in order to
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Table 4.2: Computational cost for a single training and a test run in seconds for a single VTEC grid
point on the NVIDIA Tesla P100 GPU with 16 GB memory.

Machine learning-based Training and Validation Testing Publication /
VTEC model (sec) (sec) Dissertation Section

DT 2 - 4 <0.01 P-II, CP-I, 5.2
RF 300 - 330 ∼ 0.30 P-II, CP-I, 5.2

AdaBoost 65 - 85 ∼ 0.10 P-II, CP-I, 5.2
XGBoost 30 - 40 ∼ 0.05 P-II, 5.2

VR1 ∼ 250 ∼ 0.35 P-II, CP-I, 5.2
VR2 ∼ 200 ∼ 0.25 P-II, CP-I, 5.2

SE ∼1280 (∼20 min) 1.35 P-III, CP-II, 5.3
QGB ∼50-80 (∼1 min) <0.1 P-III, 5.3
BNN ∼1920-3650 (∼30-60 min) 1.37 P-III, 5.3

BNN-2 ∼5900 (∼100 min) 1.40 P-III, 5.3

QGB, ∼ 50 0.10 5.4
QGB, II ∼ 300 (∼5 min) 0.16 5.4

QGB, -7d ∼ 5730 (∼96 min) 1.30 5.4
QGB, -7d II ∼ 12340 (∼205 min/∼3,4 h) 1.23 5.4

interpret what the ML-based VTEC model has learned and which input features have been selected
as relevant(6). This information helps to understand the underlying relationship between the input
features and the model output. More detailed analysis can be done by, for example, examining specific
events such as SW events and geomagnetic storms. Because the data reflect geophysical processes
and relationships, such findings can reveal the underlying physical processes and show whether the
results are consistent with our physical understanding, and reveal new relationships and patterns. The
feature importance for data samples of geomagnetic storms Kp ≥ 5 are explored in Figure 11 in P-II.
The feature importance has also been assessed for the whole data set in Figure 6 in P-I, Figure 10 in
P-II, Figure 8 in P-III, and Figure 5 CP-II.

During geomagnetic storms, the relative importance of the input features describing the solar activity,
solar wind, and magnetic activity generally increases, while the contribution of the input features
describing previous VTEC values decreases (see Figures 10 and 11 of P-II). On the other hand, the
relative importance of the input features of solar activity, solar wind, and magnetic activity is mostly
higher for differenced data sets, proving that removing the daily regular VTEC variations and training
on the remaining ionospheric background information improves the learning of SW-related features
(see Figures 10 and 11 in P-II). Of particular interest is the higher importance of the AE index for
high-latitude VTEC, the Kp index for mid-latitude VTEC, and the Dst index for low-latitude VTEC in
the differenced data set, considering that these indices are measured in these latitudinal regions.

The relative importance of the input features for the probabilistic 24-hour VTEC forecast by the QGB
model is estimated for the upper confidence bound (top), median VTEC (mid), and lower confidence
bound (bottom) in Figure 4.12. For the median VTEC, the most important input feature is the lagged
VTEC at time step ti for forecasting VTEC at time step ti+24h. The other input features have much
smaller contributions. This is due to the prevailing diurnal VTEC variations, where day-to-day VTEC

(6)The feature importance analysis can also be used in exploratory data analysis in Section 4.1.4 to select the important features
before training. However, this is not necessary for a Decision Tree, as the significant features are selected automatically, as
explained in Section 3.2.1.
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Figure 4.12: Relative importance of input features for probabilistic 24-hour QGB VTEC forecast. Top:
upper bound (UB), mid: median VTEC forecast, bottom: lower bound (LB). Left column:
10°70°, mid column: 10°40°, right column: 10°10°.
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usually does not change much during quiet conditions. On the other hand, other input features have
much larger importance in estimating the lower and upper confidence bounds, such as the AE, Kp, Dst,
and solar wind (SW) indices. Here, the objective function minimizes the positive and negative residuals
between the ground truth and the model output for the upper and lower bounds, respectively; see
Equation 3.33. These residuals are more strongly influenced by solar and geomagnetic activity than the
median VTEC. Thus, the lagged VTEC contributes 20% to 50% less to the confidence bounds estimate
than to the median VTEC estimate, while the space weather input features increase their contribution.
These results suggest that the confidence intervals are determined by the space weather features in
addition to the VTEC-related features.
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5 Results and Discussion

This chapter presents the following results of this dissertation and related discussion:

1. The main results of the ML-based regional ionosphere model of P-I and its application in
single-frequency PPP in Section 5.1.

2. The analysis of the ensemble VTEC forecasting models from P-II concerning different levels of
geomagnetic and solar activity, not included in P-II, in Section 5.2.

3. The main summary results of the probabilistic VTEC forecasting from P-III in Section 5.3.

4. High-resolution probabilistic forecasting for different forecast horizons in Section 5.4.

5. Forecast of the effects of an intense solar flare on the ionosphere in Section 5.5.

6. The influence of input features selection, data preparation, data resolution, data length, and
learning algorithms on the results of the developed ML-based VTEC models in Section 5.6.

To the best of the author’s knowledge, this dissertation is the first study to develop approaches
to quantify uncertainties in ML-based ionosphere modeling and forecasting to provide reliable
probabilistic results and confidence intervals. Therefore, this chapter includes a large portion of the
uncertainty quantification results, including those not yet been published in journal papers P-I, P-II,
P-III and conference papers CP-I, CP-II, CP-III. In this context, we include not only the main results
of the various probabilistic approaches from P-III, but also the results that have not yet been published.
For example, the studies listed above in items 4 and 5. They represent an improvement of the study
P-III in terms of high-resolution data, high-resolution developed models, an extension to multiple
forecast horizons, and a forecast of the effects of a solar flare on the ionosphere, produced during the
author’s research stays in ROB, Belgium, and UPC, Spain in 2022.

The analysis for the study in the first item above is conducted for the periods March 20–26, 2014, and
March 15–20, 2015. The first period covers the solar maximum, peaked in April 2014, with increased
solar activity but dominantly quiet geomagnetic conditions (see Figure 8 in P-I). The second period
includes the St. Patrick’s Day Storm, which occurred on March 17, 2015, with a Kp index value of 8.
This event was followed by a recovery phase that began on March 18, 2015, and lasted several days
until the geomagnetic field returned to normal conditions. The number of sunspots and the solar radio
flux F10.7 were significantly lower in the second study period than in the first.

The analyses for the studies in items 3 through 6 are performed for the period January 1 - December
31, 2017, the period of space weather events from September 6 to 10, 2017, and the quiet period in
terms of solar and geomagnetic activity from April 25 to 29, 2017. September 6 to 10, 2017, is one of the
most intense solar activity periods, with the strongest solar flare of class X9.3, which peaked at 12:02
UTC on September 6. Earthward-directed CMEs were also emitted from the Sun on September 4 and
6. The first CME arrived at 23:43 UTC on September 6 and caused moderate geomagnetic conditions
on September 7, while the second CME, from the solar flare X9.3, triggered a sudden storm at around
23 UT on September 7. This led to severe geomagnetic storms on September 8 with a maximum Kp
of 8. The main phase of the storm was characterized by the two pronounced minima of the Dst and
SYM/H indices at around 1 UTC and 14 UTC on September 8 (Figures 5.5, bottom right, and 5.9,
bottom). Afterward, the recovery phase began, lasting about three days, i.e., until September 11.
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5.1 Regional VTEC Modeling

The paper P-I deals with regional ionosphere modeling. In this section, the main results are presented
and discussed, focusing on two developed RIMs: IONOWB and IONOWB_AI. The RIM IONOWB is
based on the two-dimensional Taylor series expansion (2.10). The ionosphere information is estimated
from the CORS and EPN observations as described in Section 4.1.1. The RIM IONOWB is the basis
for the RIM IONOWB_AI model, which is developed using the ANN MLP architecture from Section
3.2.5. More specifically, the regional ionosphere Taylor series coefficients of the RIM IONOWB are
input features of the RIM IONOWB_AI, see Table 3.1. The results are presented as regional VTEC
maps. VTEC values from the RIM IONOWB_AI, the RIM OTHR(1), the GIM CODE, and the Klobuchar
model are estimated on the 1°× 1° grid in latitude and longitude from 40°N to 47°N and 13°E to 23°E.
The CORS and EPN stations used to estimate RIM IONOWB are shown in Figure 4.2.

The VTEC maps for March 21, 2014, at 12 UTC, a day of high solar activity in the solar maximum
phase with F10.7 = 153 sfu and quiet geomagnetic conditions with Kp = 2, are shown in Figure 5.1
in the upper block. The VTEC maps of the RIM IONOWB_AI, the RIM OTHR, and the GIM CODE
show the lowest ionization from 46°N to 47°N and the highest ionization from 40°N to 42°N. The
RIMs IONOWB_AI and OTHR differ by less than 3 TECU with the mean difference of 0.9 TECU.
Their largest absolute difference of approximately 2 to 3 TECU is in the region from 43°N 21°E to
44°N 23°E. Their smallest differences, less than 1 TECU, are in the areas covering Slovenia, Croatia,
Bosnia-Herzegovina (BH) (except around 44° latitude), and Montenegro. On the other hand, the
absolute differences between the IONOWB_AI and the GIM CODE are up to 4 TECU, with a mean
absolute difference of 1.5 TECU. The most significant differences are in the southern part of the map,
where only a few IGS and EPN stations are used to determine the GIM. In contrast, in the areas of the
western Balkans where no GNSS stations are used to estimate the RIM IONOWB_AI, Serbia, Kosovo
and Montenegro, there are minor differences with a mean of 1 TECU and 1.1 TECU from the RIM
OTHR and the GIM CODE, respectively.

The VTEC maps for March 17, 2015, at 12 UTC, the day of the severe geomagnetic storm with F10.7 =
139 sfu and Kp = 8, are shown in the lower block of Figure 5.1. During the main phase of the storm,
the ionization increased over the western Balkans. The VTEC differences of the RIM IONOWB_AI
compared to the RIM OTHR and the GIM CODE are up to 4.4 TECU in the northern part, especially
in the areas at the northern and northeast borders of the study region, and mainly outside the western
Balkans region. The mean differences for the areas of the western Balkans where no GNSS observations
are used in the RIM IONOWB_AI are about 0.8 TECU and 1 TECU with respect to the RIM OTHR
and the GIM CODE, respectively. The VTEC values for Slovenia, Croatia and BH, whose GNSS
observations are used, also agree better with the RIM OTHR, with their mean difference of 0.5 TECU.

The GPS broadcasted Klobuchar model underestimates VTEC by more than 20 TECU for both days
and cannot approximate the sudden VTEC increase during the storm on March 17, as shown in Figures
12 and 13 in P-I. These results reveal that the Klobuchar model deviates significantly from the newly
developed RIM IONOWB_AI. On the other hand, the RIM IONOWB_AI correspond much more
closely to the GIM CODE, and much better to the high-resolution RIM OTHR. These results suggest
that the RIM IONOWB_AI could replace the Klobuchar model in single-frequency positioning.

To assess the RIM IONOWB and the RIM IONOWB_AI in single-frequency positioning, vertical and
horizontal RMS position errors from 24-hour single-frequency PPP solutions are estimated according
to the Equations (20a) and (20b) in P-I for selected stations highlighted in Figure 4.2 for March 2014
and March 2015, and are shown in Figure 5.2. Using the L1 frequency without ionospheric delay
correction, the vertical position errors are about three to four times higher than the horizontal position
errors. The vertical RMS position errors are about 5.5 m and 3.5 m in March 2014 and 2015, respectively.

(1)European RIM based on polynomial B-spline functions developed at DGFI-TUM as a two-step VTEC model; see (2.8), (2.9).
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Figure 5.1: Top: RIM IONOWB_AI, RIM OTHR and GIM CODE. Bottom: VTECIONOWB_AI −
VTECOTHR, VTECIONOWB_AI − VTECCODE, VTECOTHR − VTECCODE. All from left to
right. Upper block: 12 UTC, March 21, 2014; lower block: 12 UTC, March 17, 2015, (adapted
from P-I).
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Figure 5.2: RMS errors of single-frequency positioning solutions without ionosphere corrections, with
GIM CODE, RIM IONOWB and RIM IONOWB_AI. Shown are vertical position RMS errors
on March 20–26, 2014 (top left), horizontal position RMS errors on March 20–26, 2014 (top
right), vertical position RMS errors on March 15–20, 2015 (bottom left), and horizontal
position RMS errors on March 15–20, 2015 (bottom right), (taken from P-I).

After applying the ionospheric delay corrections from the GIM CODE and the developed RIMs, the
vertical accuracy is improved by 80% to 90% and the horizontal accuracy is improved by 50% to 60%.

In March 2014, after applying the IONOWB and IONOWB_AI ionospheric delay corrections, the
position errors are at the same level as for the GIM CODE for station GSR1 and even better for all
the other stations. A significant improvement in position accuracy with the RIMs IONOWB and
IONOWB_AI is observed for the stations SRJV, ORID, and TIRA. Also, in March 2015, both vertical
and horizontal position accuracy is improved for ORID and TIRA stations after applying the RIMs
IONOWB and IONOWB_AI. These two stations are located in the lower part of the study region
where more significant VTEC differences between IONOWB_AI and GIM CODE are observed in
Figure 5.1. These differences may be attributed to the fact that information from very few stations
is used to estimate the GIM CODE in this area, but this information is incorporated into the newly
developed RIMs. Therefore, the RIMs IONOWB and IONOWB_AI outperform the GIM CODE for
ORID and TIRA stations. However, better positioning results are obtained with the GIM CODE for
GSR1 and POZE stations in March 2015, located in the upper part of the western Balkans. There,
more considerable VTEC differences are observed between the RIM IONOWB_AI and the GIM CODE
during the main storm phase, which is attributed to different VTEC perturbations within and outside
the study region. Since a storm can cause significant deviations in the ionosphere, the RIM for Slovenia
would most likely benefit from the inclusion of stations from other neighboring countries to improve
positioning accuracy during a storm.

Figure 5.3 depicts the percent decrease in vertical and 3D RMS position errors, calculated from
Equations (20a) and (20c) in P-I and averaged over all stations evaluated, for single-frequency PPP
using ionospheric delay corrections from the developed RIMs and the GIM CODE, compared to the
single-frequency PPP without ionospheric delay corrections. The newly developed RIMs decrease the
vertical and 3D position error by about 5% compared to the GIM CODE during the solar maximum,
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Figure 5.3: Percentage reduction of the vertical RMS (left) and the 3D RMS (right) errors of the
single-frequency PPP with the GIM CODE, the RIM IONOWB and the RIM IONOWB_AI
compared to no ionosphere correction, for March 20–26, 2014 and March 15–20, 2015.

i.e., in March 2014. More specifically, the vertical and 3D position accuracy improvements are 88% and
85% for the new RIMs and 83%, and 80% for the GIM CODE, respectively. During the geomagnetic
storm in March 2015, the new RIMs improve the 3D position accuracy by 84%, which is similar to
that resulting from the GIM CODE. For both study periods, the new RIMs decrease the vertical RMS
position error more effectively than the GIM CODE.

5.2 Ensemble Forecasting vs. Kp and F10.7

The ML-based ensemble VTEC forecasting is analyzed in detail in P-II. The following presents the
analysis of the various developed ionosphere models for the 24-hour forecast such as single Decision
Tree and different ML-based ensemble models, such as Random Forest, AdaBoost, XGBoost, and
Voting Regressor(2), regarding the varying geomagnetic and solar activity, represented by the Kp index
and the F10.7 index, shown in Figure 5.4. For the analysis, the Kp values are grouped into {1, 2, 3, ..., 9}
and the F10.7 index into {70, 80, 90, ..., 140}. The RMS is calculated within each group so that Kp of 1
includes 0 < Kp ≤ 1, Kp of 2 includes 1 < Kp ≤ 2, F10.7 of 70 includes 60 < F10.7 ≤ 70, the F10.7 of
80 includes 70 < F10.7 ≤ 80, and so on.

The Decision Tree VTEC model provides mostly the highest RMS values compared to the ensemble
VTEC models in both geomagnetic and solar activity analyses. On the other hand, the ensemble VTEC
models perform similarly, with no clear winner. For all ML methods tested, an increase in RMS values
is observed as the Kp index increases. This is particularly noticeable for Kp index values of 7 to 9.
The results of ML-based VTEC models trained on differenced and non-differenced data are similar
for high-latitude VTEC for both Kp and F10.7 analyses. For mid-latitude VTEC, the models trained
on differenced data have two times lower RMS than other models for the highest Kp value of 9, i.e.,
during severe storms. Similarly, for F10.7 = 120 sfu, the models trained on differenced data have
twice lower RMS than others. For low-latitude VTEC, the RMS values are similar between the models
trained on differenced and non-differenced data, with slightly higher RMS values for Kp of 7 and 8 for
the models trained on differenced data. Similar is the case for F10.7 = 120 sfu. Regarding all models,
the maximum increase in RMS is about 2 to 4 times for Kp > 7 compared with Kp = 1. For F10.7
> 110 sfu, the maximum RMS increase is about 1.5 to 2 times compared with F10.7 = 70 sfu.

(2)The VR VTEC model is developed in this dissertation as an ensemble of ensembles or an ensemble meta-estimator by
averaging different ML-based ensemble VTEC models. More specifically, VR1 is an ensemble of Random Forest, AdaBoost
and XGBoost, while VR2 is an ensemble of Random Forest and XGBoost, as explained in Section 3.2.4.
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Figure 5.4: RMS of the developed VTEC forecast models: Decision Tree (DT), Random Forest (RF),
AdaBoost (AB), XGBoost (XGB), and Voting Regressor (VR) for the 24-hour forecast in
relation to the Kp index in the top panel and F10.7 index in the bottom panel. Left: models
trained on non-differenced data. Right: models trained on daily differenced data.

5.3 Probabilistic VTEC Forecast

In this dissertation, ML-based probabilistic VTEC models estimate 95% confidence intervals by
accounting for uncertainties in the model parameters and/or data, described in Section 3.3, to provide
information on how confident and reliable the results are, based on the following approaches

1. Super-Ensemble (SE) of multiple ensemble models and different data sets in 3.3.2.

2. Quantile Gradient Boosting (QGB) with estimated quantiles for confidence interval in 3.3.3.

3. Bayesian Neural Network (BNN) with the probability distributions of the parameters in 3.3.4.

4. BNN+D, which includes also the data uncertainty in 3.3.4.1.

The upper and lower bounds of the 95% confidence interval estimated by applying the above ap-
proaches are visualized in Figure 5.5 by setting the vertical axis to zero. In the quiet period, the
QGB and BNN+D confidence intervals for the mid-latitude VTEC are similar in size, while the QGB
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Figure 5.5: 1st panel: the 95% confidence interval (CI) of probabilistic VTEC models, 2nd panel: SE and
QGB, 3rd panel: BNN and BNN+D, 4th panel: F10.7, Dst, and Kp·10. Left: April 25 - 29,
2017; right: September 6 - 10, 2017, (taken from P-III).
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confidence interval for the high-latitude VTEC is wider and the BNN+D confidence upper bound
for the low-latitude VTEC is slightly larger. The SE and BNN confidence intervals are the narrowest
and similar in size. During the storm, the confidence intervals become wider as the changes in the
geomagnetic field occur. For the SE and QGB models, they are around two times wider and more
variable on the day of the geomagnetic storm maximum, September 8, and the following day of the
recovery phase, September 9, than during the quiet period, while they increase slightly for the BNN
and BNN+D models. The largest upper confidence bound for high and mid-latitude VTEC in this
period comes from the QGB approach. For the low-latitude VTEC, the upper bounds of the QGB and
BNN+D models are similar in size.

For both study cases, quiet and storm, it can be seen that the QGB and SE confidence intervals are
more variable and often have peaks, while for BNN and BNN+D, they are smoother and more uniform
from day to day. As for the size of the confidence intervals, they are narrower for SE and BNN, while
for QGB and BNN+D, they are at least 3 times wider. The confidence intervals of all approaches are
wider around local noon for the mid-latitude VTEC, while for the low-latitude VTEC, there is an
additional increase in the upper bound after sunset that lasts for several hours.

The post-sunset rise in the upper low-latitude VTEC bounds of the QGB and BNN+D models are
visible for September 6 - 9, geomagnetic storm period with F10.7 > 110 sfu, and on April 25 - 29
with low geomagnetic activity, and both periods being close to the equinox (Figure 5.6). The effect
is more pronounced in the QGB VTEC model. The post-sunset VTEC enhancement was detected at

Figure 5.6: Patterns of low-latitude VTEC post-sunset enhancement visible in the upper bounds of the
QGB and SE confidence intervals.

low latitudes within the equatorial ionization with actual VTEC observations in Dashora et al. (2019);
Kutiev et al. (2007); Kumar et al. (2022); Liu et al. (2020a), to name a few. It develops during 2 to 3
hours after sunset, with a peak around 19:00 - 20:00 LT (Kutiev et al., 2007; Kumar et al., 2022), and
occurs during prolonged periods of low geomagnetic activity (Kutiev et al., 2007), as well as during
geomagnetic storms (Dashora et al., 2019), with stronger intensity around equinoxes (Liu et al., 2020a),
and when the F10.7 index exceeds 110 sfu (Kumar et al., 2022). Therefore, the patterns of increase in
the upper low-latitude VTEC confidence bound after sunset are consistent with the observations of the
post-sunset VTEC enhancement at low latitudes reported in the previous studies.

Figure 5.7 shows the 24-hour VTEC forecast with the 95% confidence intervals of the developed QGB
and BNN+D models for the quiet period (left) and the storm period (right) in 2017. The QGB and
BNN+D approaches provide 3 to 4 times wider confidence intervals than the other two approaches,
containing more than 95% of ground truth in 2017 and even 100% during the quiet period (see Table 3
in P-III). The most significant amount of ground truth outside the confidence intervals is on September
7 and during the first and second Dst minima, representing the maximum intensity of the geomagnetic
storm. The magnitude of ground truth outside the confidence interval is up to 4 to 5 TECU during the
September 2017 space weather events. During the quiet period, it is less than 2 TECU and occurs less
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Figure 5.7: Median VTEC forecast of QGB (1st panel) and mean VTEC forecast of BNN+D (2nd panel),
both with 95% CI. 3rd panel: ground truth (GT) outside the CI; positive values: GT is above
the upper CI limit; negative values: GT is below the lower CI limit. 4th panel: F10.7, Dst,
and Kp·10. Left: April 25 - 29, 2017; right: September 6 - 10, 2017, (taken from P-III).
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frequently. For the BNN+D approach, only one ground truth value is outside the confidence intervals
during the quiet period in April 2017.

The advantages and disadvantages of the developed models for probabilistic VTEC forecast are listed
in Table 5.1. The QGB and BNN+D approaches provide wider confidence intervals that include
around 95% of ground truth and are thus more realistic and reliable than the other two approaches. In
addition, the QGB approach avoids the distributional assumption and is the fastest (Table 4.2).

Table 5.1: Advantages and disadvantages of the developed approaches for probabilistic VTEC forecast
SE QGB BNN BNN+D

S Improved mean VTEC Fast to train Higher Corr. to GT CI > 95% GT

O No distribution assumption CI ∼ 95% GT

R No distribution assumption

P
S Many models to train Estimate each quantile Slow to train Slow to train

N Uncertainty too small Gaussian distribution Gaussian distribution

O Uncertainty too small

C

5.4 High-Resolution Probabilistic VTEC

Based on the results from P-III, the QGB approach was selected for high-resolution VTEC probabilistic
forecasting, which was developed using high-resolution data as reported in Section 4.1. Table 5.2
shows the statistics of the developed high-resolution QGB VTEC models with different input data sets
as explained in Section 4.5. Forecasts are made for 15 minutes, 1 hour, 3 hours, 6 hours, and 24 hours
in the future. Different models are developed based on the input features:

1. The input features include VTEC, HoD, DoY and SYM/H at time moment i, while the output
is VTEC at the time moment i + t, where t ∈ {15min, 1h, 3h, 6h, 24h} for 15 minutes, 1 hour, 3
hours, 6 hours and 24 hours, respectively, depending on the forecast horizon, denoted as "VTEC
SYM/H";

2. The input features include those from item 1 and additionally derived VTEC features such as
EMA over the previous 30 and 4 days, and first and second derivatives, denoted as "VTEC
SYM/H+" and "M1" in Section 5.5;

3. The input features include delayed/lagged VTEC values for the previous 24 hours, 4 days,
and 7 days prior timestamp i (inclusive), denoted as "1d VTEC", "4d VTEC", and "7d VTEC",
respectively;

4. The input features include those from item 3 plus additionally delayed SYM/H values for
the previous 24 hours, 4 days, and 7 days prior timestamp i (inclusive), denoted as "1d VTEC
SYM/H", "4d VTEC SYM/H", and "7d VTEC SYM/H", respectively;

5. The models trained with data from January 2015 to December 2016 are referred to as "I", while
the models trained with data from January 2013 to December 2016 are referred to as "II".

Not every data set combination was tested for every forecast horizon, but all combinations were tested
for the 24-hour forecast. The selected best models are highlighted in blue and are used for further
analysis. Two naive forecasts are chosen for the baseline models. The first naive forecast assumes
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5.5. FORECASTING THE SOLAR FLARE IMPACT CHAPTER 5. RESULTS AND DISCUSSION

frozen ionosphere conditions, where VTEC (i + t) equals VTEC (i) for 15-minute and 24-hour forecasts.
However, the frozen ionosphere assumption is not reasonable for 3-hour and 6-hour forecasts due to
diurnal VTEC variability. Therefore, another naive forecast is introduced where we used VTEC values
from the longitude of 25° for the 1-hour forecast, 55° for the 3-hour forecast, and 100° for the 6-hour
forecast along the same latitude of 40°. Here, we consider that the ionosphere structures move from
east to west relative to the solar zenith angle and assume similar ionosphere conditions at different
longitudes along the same latitude at the same local time. Zhang et al. (2022b) proposed a similar
approach where the GIM is predicted by a previous period in a geomagnetic latitude and local time
coordinate system.

Figures 5.8 and 5.9 present the median VTEC forecast (blue) and the 95% confidence interval (green) of
the developed high-resolution QGB ionosphere models with two years of training data from January
2015 to December 2016 (left) and four years of training data from January 2013 to December 2016
(right). These results correspond to the models highlighted in blue in Table 5.1. Figure 5.8 represents
a period of the quiet ionosphere from April 25 to 29, 2017, and Figure 5.9 a period of the disturbed
ionosphere during space weather events from September 6 to 10, 2017.

The 15-minute forecast has the narrowest confidence interval, deviating less than 1 TECU from the
median VTEC forecast, making them the most confident. This is due to the fact that the ionosphere
does not change significantly within 15 minutes. Moreover, the model uses VTEC information from
the current step together with the previous first and second VTEC derivatives. Therefore, it is not
difficult to forecast VTEC for the next 15 minutes. Its confidence interval includes around 94% to more
than 97% of the ground true VTEC in 2017, and around 90% during the space weather event.

When the forecast horizon is increased to 1 hour, the confidence interval becomes about twice as large.
It includes ground truth VTEC 95% of the time in 2017 and 88% during the space weather events. For
the further forecast horizons of 3 hours, 6 hours, and 24 hours, the confidence intervals extend 3 to 4
TECU from the median VTEC forecast. Their intervals include 92% of ground truth VTEC in 2017,
96% to even 99% during the quiet period, and around 80% during the space weather period.

The confidence intervals tend to be larger and more variable for days with strong VTEC fluctuations
(Figure 5.9) than for quiet days (Figure 5.8). During the first SYM/H minimum on September 8, a
small part of the ground truth, up to 0.5 TECU, is outside the confidence interval. During the second
SYM/H minimum in the second half of September 8, a larger proportion of the ground truth lies
outside the lower confidence bound. This trend continues during the recovery phase on September 9.

The models trained on four years of data provide confidence intervals that include 3.5% more ground
truth VTEC during sudden disturbances from severe space weather than the models trained on two
years of data, as shown in Table 5.1. Furthermore, the magnitude of ground truth VTEC falling outside
the predicted confidence intervals is up to 2 TECU smaller during the intense VTEC increase on
September 7, and up to 1 TECU smaller for the quiet period for the models trained on 4-year data
than for the models trained on 2-year data.

5.5 Forecasting the Solar Flare Impact

This section analyzes the applicability of high-resolution solar irradiance data for the ML-based
forecast of the ionosphere response to a strong solar flare. Thus, Ly-α and LYRA observations are
added separately to the QGB VTEC model, denoted as the "VTEC SYM/H+ II" model in Table 5.2, for
the 1-hour forecast trained with data from January 2013 to December 2016. The QGB VTEC models
with added Ly-α and LYRA observations are referred to as the M2 and M3 models, respectively, while
the M1 model is "VTEC SYM/H+ II" model without Ly-α and LYRA observations.

The period from September 6 to 10, 2017, represents one of the most flare-productive periods of the
solar cycle 24, with the strongest solar flare X9.3 emitted on September 6, 2017, peaking at 12:02
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Figure 5.8: QGB VTEC median at 10° 40° with the 95% CI using 2-year (left) and 4-year training data
(right), for different forecast horizons for April 25-29, 2017. 1st row: 15-min, 2nd row: 1-h,
3th row: 3-h, 4th row: 6-h, and 5th row: 24-h forecasts. 6th row: GT outside the CI; positive
values: GT is above the upper CI limit; negative values: GT is below the lower CI limit. 7nd

row: SYM/H index.
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Figure 5.9: QGB VTEC median at 10° 40° with the 95% CI using 2-year (left) and 4-year training data
(right), for different forecast horizons for September 6-10, 2017. 1st row: 15-min, 2nd row:
1-h, 3th row: 3-h, 4th row: 6-h, and 5th row: 24-h forecasts. 6th row: GT outside the CI;
positive values: the amount by which GT is above the upper CI limit; negative values: the
amount by which GT is below the lower CI limit. 7nd row: SYM/H index.
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UTC (Table 5.3). The solar flare location was in the southwest of the solar disk. On September 6 and

Table 5.3: Information on solar flare X9.3 of September 6, 2017, and maximum Kp value for that day
and the previous day.
Start Peak End Intensity Location Kpmax Kpmax
(UTC) (UTC) (UTC) Sept 6, 2017 Sept 5, 2017
11:53:00 12:02:00 12:10:00 X9.3 S08W33 3+ 4

the day before, there was a quiet geomagnetic activity with a maximum Kp value of 4. This means
that the ionosphere was not under the influence of geomagnetic disturbances and thus provided an
opportunity to analyze the pure solar flare effect. Also, the intensity of the solar flare, its location
on the solar disk, and occurrence around local noon at 10° of longitude make the X9.3 solar flare an
excellent example for this study. As in Section 2.2 mentioned, the solar flare effects on the ionosphere
depend on the latitude and solar zenith angle. In this context, the strongest impact on the ionosphere
is expected in the mid-latitude, around local noon and from a flare occurred near the center of the
solar disk, which is the case for this study example.

The UV emission of Ly-α increases with the occurrence of the X9.3 solar flare, soon peaks, and then
begins to decrease a bit, as shown in Figure 5.10. Soon it increases again, followed by a slow decrease
during the next 3 hours, implying that the UV emission remained higher for a longer time. Similar
trends can be observed in the LYRA data. However, its second peak is much smaller than the first one.

The increase in ground truth VTEC compared to the 15-day VTEC median is 3 to 5 TECU from
high- to mid-latitudes along the 10° of longitude. Comparing the VTEC forecast without solar input
data (Figure 5.10, middle) and with the Ly-α data (Figure 5.10, right), the differences become visible
during the increase in UV emissions, indicated by a brown rectangle. The model using L-α data as
input, denoted M2, forecasts VTEC values that are more consistent with ground truth than the model
without Ly-α observations, denoted M1. The model using LYRA data instead of Ly-α data, denoted
M3, forecasts an increase in VTEC at 40° of latitude one step or 15 minutes later, i.e., at 13 UTC. The
differences from ground truth are smaller for the M2 and M3 models than for the M1 model. The
differences between the M2 and M1 models are up to 2 TECU at 40° of latitude and up to 0.5 TECU at
60° of latitude within the brown rectangle. These differences reveal latitudinal effects during high UV
emissions, which are the largest for mid-latitude VTEC and the smallest for high-latitude VTEC. Such
an effect is not visible outside the brown rectangle. These differences between the M2 and M1 models
are mainly positive within the brown rectangle due to the increased ionization during the high UV
emissions released by the solar flare and captured by the M2 model but not by the M1 model.

The correlation matrices in Figure 5.11 show positive correlations. The forecasted VTEC of the M2
model correlates by 0.2 to 0.3 more strongly with ground truth than the M1 and M3 models. The
correlation of ground truth and the M2 model to Ly-α is strongest at the mid-latitude of 40°, where the
most substantial solar flare impact on the ionosphere is observed in Figure 5.10. The correlation of
VTEC to Ly-α decreases with increasing latitude. The M1 model has the lowest correlation to Ly-α at
mid-latitudes of 40° and 45°, while the situation reverses at high latitudes of 50° and above.

It is important to note that it is difficult to observe the pure solar flare effect in the high-latitude
ionosphere due to the overlapping disturbances from the polar ionosphere region and that the pure
solar flare effect can only be seen in the mid-latitude ionosphere (Berdermann et al., 2018). Thus, in
the results for VTEC at high latitudes, 50° and above, it is challenging to distinguish the effects of the
solar flare. On the other hand, the results for mid-latitude VTEC at 40° and 45° reveal the influence of
the solar flare in the ground truth VTEC data, which are best captured by the M2 model, i.e., QGB
VTEC model with added Ly-α observations. The results show that the M2 model better forecasts the
increased ionization in the mid-latitude ionosphere due to the solar flare than the models without
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Figure 5.10: Left: Median VTEC forecast of the QGB models M1 (1st row), M2 (2nd row) and M3 (3rd

row) with CI and GT; Differences between median VTEC forecasts of the QGB models and
GT (4th row); differences between median VTEC forecasts of the QGB models (5th row);
Ly-α (6th row, left and mid; 7th row, right); LYRA (7th row). Median VTEC forecast for 60°
(1st row), 55° (2nd row), 50° (3rd row), 45° (4th row), 40° (5th row) of latitude along the 10°
longitude of the M1 (mid) and M2 (right). Differences between median VTEC forecasts of
the M1 and M2 for different latitudes (6th row, right).
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Figure 5.11: Lower half of correlation matrices for September 6, 2017, during increased Ly-α emissions
from 11:00 to 16:00 UTC.

Ly-α or with LYRA data. Moreover, the correlation with the ground truth VTEC during the effects of
the X9.3 solar flare on the ionosphere and increased UV emissions is highest with the VTEC of the M2
model of about 0.8, while at the same time, other models provide correlations of 0.6 and even lower.
These results imply that adding the Ly-α observations allows modeling of the solar flare impact on
VTEC and provides forecasts consistent with ground truth.

5.6 Data and Algorithm Selection Effect

The RMS and correlation coefficients for the ANN and RF regional VTEC models of P-I with different
input features are shown in Figure 5.12. Table 3 of P-I lists the developed models and associated input

Figure 5.12: The RMS (left) and correlation coefficients (right) for training and validation of ANN and
RF models, (taken from P-I).

features. The ANN1 model is linear, with no hidden layer, and its input features consist of regional
ionosphere coefficients, latitude, and longitude. All other models are nonlinear. The ANN2 model has
the same input features as the ANN1 model. The ANN3 model adds a feature of HoD, the ANN4
model adds a feature of the F10.7 index, the ANN5 model adds features of Kp and Dst indices, while
the ANN6 model removes the input features of regional ionosphere coefficients. The input features of
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the ANN5 model are used for the RF1 model and those of the ANN6 model for the RF2 model. The
ANN5 model is selected as the optimal for the RIM IONOWB_AI.

Applying the nonlinear modeling reduces the RMS by around 3 TECU. The stepwise addition of the
temporal, solar, and geomagnetic activity input features further reduces the RMS of the ANN-based
model accordingly. These input variables are useful to derive temporal, solar, and geomagnetic-related
VTEC features and relationships. Furthermore, removing the regional ionosphere coefficients from the
ANN6 and RF2 models increases the RMS by a factor of three and decreases the correlation coefficients
by 0.1. These results suggest that modeling VTEC with only the spatiotemporal, geomagnetic, and
solar parameters is insufficient. These data alone cannot provide an accurate description of VTEC.
However, the modeling can be significantly improved when combined with more influential, descriptive
parameters of the ionosphere, such as regional ionosphere coefficients. When comparing different
learning algorithms, the RMS between the ANN and RF models are very similar, with differences up
to 0.1 TECU. These results show that using different input features has a much larger impact than
using different learning algorithms in P-I.

Two data sets, non-differenced and daily differenced, are prepared in P-II, P-III and CP-II, as described
in Section 4.1.3. Differencing was used in this dissertation to reduce time dependence and trends and
stabilize the mean of the data set. Furthermore, daily differencing allows the regular daily VTEC
variations and, thus the background ionosphere to be removed, leaving only the remaining signatures
associated with other sources of VTEC fluctuations to be modeled. In addition, for the analysis in
Figure 5.13, a third data set is prepared where differenced and non-differenced data are combined

Figure 5.13: The RMS values for January-December 2017 (right) and the September 7-10, 2017 geo-
magnetic storm (left) for 1-hour (top) and 24-hour (bottom) forecasts for the XGBoost
VTEC model. The models trained with differenced data are labeled "diff", and those with
non-differenced data are not labeled. The XGBoost combination includes both differenced
and non-differenced data as input, and the output is non-differenced VTEC, (taken from
textbfP-II)

with the EMAs and the time derivatives calculated from the non-differenced VTEC to forecast non-
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differenced VTEC, which is referred to as the XGBoost combination. The analysis is performed for the
XGBoost VTEC model because it is fast compared to other models (Table 4.2). Moreover, the boosting
methods, especially XGBoost, provide the lowest RMS during the space weather event, see Table 5 in
P-II.

The RMS values for the 1-hour VTEC forecast are similar for the models with the non-differenced
data and the data combination. They are higher than the RMS for the differenced data for mid and
low VTEC in 2017, but smaller during the geomagnetic storm. For the 24-hour forecast, the RMS for
mid- and low-latitude VTEC with the data combination is lower than for the non-differenced data and
more similar to the RMS for differenced data. The differenced data result in the lowest RMS in the
24-hour forecast compared to the other two data sets. The enormous improvement with differenced
data is for the mid-latitude VTEC during the geomagnetic storm when the RMS is reduced by 0.6
TECU compared to the non-differenced data.

The improvement of the VR1 VTEC model in P-II by incorporating new VTEC features is shown in
Figure 5.14. First, the models are trained with the first ten input variables in Table 3.1, i.e., without

Figure 5.14: The RMS for the cross-validation data (left), the January-December 2017 test data (mid),
and the September 7-10, 2017 geomagnetic storm (right) for 1-hour (top) and 24-hour
(bottom) forecasts for the VR1 model. The models trained with differenced data are
labeled "diff". Data2 refers to the data in Table 3.1, while Data1 contains Data2 without
the input features of EMA, VTEC’ and VTEC”, (taken from P-II)

EMAs and time derivatives, referred to as Data1. Later, EMAs and time derivatives of VTEC are added,
referred to as Data2. For both non-differenced and differenced data, the RMS values decrease by 0.2 -
0.5 TECU when these new VTEC features are added.

Figure 5.15 represents the percent RMS improvement, i.e., a percent reduction in RMS values, between
QGB VTEC models with different input features that produced the highest and lowest RMS values in
Table 5.2 shown under (a); in terms of naive forecast shown under (b); between QGB VTEC models
with 15-minute and 1-hour resolutions shown under (c). Also, an analysis is performed for VTEC
models trained with different learning algorithms for 24-hour forecast, based on Table 3 in P-III and
shown under (d).
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Figure 5.15: Percentage improvement in RMS for 15-minute resolution QGB VTEC models highlighted
in blue in Table 5.2 compared to: a) the models with RMS values highlighted in red in
Table 5.2; b) the naive forecast in Table 5.2; c) the 1-hour resolution QGB VTEC model
from P-III; for 2-year training data (I) and 4-year training data (II). d) RMS improvement
of the 1-hour resolution QGB VTEC model compared to the other models from P-III.

The more suitable input features lead to an RMS improvement of up to 10% to 20% in the year 2017
and April 2017, and around 20% and more than 30% during the September 2017 space weather events.
The improvements over the naive forecast are more prominent for the quiet period than the space
weather period, except for the 1-hour and 24-hour forecasts. Comparing the RMS values of the QGB
VTEC models with 15-minute and 1-hour resolutions, the RMS improvements of 15% and 25% can be
observed in 2017 and the space weather period, respectively, while they can be neglected in the quiet
period. Considering that the RMS is improved by 16% in 2017 and 20% in the space weather period by
selecting suitable input features in (a), it can be concluded that a large part of the improvements in
(c) is due to the improved choice of input features and a smaller part due to the increased temporal
resolution. Comparing the different models in P-III concerning the 1-hour resolution QGB VTEC
model with the same input features and training data length for the 24-hour forecast, their RMS
differences from January to December 2017 are around 3% and lower and can therefore be neglected.
In the quiet period of April 2017, the improvements are to 15%, while in the space weather period, the
other ML-based VTEC models, except MLP, perform better by 1% to 14%. This is, at most, half the
improvement compared to the improvement of the QGB VTEC model with a better selection of input
features.

100



101

6 Summary and Conclusion

In geodesy, space weather is identified as a natural hazard to GNSS infrastructure and positioning
and navigation applications. The impact of space weather on GNSS occurs primarily through the
ionosphere and the plasmasphere. This upper part of the atmosphere significantly influences the
propagation of GNSS signals and can degrade the positioning accuracy. As the demand for GNSS
accuracy increases and our society becomes more dependent on applications that require high-precision
positioning, navigation, and timing, it is essential to develop advanced modeling and forecasting
methods for the space weather effects on GNSS and the ionosphere in order to correct for these effects
in an accurate and timely manner. These methods must rely on modeling nonlinear solar-terrestrial
coupling processes to develop a system limiting the detrimental effects of solar storms.

In this dissertation, novel ionosphere models are developed using state-of-the-art ML techniques. In
that regard, various learning algorithms and methods are exploited to approximate nonlinear space
weather processes in order to model and forecast VTEC including also probabilistic forecast. The
models are data-driven, meaning they extract patterns and find modeling or mapping functions from
data describing the solar activity, solar wind speed, interplanetary and the Earth’s magnetic field,
and the ionosphere. In addition, a K-fold time series cross-validation method is implemented to
robustly train and validate the models using many data folds and considering time dependencies.
The work has also investigated the performance of ML models for different forecast horizons and
data, including data transformation, input feature selection, data length, temporal data resolution,
etc. In addition, this dissertation analyses the performance of bagging and boosting ML as well as
ANN methods. Moreover, the relative importance of input features to VTEC forecast is estimated. It is
important to emphasize that this dissertation, for the first time, develops ML-based probabilistic VTEC
forecast models with 95% confidence. Furthermore, a thorough investigation of different approaches
for uncertainty quantification is conducted. This means that the models not only forecast a VTEC value
but also forecast 95% confidence intervals that provide information on how confident and reliable the
results are by accounting for the uncertainties in the model parameters and/or data.

6.1 Novel contributions

To summarize the results of this dissertation, the main novelties are listed below. This dissertation
makes contributions and innovations in the field of ionosphere modeling and forecasting, including
the space weather component, in the following aspects:

1. Development of simpler, computationally efficient, and more interpretable ML approaches for
VTEC forecasting. The newly developed models based on decision trees are fast to optimize,
computationally efficient, and applicable to limited datasets.

2. Modification of the standard K-fold cross-validation method for VTEC forecasting into a K-fold
time series cross-validation by evaluating a model on a rolling basis and preserving time
dependencies between observations.

3. Combining ensemble learning models into a super-ensemble to improve forecasting results,
especially during a space weather event, and to quantify uncertainties.
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4. Providing information about the most important input features and how reliable the results are
with respect to a given confidence interval to increase explainability.

5. Introduction of input observations of solar wind plasma speed, interplanetary magnetic field,
high-resolution solar X-ray and EUV, derived features of first and second derivatives, moving
averages, and daily differenced data into an ML-based ionosphere model.

6. The model and data uncertainties in ML-based ionosphere models are quantified with different
approaches developed and implemented to provide information on how confident the results
are and where most of the uncertainty comes from, providing probabilistic ionosphere models
and improving the interpretability of the models and solutions.

7. Increased temporal resolution of ML-based ionosphere models to 15 minutes by integrating
high-resolution solar, geomagnetic, and ionosphere data.

8. Development of ML-based forecast model of the solar flare effects on the ionosphere.

It is also important to emphasize that in this dissertation, the developed ML-based VTEC models are
not treated as black boxes whose procedures are not questioned. A black box would be a system where
we only observe the input and output variables but not the internal processes. Although ML/DL
models are undoubtedly complex, it can be argued that they should not be treated as black boxes if the
algorithms are known, if the training data and training procedures are transparent, and if the model is
available to examine what it does (e.g., its parameters, its hyperparameter-driven architecture, etc.). In
this context, the black box system can be viewed from the perspective of users who treat and use ML
as such because they are unaware of some of the components described above. The opposite of a black
box is sometimes called a glass box. To make an ML system a glass box, algorithms, training data,
cross-validation data, and models must be known and made available. Therefore, the mathematical
procedures behind the applied algorithms, the training data as well as the training and cross-validation
procedures are presented transparently in this dissertation. In addition, software, data, and trained
models are made available for inspection (see Chapter Software 6.3).

6.2 Answers to the Research Questions

The research objectives listed in Section 1.7 are accomplished. The research questions are addressed
in various parts of this dissertation and the first authors’ publications. The answers to the questions
and the discussion of the dissertation results are again placed in the context below. Corresponding
references are provided in blue-colored responses, and relevant results are summarized with key
findings from the first authors’ publications and the dissertation sections that answer a particular
research question.

Q-1 What is the impact of the data on ML-based ionosphere modeling and forecasting in terms
of the input features, data length, and observations resolution? On the other hand, what is
the impact of using different learning algorithms?

Ref.: Sections 5.4 and 5.6, P-I, P-II, P-III

The results in Section 5.6 show that an ML-based ionosphere model is more affected by the selection
of input features than by the selection of learning algorithms.

The RMS reduction after selecting appropriate input features in P-I is up to 1.5 TECU (Figure 5.12). On
the other hand, ANN or RF RIMs result in a difference of only 0.1 TECU on the same data set in P-I.

Including input features such as the EMA and time derivatives of VTEC in P-II reduces the RMS by
up to 0.5 TECU (Figure 5.14). Using daily differenced observations instead of the original ones reduces
the RMS by about 0.6 TECU for the mid-latitude VTEC during the geomagnetic storm (Figure 5.13).
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Different input feature combinations are analyzed in Table 5.2, Section 5.4 for high-resolution VTEC
forecasting. The results show that input features of current VTEC and SYM/H values together with
EMA, first and second derivatives of VTEC are suitable for 15-minute and 1-hour forecasts. In contrast,
for the 3-hour, 6-hour, and 24-hour forecast horizons, the history of the previous 7-day VTEC and
SYH/H values is better suited as input features. Including the SYM/H geomagnetic activity index
improves the 24-hour forecast by about 16% during the September 2017 space weather events.

The appropriate input features result in an RMS decrease of up to 10% to 20% in 2017, and more
than 30% during the storm period for the high-resolution ML-based VTEC models (Figure 5.15). This
represents a much larger fraction of the RMS reduction than that achieved by increasing the temporal
resolution from 1 hour to 15 minutes. Using different learning algorithms in P-III results in an RMS
reduction that is half that obtained by improved input feature selection.

The models trained on 4-year data provide confidence intervals that include 3.5% more ground truth
VTEC during the storm than those trained on 2-year data. Also, the magnitude of ground truth falling
outside the confidence intervals is 1 to 2 TECU lower for the models trained on 4-year data.

Q-2 Can reduction of regular ionosphere variations and background ionosphere information in
the data through daily differencing improve the learning and generalization of the ML-based
ionosphere model?

Ref.: Sections 5.2 and 5.6, P-II, CP-II

The performance of the developed models is slightly distinct for non-differenced and differenced data
(Figure 5.13). For space weather events, improvements with differenced data are observed for the
longer forecast horizon, i.e., the 24-hour forecast. Using the differenced data, where the prevailing
regular diurnal ionosphere variability is reduced or eliminated, results in an RMS decrease of more
than 0.5 TECU for the 24-hour forecast during the severe storm (Figure 5.13). The improvements are
also observed for the 1-hour and 24-hour forecasts in the year 2017. Only for the 1-hour VTEC forecast
during the storm, the models perform better with the non-differenced data, i.e., they have smaller
RMS values. It can be concluded that daily differenced data enhance the performance of the ML-based
VTEC model for 24-hour forecasting, including a geomagnetic storm.

When using differenced data, the RMS values between different models for different Kp values,
especially for the geomagnetic storm with Kp ≥ 5, are largely consistent between the different
ensemble models and show smaller differences from the single Decision Tree (Figure 5.4). This
suggests that daily differencing facilitates the learning of structural patterns in the data, even when a
less complex model, such as a single Decision Tree, is used.

Q-3 How efficient are ML methods other than ANN, such as decision trees or ensemble learning
techniques, in modeling and forecasting the ionosphere?

Ref.: Chapters 3 and 5, P-I, P-II, P-III, CP-I, CP-II

This dissertation applies learning algorithms as the single Decision Tree and an ensemble of trees as
Bagging: Random Forest, Boosting: Gradient, and Adaptive Boosting to estimate an approximation
function for VTEC forecasting. In addition, BNN is applied to VTEC forecasting for the first time.
Before this, the most commonly used ML approaches for ionosphere modeling, and forecasting were
based on MLP and LSTM, which belong to the ML subfield of DL, as explained in Section 1.6.

Analyzing the different developed ML-based VTEC models, we conclude that combining a large
number of trees in an ensemble of Random Forest and Boosting improves the accuracy and outperforms
a single Decision Tree-based solution. Ensemble learning improves the VTEC forecast over the single
tree from about 10% to 30% (Table 5 in P-II). Further improvements in accuracy and generalization are
achieved by combining ensemble learning models in a meta-ensemble model, such as Voting Regressor
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in P-II and Super-Ensemble in P-III and CP-II. Meta-ensemble models, i.e., the ensemble of ensembles,
provide the lowest RMS and the highest correlation coefficients to ground truth compared to a single
ensemble member in P-II and CP-II.

The results in Chapter 5 and in P-II, P-III, CP-I and CP-II show that the developed ML-based VTEC
models can capture variations in VTEC, which are consistent with ground truth for the forecast
horizons from 15 minutes to 24 hours. These results demonstrate that the ML approaches other than
ANN can model and forecast VTEC effectively in different ionosphere regions during quiet and storm
periods.

Moreover, the developed ML-based VTEC models not based on the ANN architecture are computation-
ally much more efficient than, for example, the BNN model, as can be seen in Table 4.2. The Decision
Tree VTEC model is the fastest but not the best solution since it usually yields the highest RMS values.
The GBoost and QGB VTEC models, both based on Gradient Boosting, turn out to be better solutions
in terms of accuracy and computational efficiency. In addition, QGB VTEC models have advantages in
estimating uncertainties and providing reliable confidence intervals (see the answer to the research
question Q-4). Regarding computational efficiency, the QGB VTEC model is 30 to 60 times faster
than the BNN VTEC model during the training and cross-validation process. These results further
demonstrate the benefit of applying the ML methods of ensemble learning for ionosphere modeling
and forecasting. Ultimately, the choice of ML method depends on the complexity and availability of
the data, the interpretability requirements, and the available computing resources.

Q-4 How can data and model uncertainties be modeled, and how do uncertainties change when
the ionosphere is perturbed by a geomagnetic storm?

Ref.: Sections 3.3, 5.3 and 5.4, CP-II, P-III

The findings on the development of probabilistic VTEC models with 95% confidence and the quantifi-
cation of uncertainties in VTEC forecast from P-III and CP-II can be summarized as follows:

1. The SE and BNN approaches provide the lowest uncertainties and, thus, overconfident results.
The ground truth VTEC is outside the confidence intervals about ∼ 50% of the time.

2. The approaches that capture data uncertainties, QGB and BNN+D, provide wider confidence
intervals that contain the ground truth VTEC ∼ 95% of the time and are thus more realistic.

3. As for forecasting the mean or median VTEC, the SE approach often yields the lowest RMS
value, demonstrating the power of an ensemble to improve the accuracy of an estimate. On the
other hand, BNN tends to provide the highest correlations to ground truth, especially during a
storm.

4. Confidence intervals, especially of the QGB VTEC model, exhibit variations depending on
the daytime, solar irradiance, geomagnetic activity, and post-sunset low-latitude ionosphere
enhancement. They are narrower at night, wider around local noon at mid-latitudes, broader
and more variable with the change in the geomagnetic field, and increase after sunset at low
latitudes depending on geomagnetic and solar conditions.

5. The relative importance of input features shows that the confidence intervals of the QGB VTEC
model are determined by space weather indices in addition to VTEC-related input features,
with lagged VTEC dominating (see Figure 8 in P-III).

6. The most computationally intensive method is BNN+D, while QGB is the fastest.

During the space weather period, the confidence intervals become wider as the changes occur in the
geomagnetic field. The SE and QGB confidence intervals are about twice wider and more variable
on the day of the geomagnetic storm maximum and the following day of the recovery than during
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the quiet period (Figure 5.5). On the other hand, the BNN and BNN+D confidence intervals increase
slightly during the space weather event.

The high-resolution probabilistic QGB VTEC forecast analysis in Section 5.4 shows that the size
and shape of the confidence intervals follow sudden, intense ionosphere perturbations during space
weather. They are larger and more variable from day to day for the September 6-11, 2017 period than
for the quiet period April 25-29, 2017, when the confidence intervals are more similar from one day to
another. However, they are not entirely constant in the quiet period and quickly adjust to changes
in VTEC. The confidence intervals for the space weather period are largest for September 7 and 8,
implying that the forecasts are less confident. Both days are after the arrival of the CMEs, resulting in
moderate geomagnetic conditions on September 7 and severe geomagnetic conditions on September 8.
Another day with a wider confidence interval is September 9, when recovery from the storm began.
One day later, on September 10, the forecasts become much more confident as the disturbances in the
ionosphere calm down and the SYM/H index recovers. These results demonstrate the dependence of
the QGB probabilistic VTEC forecasts on conditions in the ionosphere and geomagnetic field, as well
as the sensitivity to perturbations in the ionosphere by the geomagnetic field.

Q-5 How do the forecast accuracy and uncertainties change as the forecast horizon expands, and
concerning quiet and storm ionosphere conditions?

Ref.: Section 5.4

The impact of different forecast horizons on model accuracy and uncertainty quantification is discussed
for the high-resolution QGB VTEC model based on the results in Section 5.4. The 15-minute forecast
has the smallest confidence intervals, deviating less than 1 TECU from the median VTEC forecast.
When the forecast horizon is increased to 1 hour, the confidence intervals and, thus, the uncertainties
become about twice as large. For the further forecast horizons of 3 hours, 6 hours, and 24 hours, the
confidence intervals are about 3 to 4 TECU wide from the median VTEC. It can be concluded that the
15-minute and 1-hour forecasts are the most confident, while the 3-hour, 6-hour, and 24-hour forecasts
have a wider and similar range of confidence intervals (Figures 5.8 and 5.9, and Table 5.2).

The confidence intervals tend to be larger and more variable for storm days, where strong VTEC
fluctuations occur, than for quiet days. The QGB VTEC models highlighted in blue in Table 5.2 provide
confidence intervals that contain the ground truth VTEC more than 90% of the time in 2017 and at
least 96% during the quiet period, while the percentage decreases from 90% to about near 80% during
severe space weather, depending on the forecast horizon.

The RMS values increase with the increase of the forecast horizons. They are the lowest for the
15-minute forecast and about twice as large for the 1-hour forecast. For the 3-hour, 6-hour, and 24-hour
forecasts, the RMS values are about 2 to 2.5 times and 1.5 times larger than for the 1-hour forecast
during the space weather and quiet periods, respectively. The RMS values between the 3-hour, 6-hour,
and 24-hour forecasts differ by only 0.2 to 0.5 TECU.

Q-6 Is it possible to forecast the ionosphere response to a strong solar flare by incorporating
high-resolution ionosphere, solar, and geomagnetic activity data?

Ref.: Section 5.5

High-resolution solar observations, LYRA from the PROBA2 satellite, and Ly-α from GOES-15 and
GOES-16 are added separately to the QGB VTEC model with the high-resolution ionosphere and
geomagnetic activity data to model the solar flare effects on the ionosphere in Section 5.5. Analyzed
for the 1-hour forecast, the results show that integrating the Ly-α observations contributes more than
the LYRA data. The reason is that the Ly-α emissions depend significantly on the flare location on the
Sun, which is consistent with the geo-effectiveness of a solar flare. On the other hand, the LYRA data
are not sensitive to the solar flare location, which contradicts the location-dependent geo-effectiveness
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of a solar flare. The QGB VTEC with Ly-α data increases 1 hour earlier than the QGB VTEC without
solar observations. Their difference is up to 2 TECU for the VTEC grid point at 10° 40°. The increase
in VTEC from the model with Ly-α data is about 3 TECU in only 15 minutes and corresponds closely
to the increased ionization in the ground truth VTEC.

Since we used the GIM VTEC, the solar flare impact is much smaller in the data than in reality.
However, if VTEC were calculated directly from GNSS observations, the effect would be much more
significant, as reported in Yasyukevich et al. (2018). In this case, adding solar observations of Ly-α
would be more meaningful and provide a more substantial improvement. The properties of a solar flare
effect on VTEC found in previous studies of Barta et al. (2022); Berdermann et al. (2018); Yasyukevich
et al. (2018) are consistent with the results in this dissertation. More specifically, the QGB VTEC model
with Ly-α approximates patterns such as the latitudinal dependence of solar flare effects and the
strongest impact at mid-latitudes, as well as the long duration of increased VTEC at mid-latitudes.

The limitations of introducing these high-resolution solar data into VTEC forecasting must also be
mentioned. Both the Ly-α and the LYRA data need to be cleaned of various effects and artifacts,
resulting in missing data. When comparing the two data sets, we had to remove much more data from
Ly-α than from the LYRA data. The reasons are the frequent effects of Earth eclipse and geocoronal
absorption in Ly-α due to the geostationary location of the satellites. Interpolation of the removed data
is challenging because it can be difficult to represent a realistic situation. Providing incorrect data, such
as assuming no significant solar activity during a solar flare, can negatively impact the ionosphere
model. On the other hand, if data cannot be interpolated, a backup solution is needed when Ly-α is
not available, e.g., to use the model with LYRA observations since they are more complete or if both
data sets are not available to switch to a model that does not require solar observations. Therefore, a
reliable solution can only be achieved by combining observations from different solar missions that
complement each other or using different VTEC models as backups.

Q-7 What is the contribution of the different input features to the model result?

Ref.: Section 4.6, P-I, P-II, P-III, CP-II

Knowing the underlying relationships between an ML model’s input and output is useful for inter-
preting what the model has learned and which input features have been selected as relevant. The
computation is performed as described in Section 3.4.

The relative importance of the input features shows that the VTEC forecast with non-differenced
data is mainly based on previous VTEC values, temporal information, and the solar radio flux F10.7,
especially for mid- and low-latitude VTEC in P-II. Similar results are obtained by RIM in P-I. The
contribution of other variables such as solar wind speed, Bz, AE, Kp, and Dst indices becomes more
significant with differenced data in P-II. As a result, the models trained on differenced data use almost
all of the input features to forecast VTEC, especially during storm periods. The relative importance of
the input features in P-III shows that the confidence intervals for the QGB model are determined by
space weather indices in addition to VTEC-related input features, with lagged VTEC dominating.

6.3 Outlook

Early warning and forecasting systems are essential to limit the detrimental effects of solar storms.
Further rapid development and adaptation of the emerging AI tools for operational ionosphere and
space weather forecasting systems can be expected in the next decade. The results of this dissertation
demonstrate the feasibility of nonlinear modeling using AI techniques and the performance of the
developed ML-based ionosphere models under quiet and storm conditions. Also, this dissertation
proposes methods for reliable and computationally effective VTEC forecasting, including uncertainty
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quantification. However, the work can be further improved. Therefore, recommendations for future
work are provided below.

□ Future work related to the P-I study should include the addition of dense CORS observations
from other countries within the western Balkans to improve the accuracy of the developed
RIMs and reduce the observation gaps. Also, observations from the EPN stations near and
further away from the study region borders can be introduced to fill in the observation gaps
between the IPPs. The GNSS data should be processed over a more extended period to re-train
the developed ANN-based RIM to improve its accuracy and applicability. The ML approach
can be further improved by automatically extracting features in the spatial domain using a
convolutional neural network and in the temporal domain using a recurrent neural network. To
facilitate their application in national positioning services, the RIMs should be implemented in
near-real time with a latency of up to 3 hours.

□ Include information on the uncertainties of the input observations and the observations used
as the ground truth for model training. This dissertation uses the input variables and ground
truth from the GIM CODE for the 1-h resolution models and the GIM UQRG for the 15-min
resolution models. However, the GIM products are not error-free. The standard deviations of
VTEC at 10° 40° from GIM UQRG are around 2 TECU in 2017, regardless of whether it is a calm
or a storm period. Thus, they are in a similar range as the confidence interval for the 1-hour
VTEC forecast. In further work, information on the standard deviation of the GIM should be
considered in training and cross-validation of the models or their evaluation and estimation
of the corresponding statistics. Such information can be included as an input feature of an
ML-based model, as in Kiani Shahvandi & Soja (2022).

□ Based on the findings in P-III and Section 5.3, a probabilistic VTEC forecast that only considers
the model parameter uncertainties is insufficient. The ML-based VTEC models trained with
different learning algorithms using the same or similar data set within an ensemble show
similar performances. The reason is that an approximation function is estimated from similar
data, which leads to smaller discrepancies between the solutions of the ensemble members. The
ensemble approach for uncertainty quantification can be improved by training the ensemble
members on different subsets of data covering different study cases and time periods, which
can increase diversity and randomness among ensemble members.

□ A probabilistic VTEC forecast that accounts for both model and data uncertainties would be
the optimal solution, as demonstrated by the BNN+D approach. Due to its computational
complexity, modification may be required to obtain a computationally efficient and accurate
model. In this context, the advantage of fast gradient boosting computation on decision trees
can be exploited. The QGB VTEC model could be improved by adding the model uncertainties,
e.g., via an ensemble of multiple diverse QGB VTEC models or via virtual ensembles (Malinin
et al., 2021) using a single gradient boosting model. Instead of estimating multiple quantile
functions separately, the method can be improved to estimate them simultaneously (e.g., Han
et al. (2021); Liu & Wu (2011)). Moreover, adding information about the uncertainty of the
observations directly into a model may improve probabilistic estimation and provide a more
realistic representation of uncertainties (e.g., Kiani Shahvandi & Soja (2022)).

□ The developed VTEC forecast models can be used to support positioning applications. For
a global or regional application, the models should be spatially extended. For operational
purposes, the models need to use VTEC input from the rapid or real-time GIMs or estimate it
directly from GNSS observations.

□ The results of the developed models should be validated for the latest period as a new solar cycle
is underway. Also, modeling and forecasting of the space weather effects on the ionosphere can
be implemented using VTEC values estimated and calibrated directly from GNSS observations
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rather than from the GIMs. Based on previous findings, the space weather effects should be
much more pronounced there, as they are significantly reduced in GIMs due to the modeling
and smoothing procedures.

□ The results support the idea of data importance, which is the core of ML and one of the main
factors for ML performance. The results also show that the uncertainty arising from the data
is much larger than that of the model parameters, which means that the input data of an ML-
based ionosphere model are much more important to be considered for future improvements.
Therefore, the input data should be further explored with new observations and extraction of
input features suitable for modeling and forecasting VTEC over longer horizons and during
space weather events. Incorporating input features that can characterize the space weather
impact in a helpful way for learning may be beneficial. Including data with higher temporal
resolution and minimizing the need to interpolate values may also reduce uncertainties. Further
studies also need to investigate how high-resolution space weather data can be leveraged to be
applicable to ML, as they are often characterized by data gaps and artifacts.

□ Based on the analysis in Section 4.2.1, the modeling and forecasting of space weather impacts
suffer from few examples of space weather events because they occur relatively infrequently
compared to quiet periods, resulting in an uneven data representation or imbalanced data.
If the training data contains balanced cases, model performance for space weather events is
expected to improve and the uncertainties to reduce. The selection of a learning algorithm
that can handle imbalanced data sets is also essential in this context. For example, ensemble
learning is recognized as a method that can provide significant improvements in the case of
a skewed distribution (Krawczyk, 2016), and boosting learning algorithms are shown to be
suitable for applications with imbalanced data (Esposito, 2020), both of which were applied in
this dissertation. However, there is room for improvement in handling imbalanced data sets.
Recommended solutions to be explored include improving the input features for learning rare
space weather-related VTEC signatures, training on the balanced data set with oversampling
or undersampling, or developing a cost-sensitive solution that can adjust the penalty for the
degree of importance assigned to the minority case.

□ Combining physical laws and equations with machine learning to develop a physics-informed
ML-based ionosphere model. Physics-informed ML can embed the knowledge of physical
laws that govern a given data set into the learning process and can be described by partial
differential equations (PDEs). It is often implemented using deep learning methods (see Raissi
et al. (2019), Karniadakis et al. (2021)). Adding prior knowledge of physical laws will act as
regularization during training to narrow the space of acceptable solutions and increase the
correctness of the function approximation. In this way, embedding the prior information will
improve the information content of the data and make it easier for the learning algorithm to
capture the solution even with a small number of training examples. Physics-informed ML-
based ionosphere models can also provide physically interpretable information, as researchers
often criticize ML methods as being "black boxes".
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Software

Within the scope of this dissertation, several software packages and tools were developed in MATLAB
and Python. Special attention was given to the consideration of open-source software. The exception
is that for data processing in P-I, commercial Bernese GNSS Software and Operational Tool for
Ionosphere Mapping and Prediction (OPTIMAP) software were used. Below is a list of the software
used in the first-author journal papers P-I, P-II, and P-III, with corresponding references and links.

• Bernese GNSS Software (Dach et al., 2015): scientific, high-precision, multi-GNSS data process-
ing software.
Source: http://www.bernese.unibe.ch/

• QGIS: Quantum Geographic Information System, free and open source geographic information
system.
Source: https://qgis.org/en/site/

• Scikit-learn (Pedregosa et al., 2011): free software machine learning library for the Python
programming language.
Source: https://scikit-learn.org/

• TensorFlow (Abadi et al., 2015): free and open-source software library for machine learning
and artificial intelligence for the Python programming language.
Source: https://www.tensorflow.org/

• Seaborn (Waskom, 2021): Statistical data visualization library for the Python programming
language.
Source: https://seaborn.pydata.org/

• Matplotlib (Hunter, 2007): plotting library for the Python programming language.
Source: https://matplotlib.org/

• Matlab (MATLAB, 2020): programming and numeric computing platform.
Source: https://uk.mathworks.com/products/matlab.html

• NumPy: Numerical Python for scientific computing.
Source: https://numpy.org/

• Pandas: Python Data Analysis Library.
Source: https://pandas.pydata.org/

The software developed in P-III is openly available through Zenodo and GitHub. The probabilistic
VTEC forecast results for the year 2017 based on the four uncertainty quantification approaches from
P-III are available under the Creative Commons Attribution 4.0 International license on Zenodo
(Natras et al., 2023c). The software used to develop, i.e., train, cross-validate, and test the BNN VTEC
models, as well as the training, the cross-validation, and the test data sets can be found in Natras
(2023a). The developed QGB VTEC models and software for loading and evaluating them against the
test data set are provided in Natras (2023b).

http://www.bernese.unibe.ch/
https://qgis.org/en/site/
https://scikit-learn.org/
https://www.tensorflow.org/
https://seaborn.pydata.org/
https://matplotlib.org/
https://uk.mathworks.com/products/matlab.html
https://numpy.org/
https://pandas.pydata.org/
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Appendix

In the following, a classification of the contributions by R. Natras in percent for each first-author
journal publication P-I, P-II, and P-III is given in Table 1.

Table 1: Contribution of Randa Natras to the first-author journal publications

Weight Estimated contribution

Paper P-I P-II P-III
Idea and Conceptual Design 30% 80% 85% 90%
Computation and Realization 10% 70% 85% 85%
Analysis, Interpretation and Conclusions 30% 80% 85% 85%
Figure and Table Compilation 10% 85% 95% 95%
Manuscript Writing 20% 80% 85% 90%
Estimated Total Contribution 80% 86% 89%

In order to estimate the own contribution to each paper, percentage estimates are given with respect
to five contribution criteria. It should be noted that the percentages are only approximations. A
percentage rating of the total own contribution to each publication was estimated as a weighted
average of the five contribution criteria, taking into account the significance of the contribution.
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O R I G I N A L  A R T I C L E

Regional Ionosphere Delay Models Based on CORS Data and 
Machine Learning 

Randa Natras1  Andreas Goss1  Dzana Halilovic3  Nina Magnet2 
Medzida Mulic4  Michael Schmidt1  Robert Weber3

1  INTRODUCTION

The ionized upper part of the Earth’s atmosphere known as the ionosphere 
affects the propagation of radio waves that are generated by communication and 
navigation systems. Consequently, ionospheric refraction can affect the accuracy 
and reliability of positioning applications that rely on global navigation satellite 
systems (GNSS). Dual-frequency GNSS observations facilitate the estimation of 
ionospheric effects by forming the geometry-free linear combination (L4) as well 
as reductions of most of the ionospheric range error via an ionosphere-free lin-
ear combination (L3) (Hofmann-Wellenhof et al., 2001). However, the ionosphere 
remains one of the major sources of error in single-frequency positioning, where the 
first-order ionospheric term accounts for more than 99.9% of the total ionospheric 
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Abstract
The ionospheric refraction of GNSS signals can have an impact on positioning 
accuracy, especially in cases of single-frequency observations. Ionosphere mod-
els that are broadcasted by the satellite systems (e.g., Klobuchar, NeQuick-G) do 
not include enough details to permit them to correct single-frequency observa-
tions with sufficient accuracy. To address this issue, regional ionosphere mod-
els (RIMs) have been developed in several countries in the western Balkans 
based on dense Continuous Operating Reference Stations (CORS) observations. 
Subsequently, a RIM for the western Balkans was built using an artificial neu-
ral network that combined regional ionosphere parameters estimated from the 
CORS data with spatiotemporal (latitude, longitude, hour of day), solar (F10.7) 
and geomagnetic (Kp, Dst) parameters. The RIMs were tested at the solar maxi-
mum (March 2014), a geomagnetic storm (March 2015), and the solar minimum 
(March 2018). The new RIMs mimic the integrated electron density much more 
effectively than the Klobuchar model. Furthermore, RIMs significantly reduce 
the ionospheric effects on single-frequency positioning, indicating their neces-
sity for use in positioning applications.

Keywords
artificial neural network, ionosphere delay modeling, machine learning, regional 
ionosphere model, single-frequency positioning, vertical total electron content
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delay associated with phase and code GNSS measurements (Hernández-Pajares 
et al., 2011). Because mass-market GNSS receivers commonly operate on a single 
frequency, the ionospheric range error needs to be corrected or at least mitigated by 
deploying models that minimize the ionospheric effects.

Due to the complex nature of these processes as well as the solar-terrestrial cou-
pling system, different approaches for modeling the ionosphere have been devel-
oped. Current models of the ionosphere can be categorized as physical, empirical, 
or mathematical (Farzaneh & Forootan, 2018). State-of-the-art methods utilize arti-
ficial intelligence, specifically machine learning techniques, to identify nonlinear 
relationships among the variables to improve forecasting, especially factors related 
to space-weather processes (Camporeale et al., 2018; Natras & Schmidt, 2021). 
Physical ionosphere models are based on physical and chemical processes in the 
ionosphere, as shown by the Global Assimilation of Ionospheric Measurements 
(GAIM) model (Schunk et al., 2004) and the Global Ionosphere-Thermosphere 
Model (GITM) (Ridley et al., 2006). These models rely on observations and math-
ematical representations of physical laws and can thus be quite complicated, as 
they require formidable numerical procedures with high computational costs. By 
contrast, empirical models describe the ionosphere with mathematical functions 
derived from historical observational data and statistics (Radicella & Nava, 2020). 
These models represent average conditions and regular variations of the iono-
sphere (i.e., its “climate”). Examples of such climatological empirical models are 
the International Reference Ionosphere (IRI) (Bilitza, 2018) and NeQuick (Nava 
et al., 2008). 

To correct the ionospheric delay in single-frequency observations, navigation 
satellite systems broadcast coefficients within the navigation message that are 
based on these empirical approaches. These models have been widely applied 
largely due to their simplicity. For instance, the well-known Klobuchar model 
(Klobuchar, 1987) that was adopted in the global positioning system (GPS) 
eliminates at least 50% of the ionospheric range delay error. Similarly, a spe-
cial version of the NeQuick model denoted as NeQuick-G that has been imple-
mented in Galileo can correct approximately 70% of the ionospheric code delay 
(Orus Perez et al., 2018). 

The ionospheric refraction of the single-frequency observations can be mod-
eled more precisely using GNSS observations to estimate the total electron con-
tent (TEC) along the signal path within the ionosphere; this value is proportional 
to the ionospheric refraction range. These models are typically based on estima-
tions of the vertical TEC (VTEC) on a global scale using different mathematical 
approaches. For example, global ionosphere maps (GIMs) are routinely generated by 
Ionosphere Associated Analysis Centers (IAACs) of the International GNSS Service 
(IGS) including CODE (Center for Orbit Determination in Europe, Astronomical 
Institute, University of Bern, Switzerland), ESOC/ESA (European Space Operations 
Center from European Space Agency, Darmstadt, Germany), JPL (Jet Propulsion 
Laboratory, Pasadena, California, USA), UPC (Universitat Politècnica de Catalunya; 
Technical University of Catalonia, Spain), NRCan (Canadian Geodetic Survey 
of Natural Resources Canada), WHU (Wuhan University, China), CAS (Chinese 
Academy of Sciences, China) and the OPTIMAP-Group, DGFI-TUM (Deutsches 
Geodätisches Forschungsinstitut der Technischen Universität München; German 
Geodetic Research Institute of the Technical University of Munich, Germany). The 
global VTEC distribution can be represented mathematically in the CODE maps by 
spherical harmonics (Schaer, 1999) with a spatial sampling of 2.5° × 5° in latitude 
and longitude, respectively, and a temporal resolution of two hours until the year 
2015 and one hour thereafter. The GIM products of the IAACs are used to generate 
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a combined solution of the IGS (Hernández-Pajares et al., 2009), which generally 
has global relative errors of 10% to 20% compared to the VTEC estimated from 
topography experiment (TOPEX) satellite altimeter missions observations (Orús 
et al., 2002). The GNSS-derived ionosphere VTEC models and maps are useful 
external sources that provide information for single-frequency GNSS users seeking 
to mitigate the first-order ionospheric delay and directly reduce the ionospheric 
range error (IERS conventions, 2010). The final GIM products commonly feature a 
time delay of 1–2 weeks, while the rapid GIMs are generated with a latency of 1–2 
days (Li et al., 2020; Liu et al., 2021). The latency of GIM products can limit their 
use in real-time positioning applications.

In contrast to these models, regional ionosphere VTEC models (RIMs) may be 
more accurate as they have higher spatial and in some cases, also higher temporal 
resolution because they can incorporate observations from dense GNSS networks. 
The RIMs are based on a different set of mathematical approaches for VTEC rep-
resentation. For example, in Europe, the Royal Observatory of Belgium (ROB) gen-
erates RIMs in near real-time by applying thin plate spline interpolation (Bergeot 
et al., 2014). Other approaches for regional VTEC mapping in Europe include series 
expansions in tensor products of polynomial B-spline functions (Goss et al., 2020), 
weighting functions that take into account the location and the magnitude of the 
global electron maximum (Magnet, 2019), approximations of the ionosphere sin-
gle layer model with Taylor expansions of degree two (Boisits et al., 2020), among 
others. It is critical to recognize that most of the RIMs were developed for large 
regions, such as the European continent.

Regarding the temporal resolution of the ionospheric products, use of the slant TEC 
(dSTEC) RMS can result in improvements of approximately 13% and 20% when the 
temporal sampling is increased from 2 hrs to 1 hr for low and high-resolution global 
ionosphere B-spline models, respectively, (Goss et al., 2019). However, increasing the 
temporal sampling from 1h to 10 min resulted in minimal improvements of only 3% 
to 4% for low and high-resolution global ionosphere B-spline products, respectively. 
Further investigation of global VTEC products in different latitudinal ranges (Liu 
et al., 2021) revealed no differences in the standard deviations of the GIMs at 1 hr, 
45 min, 30 min, and 15 min temporal resolutions in the mid-latitudinal range (30° N 
to 50° N) with regard to VTEC from the Joint Altimetry Satellite Oceanography 
Network (JASON) satellite altimeter mission. By increasing the temporal resolution 
from 1 h to 15 min, the RMS of the dSTEC assessment decreased by less than 0.01 
TECU in the mid-latitudinal range (30° N to 50° N). By contrast, an improvement 
of approximately 0.2 TECU in standard deviation and of 0.5 TECU in the RMS was 
obtained when the temporal resolution was increased from two hrs to one hr.

Recently, there has been increasing interest in state-of-the-art machine learning 
applications for global and regional ionosphere modeling. Among these studies, a 
feed-forward neural network was applied for regional VTEC modeling over Nigeria 
(Okoh et al., 2016) that was based on inputs of geomagnetic latitude and longitude, 
year, day of the year, the hour of the day, Dst index, sunspot number, and critical 
plasma frequency (foF2) from the International Reference Ionosphere (IRI) model. 
Other applications include regional VTEC modeling over Brazil using inputs of lat-
itude and longitude (Leandro & Santos, 2007), global VTEC modeling with inputs 
of latitude and longitude, day of the year, F10.7 and Kp indices (Orus Perez, 2019), 
regional VTEC modeling over South Africa using the day of the year, the hour of 
the day, a four-month running mean of sunspot number and the running mean 
of the previous eight hours of the Ap index (Habarulema et al., 2009), as well as 
others. Zhao et al. (2021) used spherical harmonics with a neural network based on 
an extreme machine-learning technique for real-time modeling of the ionospheric 
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delay. Similarly, Zhang et al. (2019) successfully combined the machine learning 
algorithm of a support vector machine with the regional VTEC polynomial model 
based on the CORS observations. Liu et al. (2020) utilized a type of recurrent neu-
ral network known as long short-term memory (LSTM) to forecast global VTEC 
maps; the LSTM model processes sequences of past observations of spherical har-
monic coefficients, extreme ultraviolet (EUV) flux, and Dst index, among others to 
understand temporal-dependent relationships. Kaselimi et al. (2020) also applied 
an LSTM model with inputs that included satellite position coordinates, the azi-
muth and the elevation angles of the satellite, and the output of the VTEC. The 
wavelet neural network for VTEC modeling (El-Diasty, 2017) combines the inputs 
of the day of the year, the hour of the day, latitude, and longitude of the ionosphere 
pierce point (IPP) with the estimated Klobuchar model at the same IPP point and 
VTEC output data for the model training estimated from the CORS stations obser-
vations. Another application of support vector machines extrapolates VTEC in 
regions where GNSS observations are not available (Kim & Kim, 2019). The inputs 
include the hour of the day, the day of the year, F10.7 and Kp indices, sunspot 
number, and VTEC from areas where GNSS observations were available to provide 
estimates for VTEC for regions devoid of GNSS observations (Kim & Kim, 2019). 
Also, an ensemble of tree-based meta-estimators has been developed by combin-
ing random forest, adaptive boosting (AdaBoost), and extreme gradient boosting 
(XGBoost) methods for VTEC forecasting during both calm and stormy geomag-
netic conditions (Natras et al., 2022a) and estimating forecast uncertainties as an 
ensemble spread (Natras et al., 2022b). Various machine-learning approaches and 
applications have been proposed. The input data can include spatial information 
(latitude and longitude of the station or the IPP or the satellite position, among oth-
ers), temporal information (year, day of year, hour of day), solar activity (sunspot 
number, F10.7, EUV flux, and others), geomagnetic activity (Kp and Dst) as well 
as ionosphere information (IRI, Klobuchar, GNSS-derived VTEC, VTEC polyno-
mial model, and spherical harmonic coefficients). Most previous studies employed 
a fully-connected feed-forward neural network. Regarding the size of the training 
dataset, different lengths of time were used in previous studies, including one day 
(Zhang et al., 2019; Zhao et al., 2021), four days (El-Diasty, 2017; Kaselimi et al., 
2020), ten days (Leandro & Santos, 2007), one to two years (Kim & Kim, 2019; Liu 
et al., 2020; Natras et al., 2022a), and four years (Habarulema et al., 2009; Okoh 
et al., 2016; Orus Perez, 2019) among others. Results from previous studies demon-
strated the feasibility of machine learning for VTEC estimation, with a focus on 
artificial neural networks and also when applied to a limited dataset of several 
days. While large datasets are typically perceived as essential for training neural 
networks, it is possible to train these models with relatively small amounts of data 
(Motamedi et al., 2021; Rajpurkar et al., 2020). The lack of large datasets will need 
to be compensated by high-quality data. This represents the core of a data-centric 
approach in machine learning (Motamedi et al., 2021). In these cases, data quality 
is more important than the dataset size, i.e., shifting from big data to good data. 
This facilitates effective training of neural networks with smaller datasets.

Most of the aforementioned ionosphere models rely on GPS or GPS + 
GLONASS observations from the IGS, the European EUREF Permanent 
Network (EPN), and/or the CORS network as a source of VTEC information. 
The yellow area in Figure 1 shows the approximate location of the Balkan 
Peninsula (36° N to 48° N, 13° E to 30° E). The distribution of IGS and EPN 
tracking ground stations is poorer in this region compared to the rest of Europe. 
However, most countries in this region operate dense CORS networks. This is 
also a case in the countries in the western part of the Balkan Peninsula, whose 
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observations have not been previously used to generate ionosphere VTEC mod-
els. These networks provide denser GNSS observation coverage for VTEC mod-
eling in the western Balkans.

This research aims to extend current knowledge in the field of RIM development 
based on GNSS observations by generating ionosphere models for a region that is 
much smaller than most continents using information available from dense CORS 
networks. With this in mind, this paper describes the development, validation, and 
applicability of regional GNSS-based ionosphere models while accounting for ion-
osphere effects in positioning applications. We will determine how to use data from 
CORS networks for regional/national VTEC modeling and identify the advantages 
that VTEC models developed for small regions can bring to positioning applica-
tions, using the western Balkans as a test case example. Therefore, the aim of the 
study is not to describe the physical and/or chemical processes associated with the 
ionosphere constituents, but instead to generate models that take into account and 
mitigate the ionospheric effects that hinder GNSS/GPS positioning utilizing avail-
able CORS data. Until now, no regional ionosphere model based on the national 
GNSS infrastructure has been established or developed in the countries in the 
western Balkans region. To address this knowledge gap, this paper presents three 
new regional ionosphere models based primarily on the observations from the 
CORS networks: (i) a first model developed for a small region inside one country; 
(ii) a second model developed for several countries within the western Balkans; and 
(iii) a third model that covers the entire western region of the Balkan Peninsula. As 
part of the third model, we propose an approach based on state-of-the-art machine 
learning techniques including the use of an artificial neural network. These models 
will be evaluated in single-frequency precise point positioning. To the best of our 
knowledge, this is one of the first studies to use observations from the CORS net-
works located in the western part of the Balkan Peninsula to generate GNSS-based 
ionosphere models and to evaluate them in positioning applications to mitigate the 
effects of ionospheric refraction.

FIGURE 1 Locations of GNSS tracking ground stations used by CODE to produce GIMs 
(obtained from Jee et al. (2010)). 
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2  METHODOLOGY

The impact of the ionosphere on the propagation of radio waves propagation can 
be described by the STEC in Equation (1):

 STEC N s dse
k

i
� � ( )  (1)

where Ne (s) is the electron density along the signal ray path between the sat-
ellite i and the receiver k. STEC is measured in TEC units (TECU), where 
1 TECU= 1016 electrons/m2. The vertical TEC (VTEC) can be expressed as shown 
in Equation (2):

 VTEC STEC z� �cos '  (2)

where z’ is the zenith angle of the signal path in a mean altitude H of the iono-
spheric shell. The ionosphere is approximated as the single-layer model (SLM), 
which assumes that all free electrons are concentrated within a shell of infinitesimal 
thickness. The SLM mapping function F(z) can be written as shown in Equation (3):

 F z STEC
VTEC z
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R H
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where z is the zenith angle at the height of the receiver, R is the mean Earth radius 
and H is the aforementioned height of the SLM above the Earth’s surface (Schaer, 
1999). The SLM height typically ranges between 350 km to 450 km (Jiang et al., 
2017; Mannucci et al., 1998; Schaer, 1999). IGS analysis centers have adopted a thin 
layer height of 450 km for the ionosphere products (Feltens, 2003). In this study, we 
also adopted the SLM height of 450 km above the Earth’s surface. 

2.1  Selection of Study Region and Data

Figure 2 shows the locations of stations that belong to the CORS (blue dots) and 
the EPN (red dots) networks whose dual-frequency GPS observations were used in 
this study to generate VTEC models. Two VTEC models were developed based on 
the regions covered, namely, RIM IONO_BH and RIM IONO_WB. 

To estimate the RIM IONO_BH, the station network was selected to include 
nine Bosnia and Herzegovina Positioning Service (BIHPOS) stations each located 
approximately 80 km from the central EPN station in Sarajevo. An orange ellipse on 
the map marks this area. The RIM IONO_WB was derived from GPS observations 
obtained from the following CORS networks: the Albanian GNSS Permanent Stations 
(AlbGNSS), BIHPOS, the Croatian Positioning System (CROPOS), the Macedonian 
Positioning System (MAKPOS), and the Slovenia-Geodesy-Navigation-Location 
(SIGNAL). We also used observations from eight EPN stations within this region. 
Observations from the CORS networks located in Serbia and Kosovo were not avail-
able from the network providers and are not freely available to the public; thus this 
information was not used in this study. Also, historical data from the CORS network 
in Montenegro were not preserved for these study periods and thus not available 
for use in this study. Consequently, CORS observations from these countries were 
not included in the RIM IONO_WB. The network selected for the RIM IONO_WB 
included approximately 80 CORS and EPN stations between approximately 40° N 
to 47° N and 13° E to 23° E. RIM IONO_WB was developed as an independent 
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model that would be applicable for each of the participating countries mentioned 
above. Therefore, the RIM IONO_WB includes files with the extension “ION” that 
contain separate sets of ionospheric corrections for each country. The reference 
point of the Taylor series expansion was set approximately in the mid-range of 
each country included in the study. Permanent stations that were used to validate 
the newly-developed RIMs are highlighted on the map with inner black and white 
circles (Figure 2). These stations were not used for estimating the regional models. 
The following stations shown on the map were used to validate the RIM IONO_BH: 
EPN SRJV and BIHPOS SARA (which are very close to one another), BIHPOS SEKO, 
and, additionally, two stations outside the modeled region, EPN POZE and EPN 
DUB2. Stations used for the RIM IONO_WB and the RIM IONO_WB_AI validation 
included EPN GSR1, EPN POZE, EPN SRJV, IGEWE TIRA, and EPN ORID. 

2.2  Regional Ionosphere Modeling with Bernese GNSS 
Software

Bernese GNSS Software version v.5.2 (Dach et al., 2015) was used to process 
GNSS data, estimate ionosphere models and perform positioning. Before gener-
ating ionosphere models, several pre-processing steps must be carried out. Table 1 
summarizes routines and the processing steps according to the order of their exe-
cution. Additional details on each routine and processing step in the Bernese GNSS 
software are described by Dach et al. (2015). The ionosphere models were esti-
mated within the IONEST routine using the Bernese-recommended values (Dach 
et al., 2015) listed in Table 2. This routine works only on the assumption of GPS 
zero-difference observations. 

FIGURE 2 Map documenting the locations of the dual-frequency stations of the CORS 
(blue dots) and the EPN (red dots) networks whose observations were used for VTEC modeling. 
Stations used for the RIM validation are highlighted with an inner black dot with a white rim; 
their names are indicated on the map.
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Ionosphere mapping was performed on the undifferenced (zero-difference) level 
by analyzing the so-called geometry-free linear combination (L4) of phase obser-
vations which are formed by subtracting observables at different frequencies. This 
means that all frequency-independent effects such as the satellite-receiver geomet-
rical range, clock errors, and tropospheric delay, among others, were canceled out, 
while the ionospheric effect remained (Ciraolo et al., 2007). Thus, the geometry-free 
linear combination includes the ionospheric delay and can be used to estimate the 
ionosphere model. With this approach, the carrier phases are not fitted to code 
(pseudo-range) observations; this means that no code-phase leveling was applied.

The observation equation for zero-difference phase observations can be outlined 
as shown in Equation (4):

 L L L
f f

F z VTEC s BIPP IPP4 1 2
1
2

2
2 4

1 1
� � � � � �

�

�
�

�

�
� � � � � �� � � �( ) ( , )  (4)

where L4 is the geometry-free phase observable, � � � � �4 03 1017 2 1. ms TECU  is a 
constant, f1, f2 are the frequencies associated with the carriers L1 and L2, � ��  rep-
resents the wind-up term associated with the right-handed polarized GPS signal 
(typically a centimeter-level term), B B B4 1 1 2 2� � � �� �  is a constant phase bias 
caused by the initial phase ambiguities (i.e, unknown integer number of cycles) B1 
and B2 with their corresponding wavelengths λ1  and λ2 .  The initial phase ambigu-
ities B1 and B2 are estimated as real-value parameters within the initial least-squares 
adjustment using the phase observations L1 and L2 on both frequencies. The initial 
phase ambiguity has the same value provided that no loss of signal lock occurs. At 
least one parameter ( )B4  has to be solved for each receiver and satellite pass since 
it contains phase ambiguities. For cycle slip detection, differences between two sat-
ellites for the same epoch are formed from the measurements in the observation 
files. If cycle slips are detected, the geometry–free linear combination L4  is checked 

TABLE 1
Processing Steps in the Bernese GNSS Software

Steps Bernese software routine

Cutting 24-hour RINEX observations into 1-hour files CCRINEXO

Orbit and Earth’s orientation information preparation POLUPD, PRETAB, ORBGEN

Satellite clock correction files preparation RNXCLK, CCRNXC

Import of RINEX observation data into the Bernese format RXOBV3

Receiver clock synchronization CODSPP

Ionosphere model estimation IONEST

TABLE 2
The Specific Options for the VTEC Modeling (IONEST Routine)

Pre-processing and processing options

Linear combination for break detection (data cleaning) L4

A priori sigma of a single observation 0.01 m

Elevation cut-off angle 15°

Height of the single layer 450 km

Degree of Taylor series expansion in latitude (nmax) 1

Degree of Taylor series expansion in hour angle (mmax) 2
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in order to determine their size in both frequencies. A new ambiguity is set up at 
the corresponding epoch of the detected cycle slip. Pre-processing options were set 
in the IONEST routine to define a new ambiguity parameter B4  for each detected 
cycle slip. The resulting geometry-free linear combination in Equation (4) allows 
us to estimate VTEC as a function of geographic latitude φIPP and the Sun-fixed 
longitude sIPP at the intersection point of the line-of-sight between the satellite 
and the receiver with the ionospheric layer. This intersection point is known as the 
ionospheric pierce point (IPP). 

The regional VTEC model is based on the two-dimensional (2-D) Taylor series 
expansion shown in Equation (5): 

 VTEC s c s sIPP IPP nm
m

m

n

n

IPP
n

IPP o
m( , ) ( ) ( )

maxmax

� � �� � �
��
��

00
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where n, m are the degree values of the 2-D Taylor series expansion in geographic 
latitude and Sun-fixed longitude, nmax, mmax are the maximum degree values of the 
Taylor series expansion in geographic latitude and Sun-fixed longitude (Table 2), 
φ0 0, s  denote the coordinates of the origin of the Taylor expansion and cnm  stands 
for the unknown coefficients of the Taylor series expansion, i.e., the regional iono-
sphere model parameters to be estimated (Dach et al., 2015; Wild, 1994).

The Sun-fixed longitude s is related to the local solar time (LT) as shown in 
Equation (6): 

 s LT UTIPP IPP� � � � �� � �  (6)

where UT is an abbreviation for the Universal Time, LT is local time, and λIPP 
denotes the geographical longitude of the IPP; all values are in radians. 

The latitude φIPP and the longitude λIPP  as shown in Equation (7) and Equation (8):

 � � � � �IPP k k zA� ��sin (sin cos cos sin cos )1  (7)
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where � �k k,  are the latitude and longitude of the receiver k, Az stands for the azi-
muth from the receiver to the satellite, and ψ  is the angle between the lines joining 
the center of the Earth with the IPP and receiver location. It can be calculated as 
shown in Equation (9):
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R H
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where El  stands for the elevation angle.
Ionosphere models were derived with a temporal sampling of one hour with 

the Bernese default extension ION and later combined into a 24-hour file for each 
day, namely the RIM IONO_BH and RIM IONO_WB, as described in Section 2.1.

When applying the ionosphere model presented in Equation (5), the ionospheric 
range corrections (in meters) for the zero-difference GPS observations of the i-th 
frequency can be computed as shown in Equation (10):

 �i IPP IPP
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IPP IPPs z
f
F z VTEC s( , , ) ( ) ( , )�
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2
 with i = 1, 2 (10)
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where the negative sign is used for phase observations and the positive sign for 
code observations.

2.3  Regional Ionosphere Modeling with Machine 
Learning

Machine learning represents a branch of artificial intelligence (AI) that can 
approximate the function between inputs and outputs based on rules/relationships 
that an AI system has “learned” from the data during the learning/training phase. 
This characteristic distinguishes machine learning from traditional modeling/
programming approaches which require an extensive list of rules describing rela-
tionships between inputs and outputs to be explicitly specified (Natras & Schmidt, 
2021). More specifically, machine learning addresses the problem of finding an 
approximation function that maps inputs (called predictors, features, or indepen-
dent variables) to one or more outputs (called responses or dependent variables). 
This study focuses on the estimation of a single output (VTEC). Therefore, the out-
put is presented below as a single-column vector. To start, a dataset was prepared 
that contained the measurements of the input feature x j  ( ), � ,� ,�j p� �1 2  and the 
output y  for a set of observations i i n�( ,� , � , � )� �1 2  as indicated in Equation (11):
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Artificial neural networks (ANNs) represent a state-of-the-art technique with 
widespread applications in many fields. The ANN usually consists of an input layer 
with input variables, an output layer with output variables, and one or more hid-
den layers between them. Hidden layers allow the model to create a complex non-
linear mapping function between the network inputs and outputs by introducing 
a nonlinear activation function (Sharma et al., 2020). To estimate the values of the 
neurons in a current layer, parameters (weights) need to be added to the values of 
the neurons from the previous layers. The weight matrices can be defined as shown 
in Equation (12):
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Where the matrix W contains all weights in the neural network. W( )k−1  are weight 
matrices assigned to p neurons from the previous layer (k–1) in order to estimate 
values of L neuron(s) in the current hidden or output layer (k) with k = (2, 3, …, K), 
where k = 1 corresponds to the input layer. wl o,  is the bias term ( ),� , � , �l L� �1 2 .  
In the matrix X  we added an element xi o, = 1  to each row. It is convenient to 
include this element, because of the bias term wo  as this will permit us to present 
Equation (13) in vector form as a scalar product. Thus, the linear model will predict 
the output yi  given a vector of input features xi  and weights wl  with l = 1,  i.e., the 
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model consists of an input and an output layer, which can be expressed as shown 
in Equation (13): 

 
=

+ = = = =∑1 1, , 10( )ˆ , p T
i i i i j i j ijy e y f w xx w w x  (13)

where ei  is an error. The weights in W are determined during the training phase 
using the method of least squares to minimize the sum of the squares of the error 
ei  and as shown in Equation (14):

 
= =

= = −∑ ∑2 2
1 1( ) ( )ˆ .n n

i i ii iR e y yW  (14)

In a fully connected network, all neurons in one layer are connected to all neurons 
in the next layer; this is also known as a multilayer perceptron network (Ramchoun 
et al., 2016). A feed-forward network indicates that the connections between the 
neurons are all in one direction (from input to output) and hence the information 
is fed-forward from one layer to the next. Afterward, the backpropagation is used to 
adjust the weights of the ANN using a stochastic gradient descent method (Bottou, 
1991) to minimize R( )W , as shown in Equation (14). In this study, we tested differ-
ent setups of an ANN architecture and inputs. These specifications are presented 
in Table 3. In total, six ANN and two Random Forest (RF) models have been devel-
oped. One ANN model does not contain a hidden layer (ANN1); all other ANN 
models have hidden layers. The ANN1 model is an example of the linear model, 
where the outputs are estimated as described by Equation (13). The architecture 
of the ANN5 model is shown in Figure 3. ANN5 is a fully-connected feed-forward 
network with an input layer, three hidden layers, and an output layer. The number 
of neurons in the first layer corresponds to the length of the vector x j .  Neurons in 
each layer can be referred to as activation neuron vector ai

k( )  (k = 1, … , K). The 
input layer can be expressed as a xi i

( )1 = .  Hidden layers compute the derived fea-
tures from ai

( )2  to ai
K( )−1 .  The last layer provides the output yi i

K
 = a( ) .  Activation 

neurons in the hidden layer can be calculated as described in Equation (15):

 a z W ai
k k

i
kq q T( ) ( ) ( )( )� � � �� �1 1  (15)

where q  is the activation function (Hastie et al., 2009). The activation function used 
in hidden layers is known as a ReLu (Rectified Linear unit) function (Sharma et al., 
2020). ReLu is a non-linear activation function that is widely used in deep learning 
models because of its simplicity and effectiveness. It is defined in Equation (16):

 q( ) max( , )z z= 0  (16)

meaning that the function will generate a value of zero for any negative value of 
z; for any positive value, it will return that value. The network output yi  can be 
defined as shown in Equation (17): 

 y qi i
K K

i
KT

 � � � �� �a W a( ) ( ) ( )1 1 .  (17)

The optimal hyper-parameters (number of neurons, number of hidden layers, 
learning rate for the stochastic gradient descent, and so on) were selected by test-
ing different values within a certain range and observing the changes in R( )W . 
Hyperparameters were searched within the following intervals: number of hidden 
units = [5, 10, 20, 30, 40, 60], number of hidden layers: [1, 2, 3, 4], epochs = [100, 
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200, 300, 400, 500], batch size = [50, 100, 200, 300, 400, 500]. Batch size refers to 
the number of training examples propagated through the network in one iteration 
(forward/backward pass). The number of epochs represents the number of com-
plete passes through all the training examples. Hyperparameters that minimize 
R( )W  were selected. The optimal number of hidden units was identified as 10 with 

TABLE 3
AI Models with Input data, Architecture, and Training Quantities. A bias unit is added to the 
input and the hidden layers in the ANN. ReLu, Rectified Linear Unit, SGD, Stochastic Gradient 
Descent.

AI models Input data Architecture Training

ANN1 Regional ionosphere 
coefficients 
Latitude, Longitude

Input layer: 27 neurons 
Output layer: 1 neuron
Linear mapping

Optimizer: SGD
Learning rate: 2e-1
Momentum: 0.9
Epochs: 400
Batch size: 300

ANN2 Regional ionosphere 
coefficients 
Latitude, Longitude

Input layer: 27 neurons
Hidden layer 1: 10 neurons
Hidden layer 2: 10 neurons
Hidden layer 3: 10 neurons
Output layer: 1 neuron
Activation function: ReLU

Optimizer: SGD
Learning rate: 1e-3
Momentum: 0.9
Epochs: 400
Batch size: 300

ANN3 Regional ionosphere 
coefficients 
Latitude, Longitude
HoDsin , HoDcos

Input layer: 29 neurons
Hidden layer 1: 10 neurons
Hidden layer 2: 10 neurons
Hidden layer 3: 10 neurons
Output layer: 1 neuron
Activation function: ReLU

Optimizer: SGD 
Learning rate: 1e-3
Momentum: 0.9
Epochs: 400
Batch size: 300

ANN4 Regional ionosphere 
coefficients
Latitude, Longitude
HoDsin ,  HoDcos
F10.7

Input layer: 30 neurons
Hidden layer 1: 10 neurons
Hidden layer 2: 10 neurons
Hidden layer 3: 10 neurons
Output layer: 1 neuron
Activation function: ReLU

Optimizer: SGD 
Learning rate: 1e-3
Momentum: 0.9
Epochs: 400
Batch size: 300

ANN5
IONOWB_
AI

Regional ionosphere 
coefficients
Latitude, Longitude
HoDsin , HoDcos
F10.7
Kp, Dst

Input layer: 32 neurons
Hidden layer 1: 10 neurons
Hidden layer 2: 10 neurons
Hidden layer 3: 10 neurons
Output layer: 1 neuron
Activation function: ReLU

Optimizer: SGD 
Learning rate: 1e-3
Momentum: 0.9
Epochs: 400
Batch size: 300

ANN6 Latitude, Longitude
HoDsin , HoDcos
F10.7
Kp, Dst

Input layer: 7 neurons
Hidden layer 1: 10 neurons
Hidden layer 2: 10 neurons
Hidden layer 3: 10 neurons
Output layer: 1 neuron
Activation function: ReLU

Optimizer: SGD 
Learning rate: 1e-4
Momentum: 0.9
Epochs: 200
Batch size: 50

RF1 Regional ionosphere 
coefficients
Latitude, Longitude
HoD
F10.7, Kp, Dst

Number of trees= 300
Min_samples_split=5
Min_samples_leaf=3

Criterion: Mean 
squared error

RF2 Latitude, Longitude
HoD
F10.7, Kp, Dst 

Number of trees= 300
Min_samples_split=5
Min_samples_leaf=5

Criterion: Mean 
squared error
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three hidden layers. This architecture was kept constant in all ANN models from 
Table 3 tested; additional fine-tuning resulted in no significant differences. The 
addition of more neurons and more layers to the ANN increases the complexity 
of the interactions between layers and neurons. While this can be perceived as 
a positive, too much complexity can lead to overfitting the training data as the 
machine learns from its noise and is thus not capable of generalizing informa-
tion from new examples. Choosing the appropriate complexity of an ANN requires 

FIGURE 3 Representation of the architecture of the ANN5 model with one input, three 
hidden, and one output layer (right). An additional bias unit was added to the input and the 
hidden layers. ANN architectures were drawn using the web-based tool NN-SVG (LeNail, 2019).



NATRAS et al.    

careful attention when optimizing the model. Additionally, the Random Forest 
(RF) algorithm (Breiman, 2001), which builds an ensemble of decision trees, can 
be used to compare results and determine which input features are relevant. The 
RF algorithm provides the possibility of easily estimating the relative importance 
or contribution of each input feature (Breiman, 2001). A detailed explanation of 
how a decision tree and RF are built to address the VTEC problem can be found in 
Natras et al. (2022a). The RF model includes 300 decision trees; the quality of splits 
within the trees is measured with the mean squared error.

Most of the input data for these models consists of the coefficients c ,nm  
i.e.  regional ionosphere parameters from Equation (5), which is estimated for 
each hour in each country within the study region (Section 2.1) by processing the 
GNSS observations in the Bernese GNSS Software. During the training phase, the 
geographical coordinates belonging to the origin of the coefficient expansion were 
provided with the output data of the VTEC at these positions. Information on lati-
tude and longitude was then added to extract spatial interactions. Additional input 
data were introduced to each new model. The information regarding time was 
added to extract temporal dependencies and features. For the ANN models, the 
sine and cosine components are calculated to preserve their cyclic significance, as 
shown in Equation (18):
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where HoD is the hour of the day. Decision tree-based algorithms, such as RF, do 
not require time information to be split into sine and cosine components (Boussard 
et al., 2017). Also, RF considers just one input feature at a time as the splitting vari-
able when building a tree (Breiman, 2001). Therefore, it will fail to process sine and 
cosine components simultaneously, although they are expected to be considered as 
one system. Data on solar and geomagnetic activity such as the solar flux F10.7 and 
the geomagnetic indices of Kp and Dst were also introduced gradually. Eventually, 
the models (ANN6 and RF2) were trained solely on information regarding time, 
location, and solar and geomagnetic activity. The data were shuffled and randomly 
divided into training (80%) and validation datasets (20%). Using the training data, 
we built models that can approximate the function between inputs and outputs 
and estimate the outcome for new inputs. Using validation data, values for the 
hyperparameters were selected. All input features were scaled (i.e. standardized) 
to obtain data with a mean value of zero and a standard deviation of one. This is 
standard procedure in many learning algorithms that are sensitive to the scale of 
the input features (Zheng & Casari, 2018). This ensures that all inputs are treated 
equally, even if the variables have different scales. Also, gradient descent can con-
verge faster, meaning that the optimal parameters for each neuron can be located 
more quickly. Feature standardization is defined in Equation (19):

 x
x x
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i j j
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�
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where xi j,  is the data point i from j-th input feature, x j  is the mean of the j-th 
input feature (over all data points from test and validation datasets together), σσ j  is 
the standard deviation of the j-th input feature, xi j,  is the resulting standardized 
data point i from j-th input feature. Scaling is performed on each input feature 
independently. Mean and standard deviation values are then stored for later data 
to perform the consistent transformation. 
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A correlation heatmap is created from a 2D correlation matrix of the input 
features and the output (Figure 4). Coefficients cnm of the regional ionosphere 
are presented as Cnm in the heatmap. Five coefficients were estimated for 
each country, as explained in Section 2.1. Mean correlations for coefficients are 
presented. The coefficient c00 has the strongest positive correlation to VTEC, 
followed by c10 and c02, both of which have a moderate negative relationship 
to VTEC. The F10.7 index has a positive moderate relationship, while the Dst 
and Kp indices have a weaker relationship with VTEC. The lowest correlations 
involve HoD, and latitude and longitude, which were added to extract temporal 
and spatial features.

Figure 5 and Table 4 show that the temporal, solar, and geomagnetic activ-
ity information increase the ANN model accuracy, respectively, in terms of the 
RMSE and the correlation coefficients (CCs) between the VTEC model output 
and VTEC from Equation (5). These input data are useful for deriving tempo-
ral, solar, and geomagnetic features and relationships. Moreover, removing the 
regional ionosphere coefficients from the AI models (ANN6 and RF2) increases 

FIGURE 4 Correlation heatmap of the input features and the output of the machine learning 
model.
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the RMSE approximately three times and decreases the CCs by approximately 
0.1. The ANN6 and RF2 models are not as accurate as the linear model with the 
regional ionosphere coefficients (ANN1). These results indicate that estimating 
the VTEC using only the spatiotemporal (latitude, longitude, and HoD), geo-
magnetic, and solar parameters (F10.7, Kp, and Dst) will not be sufficient. These 
data alone cannot provide an accurate description of VTEC. However, in con-
junction with more influential, descriptive parameters of VTEC variations, such 
as regional ionosphere coefficients, one can significantly improve the model. 
Based on these results, the ANN5 model was selected as optimal and henceforth 
referred to as the RIM IONOWB_AI model.

Knowing the underlying relationships between the inputs and the output 
of the AI model is useful for interpreting what the AI model has learned and 
which input features have been selected as relevant. The relative importance 
of the input features was calculated as a root square of the sum of the squared 
improvements over the nodes in a tree generated by RF when a specific input 
feature xj was selected (Breiman, 2001). The importance of the input features 
was estimated using the RF1 and RF2 models (Figure 6). The relative impor-
tance of each coefficient is calculated as the mean importance of the regional 
ionosphere coefficients estimated for five countries. For the RF1 model, the 
first coefficient c00 contributes most to the VTEC output, followed by HoD 
and F10.7 index. Contributions from other coefficients were at similar levels. 
Smaller contributions were provided by the Dst index, longitude, latitude, and 
Kp index. These parameters extract spatial dependence and provide additional 
geomagnetic-dependent VTEC variations and relationships, but do not have a 
dominant influence in defining the VTEC variations with respect to the other 
inputs. Because the coefficients were calculated from the CORS and EPN obser-
vations, they already contain regional ionosphere information related to the 

FIGURE 5 The RMSE (left) and correlation coefficients (CCs, right) for training and 
validation of ANN and RF models.

TABLE 4
RMSE and CCs for Training and Validation Datasets for Different AI Models.

Dataset ANN1 ANN2 ANN3 ANN4 ANN5 ANN6 RF1 RF2

RMSE
(TECU)

Train 7.31 3.99 3.00 2.86 2.60 8.34 2.67 8.51

Validation 7.15 4.01 3.11 2.86 2.73 8.73 2.83 8.75

CC
Train 0.906 0.974 0.985 0.986 0.989 0.876 0.988 0.870

Validation 0.910 0.973 0.984 0.986 0.987 0.869 0.986 0.868
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origin of the Taylor series expansion and therefore, they have a large impact on 
the model output. When training a model with no regional ionosphere param-
eters, the highest contribution (nearly 70%) comes from HoD. The other most 
influential inputs are the F10.7, Dst, and Kp indices. The contributions of these 
inputs are higher in the RF2 model than in the RF1 model. This is because 
the RF2 model does not include input parameters that describe the regional 
ionosphere. Regional ionosphere coefficients correlate much more closely with 
the VTEC than any of the other input features. The least critical contributions 
come from latitude and longitude. This may be because the F10.7, Kp, and Dst 

FIGURE 6 Relative importance of input variables when training AI models with (left) and 
without coefficients (right) estimated using Random Forest (RF).

FIGURE 7 Flowchart leading to the development of RIMs. First, GPS data from local 
CORS and EPN observations were processed in the Bernese GNSS software to form geometry-
free linear combinations of phase observations which were then used to estimate coefficients 
representing the regional ionosphere parameters that form the basis of the RIM IONOBH and 
the RIM IONOWB. Regional ionosphere parameters were then fed into the ANN along with the 
spatial and temporal parameters as well as solar and geomagnetic indices, resulting in the RIM 
IONOWB_AI model.
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indices are not spatially dependent. These results provide us with some intu-
ition of how the AI models learn from these datasets.

Regional ionosphere parameters estimated from the CORS and EPN observa-
tions for each country included in the development of RIM IONO_WB were com-
bined with spatiotemporal (latitude, longitude, and HoD), solar (F10.7 index), and 
geomagnetic (Kp and Dst indices) parameters via an AI technique using the ANN 
algorithm; this has resulted in the RIM IONOWB_AI model (Figure 7). This model 
can estimate VTEC for any location in the western Balkans. 

2.4  Selection of the Study Period

Three time periods were selected for the study:

• March 20–26, 2014,
• March 15–20, 2015, and
• March 20–26, 2018.

These periods were chosen because they included different phases of the solar 
cycle and varying ionosphere activity. Specifically, the solar maximum occurred 
in 2014, the declining phase of the solar cycle was in 2018, and a severe geo-
magnetic storm occurred in March 2015. There were large ionosphere distur-
bances over the study region that resulted in VTEC changes of 60% to 150% on 
the day of the storm in March 2015 and between 50% and 80% on the following 
days compared to its regular variability (Natras et al., 2023). Furthermore, all 
periods evaluated were around the spring equinox, when one can expect to find 
the highest number of electrons within the ionosphere over the study region 
(Natras et al., 2023).

The RIM IONOBH model was estimated for the first and third study periods, 
while the RIM IONOWB was generated for the first and second study periods. 
Therefore, while both models were established for the period of the solar max-
imum in 2014, different time frames were chosen for the second study period, 
including the solar minimum period (March 2018) for the RIM IONOBH and the 
geomagnetic storm period (March 2015) for the RIM IONOWB. This was because 
the models were developed independently of each other as part of two different 
projects implemented at different research institutes with different objectives, 
i.e., to study RIMs in the period of solar maximum (2014) and minimum (2018), 
and to analyze RIMs during a severe geomagnetic storm (2015). Furthermore, data 
were not available from all CORS networks for all periods examined; this resulted 
in different second study periods.

2.4.1  Overview of Solar and Geomagnetic Activity

Solar and geomagnetic indices are presented in Figure 8 for periods 
March 20–26, 2014 (left), March 15–20, 2015 (middle), and March 20–26, 2018 
(right). These indices include the sunspot number R, radio flux F10.7 of the Sun’s 
emission at the 10.7 cm wavelength (Covington, 1969), disturbance storm time 
Dst (Sugiura, 1964), and Kp (Chapman & Bartels, 1962) obtained from the NASA/
GSFC OMNI data set via OMNIWeb (https://omniweb.gsfc.nasa.gov/form/dx1.
html). The first study period represents a solar maximum that reached its peak 
in April 2014. Therefore, the number of sunspots was increased throughout, 
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ranging from 112 to 151, and F10.7 had values larger than 150 sfu. By contrast, 
the geomagnetic conditions were mostly quiet with Kp values below 4 with small 
fluctuations in the Dst index at approximately zero. The second investigation 
period included the strongest geomagnetic storm of the solar cycle 24, known as 
the St. Patrick’s Day Storm, that occurred on March 17, 2015. This severe storm 
was characterized by a main phase in which the Kp index reached a value of 8 
and the Dst index was less than –200 nT. This was followed by a recovery phase 
that began on March 18, 2015, and lasted for several days until the geomagnetic 
field returned to normal conditions. It is worth mentioning that both the number 
of sunspots (from 20 to 53) and the solar radio flux (about 110 sfu) were signifi-
cantly lower compared to those measured during the first period. The third study 
period featured low levels of solar activity during the decline phase of the solar 
cycle toward its minimum. This period was characterized by no sunspots and 
an F10.7 less than 70 sfu. The geomagnetic activity was calm to active, with no 
geomagnetic storms.

2.5  Validation of the Regional Ionosphere Models

The RIMs IONOBH and IONOWB were validated against other ionosphere 
models, including:

• GIMs final products from CODE and IGS (from https://cddis.nasa.gov/
archive/gnss/products/ionex/)

• European RIM from the GIOMO model, based on weighting functions and 
developed at the Department of Geodesy and Geoinformation, Vienna 
University of Technology (Magnet, 2019)

• European RIM based on polynomial B-spline functions developed at DGFI-
TUM as a two-step VTEC model (TSM-Product 2c) named as OTHR model 
(Goss et al., 2020).

FIGURE 8 Overview of solar and geomagnetic indices for the three study periods. Left 
panel: March 20–26, 2014; middle panel: March 15–20, 2015; right panel: March 20–26, 2018. 
From top to bottom: R sunspot number (SN), solar radio flux F10.7 in sfu (solar flux units), Dst in 
nT, Kp (Quiet kp · 10 < 30, Moderate 30 ≤ kp · 10 < 40, Active 40 ≤ kp · 10<50, Storm kp · 10 ≥ 50).
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• NeQuick2 (computed via https://t-ict4d.ictp.it/nequick2/nequick-2-web-
model)

• GPS broadcasted model Klobuchar. VTEC values were calculated from 
broadcast ephemeris data (https://cddis.nasa.gov/archive/gnss/data/daily/).

The climatological empirical model NeQuick2 (Nava et al., 2008) is the latest 
version of the NeQuick ionosphere electron density model developed for the com-
putation of slant electron density profiles and TEC in the ionosphere at a given 
height, geocentric latitude, and geocentric longitude. Information on solar activity 
is provided to the model by the daily solar radio flux F10.7. The NeQuick2 model 
takes into account the contribution of the plasmasphere to VTEC up to 40,000 km. 
Although the electron density in the plasmasphere is much lower than in the ion-
osphere, under some conditions, such as at night and during periods of low solar 
activity, the contribution of the plasmasphere may represent a larger proportion 
of the VTEC. The relative global contribution of the plasmasphere to the VTEC 
depends on latitude and solar activity, with a minimum contribution of about 10% 
during daytime hours and a maximum of up to 60% at night.

The VTEC data of the RIM GIOMO model were provided for the study periods 
in March 2014 and March 2018 during the project that led to the development of 
the IONOBH. By contrast, VTEC data from the RIM OTHR model were available 
for all study periods.

The ionosphere models were also evaluated for precise point positioning (PPP) by 
processing single-frequency ( )L1  observations for selected GNSS stations using the 
Bernese GNSS Software. The following cases of L1 PPP solutions were carried out: 

• L1 positioning solution without ionospheric corrections, 
• L1 positioning solution with ionospheric corrections from the final GIM 

CODE, and
• L1 positioning solution with ionospheric corrections from the RIMs IONOBH 

and IONOWB.

However, there is no interface in the Bernese software that can be used to 
process broadcasted ionospheric delay models. Therefore, we could not apply 
corrections from the Klobuchar model. The following processing steps were 
implemented for the PPP method: data preprocessing (RNXSMT), import of data 
into the Bernese format (RXOBV3), preparing orbit and Earth’s orientation infor-
mation (POLUPD, PRETAB, ORBGEN), data preprocessing 2 (CODSPP, GPSEST, 
RESRMS, SATMRK), performing a solution for epoch parameters, and/or cre-
ation of normal equations NEQ (GPSEST) and an NEQ-based final session solu-
tion (ADDNEQ2). More details on each step are included in Dach et al. (2015). 
Positioning errors were estimated as differences between “true” positions and 
the single-frequency positioning results expressed as north, east, and up com-
ponents. The weekly combined EPN solutions (https://www.epncb.oma.be/ftp/
product/combin/) were used as “true” positions for the EPN stations. For the 
CORS stations, “true” positions were estimated with the dual-frequency PPP 
method in the Bernese GNSS software. For the analysis, errors were expressed as 
1-D RMS vertical and 2-D RMS horizontal position errors, as well as, 3-D RMS 
position errors as shown in Equation (20):
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where ΔEi, ΔNi, ΔUi are errors in the east, north, and up (vertical) components, 
respectively, of the i-th position estimate sample and n is the total number of posi-
tion estimate samples.

3  RESULTS

Section 3.1. compares the new RIMs with other ionosphere models as described 
in Section 2.5. The developed RIMs were then applied to correct the ionospheric 
range error in single-frequency positioning. The results of this procedure are pre-
sented in Section 3.2. 

3.1  VTEC Results

The results shown in Figure 9 include the VTEC time series for the EPN station 
SRJV estimated from the RIM IONOBH for March 2014 (first panel) and March 
2018 (third panel); differences between the RIM IONOBH and other ionosphere 
models are also shown (second and fourth panels). The IONOBH VTEC variability 
was at least five times higher in March 2014 (solar maximum) than in March 2018 
(solar minimum). The VTEC values from the GIMs are mostly higher than the 
VTEC values from the RIM IONOBH. The largest differences between the GIMs 
and the RIM IONOBH occur during the night, with differences of up to 10 TECU 
in March 2014 and up to approximately 5 TECU in March 2018. During the day, 
the differences between the RIM IONOBH and the GIMs are reduced by a factor 
of 2 (i.e., mostly below 5 TECU in March 2014 and 2 TECU in March 2018). Higher 
differences were observed with respect to the GIOMO model, up to 20 TECU in 
2014 and primarily up to 5 TECU in 2018. Interestingly, the GIOMO corresponds 
more effectively to the RIM IONOBH in 2018 and at night. Most of the results 
from RIM OTHR are in better agreement with the RIM IONOBH with differences 
smaller than those observed from the GIM CODE in March 2014 and March 2018. 
The models NeQuick2 and Klobuchar underestimate the VTEC in March 2014, 
while the Klobuchar model overestimates VTEC in March 2018. Differences from 
the Klobuchar model are up to 20  TECU. In March 2018, the results from the 
RIM IONOBH were in better agreement with those from the NeQuick2 model 
with differences up to 5 TECU during the day and mostly below 2 TECU at night. 
These results correspond to results reported by Wang et al. (2017) and Shi et al. 
(2019). In their studies, they show that climatological models, such as NeQuick2 
and IRI2016, provide extremely underestimated values for VTEC during periods 
of high solar activity; however, these models are consistent with the GIM IGS in 
mid-latitudes and during periods of low solar activity (Shi et al., 2019). Differences 
between the RIMs IONOBH and IONOWB_AI are below 5 TECU for March 2014, 
with higher differences observed primarily at night.
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The results shown in Figure 10 illustrate the differences between VTEC of the 
RIM IONOWB and VTEC of the other models, as well as VTEC time series from 
the RIMs IONOWB for the location of the EPN station SRJV for March 2014 (top 
two panels) and March 2015 (bottom two panels). In March 2014, the VTEC differ-
ences between the RIM IONOWB and other models were comparable to the results 
obtained with the RIM IONOBH (Figure 9, top).

In March 2015, the regular maximum VTEC daily values during March 15–16 
(i.e., without disturbances from a geomagnetic storm) were about 20 TECU 
lower than in March 2014. During these days, the differences in VTEC from the 
RIM IONOWB with respect to the GIMs and the OTHR model were mostly less 
than 5 TECU; by contrast, differences from the NeQuick2 model were as high as 
10 TECU during the daytime and below 3 TECU at night. On the day of the St. 

FIGURE 9 VTEC time series and differences between VTEC from the RIM IONOBH and 
other models that were estimated based on the location of the EPN SRJV station. Top two panels: 
March 20–26, 2014 (solar maximum); bottom two panels: March 20–26, 2018 (solar minimum). 
Note the different scaling of the y-axes due to the effect of the solar cycle on VTEC.
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Patrick’s geomagnetic storm (March 17), the RIM IONOWB showed two VTEC 
peaks, including one around local noon (greater than 60 TECU) and another in the 
evening (greater than 40 TECU). The maximum differences detected on this day 
were 15 TECU. During the daytime, the differences from GIMs were mostly below 
5 TECU, and almost zero during occurrences of the two aforementioned peaks. 
The higher VTEC differences between the RIM IONOWB and the other models 
occurred later in the evening. By contrast, the largest differences (up to 40 TECU) 
were those associated with the climatological model during the main storm phase; 
these findings correspond to results reported by Wang et al. (2017). The VTEC 
decreased during the recovery phase of the storm (March 18–21). Differences in 
the VTEC were mostly below 4 TECU compared to those of the GIMs and the 

FIGURE 10 VTEC time series and differences between VTECs from the RIM IONOWB 
and other ionosphere models estimated based on the location of the EPN SRJV station. Top two 
panels: March 20–26, 2014 (solar maximum); bottom two panels: March 15–20, 2015 (includes a 
severe geomagnetic storm). Note the different scaling of the y-axes due to the solar cycle and the 
effects of the geomagnetic storm on VTEC.
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OTHR model. With respect to the NeQuick2 model, the differences were below 
10 TECU during the daytime and below 3 TECU at night. A comparison of the RIM 
IONOWB and IONOWB_AI reveals differences of up to 5 TECU, mainly occurring 
at night. During the daytime of the main phase of the storm (March 17), the dif-
ferences were mostly around 0 with maximum differences of less than 4 TECU. 
Differences between the RIM IONOWB and the Klobuchar model were as high as 
10 TECU before the storm, near 30 TECU during the main storm phase, and up to 
20 TECU during the recovery.

A comparison between the newly-developed RIMs IONOBH and IONOWB and 
the other models shows that the smallest differences during daytime are between 
the new RIMs and the final GIM CODE. At night, the new RIMs agree most fre-
quently with the NeQuick2 model, as it takes into account the contributions of the 
plasmasphere electron content to the ionospheric VTEC.

Figure 11 presents the RMSE between VTECs of the newly-developed RIMs 
and those from GIM CODE, RIM OTHR, RIM GIOMO, and the Klobuchar (Klob.) 
model for the study periods March 2014, March 2015, and March 2018. The RMSE 
is provided for the entire day from 00:00 to 23:00 UTC (upper left) and during day-
time hours from 6:00 to 16:00 UTC (upper right). Correlation coefficients are pro-
vided for the entire day (bottom) together with the mean RMSE and the mean 
correlation coefficients.

An analysis of the RIMs IONOWB and IONOWB_AI was performed for the 
stations EPN GSR1, EPN POZE, EPN SRJV, IGEWE TIRA, and EPN ORID. An 
analysis of RIM IONOBH was done for the stations EPN SRJV, BIHPOS SEKO, 
EPN POZE, and EPN DUB2. The RMSE values were lower in the daytime than 
at night, with values mostly below 4 TECU, except for the Klobuchar model. The 

FIGURE 11 Top: RMSE values for study periods March 2014, March 2015, and March 2018 
for the entire day (0:00 to 23:00 UTC, upper left) and daytime hours only (6:00 to 16:00 UTC, 
upper right). Bottom: Correlation coefficients for the entire day (00:00 to 23:00 UTC). Note that 
correlations from 0.7 to 1.0 are shown.



    NATRAS et al.

highest RMSE values were compared to the Klobuchar model, while the lowest 
were compared to the GIM CODE and the RIM OTHR. The RMSE values with 
respect to Klobuchar were about 7.5 TECU for all three study periods; the highest 
discrepancies were during daytime when the RMSE approached 10 TECU. A com-
parison of the RMSE values between the new RIMs and GIOMO revealed values 
of approximately 7 TECU in March 2014, including values below 5.5 TECU during 
the daytime. In March 2018, the RMS errors were reduced by a factor of 2, i.e., 
to below 3 TECU. In 2014, RMSE values compared to those from the GIM CODE 
and RIM OTHR were about 5 TECU for the entire day, and about 3.5 to 4 TECU 
during the daytime alone. In 2015, the RMSE values were below 4 TECU, while in 
2018, the RMSE values were below 1.5 TECU during daytime and below 3 TECU 
at night when compared to the GIM CODE and RIM OTHR. In March 2014, the 
RMSE with respect to the RIM OTHR were approximately 0.3 TECU lower than 

FIGURE 12 VTEC maps (from left to right) for RIM IONOWB_AI, RIM OTHR, and 
GIM CODE (top). Middle: VTEC differences (from left to right): VTECIONOWB_AI – VTECOTHR, 
VTECIONOWB_AI – VTECCODE, and VTECOTHR – VTECCODE. Bottom: VTEC map for the Klobuchar 
model (left) and VTEC difference VTECIONOWB_AI – VTECKlob (right). All maps were from 12 UTC 
on March 21, 2014.
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RMSE for the GIM CODE; during the daytime, the RMSE values differed by less 
than 0.1 TECU. In March 2015, values from the newly-developed RIMs corre-
sponded with those from the GIM CODE at 0.3 TECU level during the entire day, 
and 0.5 TECU better during the daytime than those provided by the RIM OTHR. 
In March 2018, the RMSE from the RIM OTHR were about 0.35  TECU lower 
than those from the GIM CODE, where their differences during the daytime can 
be neglected (i.e., 0.03 TECU). Correlations were the highest between new RIMs, 
and the GIM CODE and RIM OTHR.

Figure 12 presents VTEC maps for March 21, 2014, which was a day with high 
solar activity (F10.7 = 153 sfu) and quiet geomagnetic conditions (Kp = 2) at 
12 UTC. The VTEC maps for March 17, 2015, the day of the severe geomagnetic 
storm at 12 UTC (F10.7 = 139 sfu, Kp = 8) and for March 18, 2015, the day after the 
main storm phase at 12 UTC (F10.7 = 114 sfu and Kp = 5) are shown in Figure 13 

FIGURE 13 VTEC maps (from left to right) for RIM IONOWB_AI, RIM OTHR, and 
GIM CODE (top). Mid: VTEC differences (from left to right): VTECIONOWB_AI – VTECOTHR, 
VTECIONOWB_AI – VTECCODE, VTECOTHR – VTECCODE. Bottom: VTEC map for Klobuchar (left) 
and the VTEC difference VTECIONOWB_AI – VTECKlob (right). All maps relate to 12 UTC on 
March 17, 2015.
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FIGURE 14 VTEC maps (from left to right) for RIM IONOWB_AI, RIM OTHR, and 
GIM CODE (top). Middle: VTEC differences (from left to right): VTECIONOWB_AI – VTECOTHR, 
VTECIONOWB_AI – VTECCODE, and VTECOTHR – VTECCODE. Bottom: VTEC map for the Klobuchar 
model (left) and the VTEC difference VTECIONOWB_AI – VTECKlob (right). All maps relate to 12 
UTC on March 18, 2015.

TABLE 5
Overview of the Mean Differences for the Solar Maximum (March 21, 2014) and the Geomagnetic 
Storm (March 17–18, 2015) for the Region from 13°E to 23°E Longitude and from 40°N to 47°N 
Latitude. Mean values from both periods (final column) were calculated based on the mean 
differences from March 21, 2014, and the mean differences averaged over March 17–18, 2015.

Differences between 
models

Absolute mean differences (TECU)

March 21, 2014 March 17, 2015 March 18, 2015 Mean values

IONOWB_AI – OTHR 0.94 1.36 1.03 1.07

IONOWB_AI – CODE 1.48 1.40 1.05 1.35

OTHR – CODE 1.51 0.55 0.49 1.02

IONOWB_AI – Klob. 23.24 25.16 13.24 21.22
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and Figure 14, respectively. VTECs from the RIM IONOWB_AI, RIM OTHR, GIM 
CODE, and the Klobuchar model were estimated on the 1° × 1° grid in latitude 
and longitude in the range from 40°N to 47°N and 13°E to 23°E. VTEC maps of 
RIM IONOWB_AI, RIM OTHR, and GIM CODE show the lowest daily ionization, 
mostly from 46°N to 47°N (upper parts of the maps), and the highest ionization 
from 40°N to 41°N (lower parts of the maps). 

During solar maximum (Figure 12), RIMs IONOWB_AI and OTHR differed 
by less than 3 TECU with a mean difference of 0.9 TECU (Table 5). The largest 
differences between the RIMs were from 43°N 21°E to 44°N 23°E (3 TECU) and 
along 40°N (about 2 TECU). The smallest differences were in the areas cover-
ing Slovenia, Croatia, Bosnia-Herzegovina (BH; except around 44° latitude), 
and Montenegro with differences of less than 1 TECU and a mean difference 
of 0.4 TECU. Differences between the IONOWB_AI and the GIM CODE are 
up to approximately 4 TECU with a mean difference of 1.5 TECU. The largest 
differences were observed in the southern part of the map, where only a few 
IGS/EPN stations were used to estimate the GIM for the study area. By contrast, 
regions in which no GNSS stations were used to estimate the RIM IONOWB 
showed smaller differences. For example, the regions of Serbia and Kosovo 
(19°E–23°E, 42°N–46°N) showed a mean difference of 1.2 TECU compared to 
the RIM OTHR and 0.9 TECU compared to the GIM CODE. The average VTEC 
differences for the region of Montenegro (18°E–20°E and 42°N–44°N) were 0.8 
TECU compared to RIM OTHR and 1.3 TECU compared to the GIM CODE. 
The VTEC difference maps between the RIM IONOWB_AI, RIM OTHR, and 
GIM CODE reveal unique VTEC features from the IONOWB_AI model with 
nonlinear spatial variations. The Klobuchar model underestimated VTEC by 
more than 20 TECU.

During the main phase of the storm (Figure 13), the ionization increased across 
the western Balkans. VTEC differences of RIM IONOWB_AI compared to RIM 
OTHR and GIM CODE show higher values in the northern part of the maps (up to 
4.4 TECU). No GNSS observations from this region nor any of the more northern 
countries were used to generate the RIMs in this study; this led to the larger dif-
ferences observed during the storm. The mean differences for the western Balkans 
regions, where GNSS observations were not used, were up to 1.2 TECU (Serbia, 
Kosovo) and 0.5 TECU (Montenegro) with respect to the RIM OTHR, and 1.4 TECU 
(Serbia, Kosovo) and 0.6 TECU (Montenegro) with respect to the GIM CODE. The 
VTEC values of the countries Slovenia, Croatia, and BH correspond better to the 
RIM OTHR with a mean difference of 0.5 TECU. The VTEC values in the southern 
part of this region correspond more closely with those from the GIM CODE with 
a mean difference of 0.7 TECU. The Klobuchar model underestimated VTEC by 
more than 24 TECU and failed to approximate the sudden VTEC increase during 
the main storm phase.

On the day after the main storm phase, the ionization was twice as low as 
on the previous day (Figure 14). The highest differences between the RIM 
IONOWB_AI, and the RIM OTHR and GIM CODE were identified in a region 
that included Italy, which was not part of this study. The average differences 
in the western Balkans countries were 0.6 TECU and 0.7 TECU between 
IONOWB_AI and the RIM OTHR and the GIM CODE, respectively. The mean 
differences over the western Balkans regions, with GNSS observations that 
were not used in this study, were 0.5 TECU (Serbia, Kosovo) and 0.6 TECU 
(Montenegro) compared to the RIM OTHR, and 0.6 TECU (Serbia, Kosovo) and 
0.7 TECU (Montenegro) compared to the GIM CODE. The largest differences 
with regard to the RIM OTHR were along 44°N latitude (up to 1 TECU), while 
differences up to 0.6 TECU were detected for the same location compared to 
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the GIM CODE. By contrast, the RIMs IONOWB_AI and OTHR showed bet-
ter agreement in the area 18°E–23°E and 42°N–40°N with a mean difference 
of 0.6 TECU; the mean difference was twice as high. at 1.2 TECU compared 
to the GIM CODE. The Klobuchar model overestimated VTEC by more than 
10 TECU, and therefore, cannot be used to approximate the decline in VTEC 
during the recovery phase of the storm.

Our results (Figure 9–Figure 14) reveal that results from the Klobuchar model 
deviate significantly from those generated by the newly-developed RIMs. Findings 
generated by the new RIMs correspond much more closely to the GIM CODE, 
which is considered the most accurate and precise source of VTEC information 
that is currently available. These results suggest that the new RIMs might replace 
the broadcasted Klobuchar model for applications involving single-frequency 
positioning.

3.2  Single-Frequency Positioning Solutions

To assess the RIM IONOBH, vertical and horizontal RMS position errors were 
calculated from 24-hour solutions for March 2014 and March 2018 for selected sta-
tions (Figure 15). 

Positioning solutions without ionospheric corrections revealed RMS vertical 
position errors of approximately 5.5 m and 1.3 m in March 2014 and March 2018, 
respectively. As expected, single-frequency positioning solutions with ionospheric 
corrections represented a significant improvement, especially with respect to the 
vertical component. When applying the final GIM CODE, the vertical RMS errors 
were between 0.7 and 1 m in March 2014 and between 0.1 and 0.3 m in March 2018. 
The application of the new RIM IONOBH led to a higher vertical position accuracy 
for all stations with an RMS error between 0.4 and 0.7 m in March 2014 and 0.1 
and 0.2 m in March 2018. The horizontal RMS errors between the GIM CODE and 

FIGURE 15 RMS errors of single-frequency positioning solutions without ionospheric 
corrections compared to the GIM CODE and the RIM IONO_BH. Shown are vertical position 
errors on March 20–26, 2014 (top left), horizontal position errors on March 20–26, 2014 (top 
right), vertical position errors on March 20–26, 2018 (bottom left), horizontal position errors on 
March 20–26, 2018 (bottom right).
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the RIM IONOBH were similar, at approximately 0.5 m for the RIM IONOBH and 
0.6 m for the GIM CODE in March 2014 and 0.2 to 0.3 m in March 2018.

Figure 16 presents both vertical and horizontal RMS errors determined in 
March 2014 and March 2015 for selected stations that were used to assess the 
RIMs IONOWB and IONOWB_AI. Positioning solutions without ionospheric cor-
rections had RMS vertical position errors of approximately 3.5 m in March 2015. 
Once the final GIM CODE was applied, the vertical RMS errors were between 0.6 
and 1.2 m in March 2014 and 0.3 and 0.6 m in March 2015. After applying the new 
RIMs IONOWB and IONOWB_AI, the vertical RMS errors were between 0.5 and 
0.8 m in March 2014 and 0.3 and 0.4 m in March 2015. The horizontal RMS errors 
were approximately 0.6 m for the CODE GIM and from 0.5 to 0.6 m for the RIMs 
IONOWB and IONOWB_AI in March 2014. In March 2015, the horizontal RMS 
errors were between 0.3 and 0.4 m for the CODE GIM, the RIMs IONO_WB, and 
IONOWB_AI. In March 2014, positioning errors after applying the IONOWB and 
IONOWB_AI corrections were at the same level as the GIM CODE (station GSR1) 
or better (for all the other stations). A significant improvement in position accu-
racy when using the RIMs IONOWB and IONOWB_AI was observed for stations 
SRJV, ORID, and TIRA in March 2014. In March 2015, both the vertical and hori-
zontal position accuracy for the stations ORID and TIRA was improved by apply-
ing the RIMs IONOWB and IONOWB_AI. These stations are located in the lower 
part of the study region where larger VTEC differences between IONOWB_AI 
and GIM CODE were observed (Figure 9 and Figure 11). These differences may 
be attributed to the fact that information from very few stations was used to esti-
mate the GIM CODE in this area; information from these stations was used in the 
newly-developed RIMs. Therefore, RIMs IONOWB and IONOWB_AI outperform 
the GIM CODE in this region. However, better positioning results were obtained 
with the GIM CODE in March 2015 stations located in the upper parts of the 
study region (i.e., GSR1 and POZE). There, larger VTEC differences between the 
RIM IONOWB_AI and GIM CODE were observed during the main storm phase 

FIGURE 16 RMS errors of single-frequency positioning solutions without ionospheric 
corrections compared to the GIM CODE and the RIM IONO_WB. Shown are vertical position 
errors on March 20–26, 2014 (top left), horizontal position errors on March 20–26, 2014 (top 
right), vertical position errors on March 15–20, 2015 (bottom left), and horizontal position errors 
on March 15–20, 2015 (bottom right).
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(Figure 10) due to the larger VTEC differences in the neighboring countries, which 
are located outside the region examined in this study. Since a storm can induce 
significant variability in the ionosphere, the RIM for Slovenia would most likely 
benefit from including stations from other neighboring countries to improve posi-
tion accuracy during a storm. 

When using the L1 frequency without ionospheric range delay corrections, the 
vertical position errors are approximately three to four times higher than the hori-
zontal position errors (Figure 12 and Figure 13). After applying ionospheric correc-
tions from the GIM CODE and the RIMs, the vertical accuracy was improved by 80 
to 90% and the horizontal accuracy was improved by 50 to 60%. This is consistent 
with findings reported by Wang et al. (2013) who showed that ionospheric cor-
rections reduce ionospheric vertical delay errors more effectively than horizontal 
delay errors. Also, the ionosphere models can produce biases with a common sign 
in the line-of-sight slant observations that may be gathered from negative eleva-
tions. The ionosphere model projection bias in the north-south and the east-west 
directions can be partially compensated by one another. In this study, the eleva-
tion angle was set to 15° to gather more observations covering wider regions while 
reducing observations from the negative elevations to avoid positioning error bias.

Table 6 depicts RMS vertical, 2D horizontal, and 3D positional errors averaged 
over all stations evaluated; the improvement in RMS 3D error is compared to the 
solutions without ionosphere corrections. The newly-developed RIMs improved 
the 3D positional accuracy by 85% or more during the solar maximum (March 
2014); by contrast, the improvement observed with GIM CODE was approximately 
80%. During the geomagnetic storm, the new RIMs improved the 3D positional 
accuracy by approximately 84%, which was similar to that resulting from the GIM 
CODE. Interestingly, the new RIMs improve the vertical positional accuracy more 
effectively than the GIM CODE for all study periods. At times of low solar activity 
(March 2018), improvements of approximately 74% and 75% were observed for the 
GIM CODE and the new RIMs, respectively.

Since the mean differences and RMS errors between the new RIMs and the 
Klobuchar model are at least two to three times higher than those between the 

TABLE 6
RMS errors for Vertical (1D), Horizontal (2D), and 3D Position Solutions from Static 24-hour 
Positioning Data. Data were averaged over all stations examined. Improvement of the RMS 3D 
error was observed compared to the solutions generated without ionosphere corrections.

Study 
periods

RMS 
Vertical 

error

RMS 
Horizontal 

error

RMS 3D 
error

Improvement 
In 3D error

March 2014 NO IONO 5.46 1.25 5.49

GIM CODE 0.91 0.60 1.10 79.96%

IONOBH 0.56 0.50 0.75 86.34%

IONOWB 0.66 0.50 0.83 84.88%

IONOWB_AI 0.65 0.51 0.83 84.88%

March 2015 NO IONO 3.30 0.96 3.43

GIM CODE 0.38 0.38 0.54 84.26%

IONOWB 0.37 0.40 0.54 84.26%

IONOWB_AI 0.35 0.39 0.55 83.97%

March 2018 NO IONO 1.34 0.51 1.45

GIM CODE 0.25 0.24 0.38 73.79%

IONOBH 0.11 0.26 0.36 75.17%
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new RIMs and the GIM CODE (Section  3.1), the expected positioning error 
using the Klobuchar model is at least twice as large. For example, the RMS posi-
tion error is expected to be more than 2 m during a solar maximum. In March 
2014, the VTEC of the Klobuchar model was on average approximately 15 TECU 
lower than the VTEC of the new RIMs. Considering that 1 TECU is equivalent 
to 0.162  m of L1 signal delay, a difference of 15 TECU results in a remaining 
L1 signal delay of approximately 2.4 m. This is about two or three times higher 
than the 3D position solutions obtained using the GIM CODE or the new RIMs, 
respectively. Even larger position errors could be expected during the March 2015 
geomagnetic storm.

4  DISCUSSION AND CONCLUSIONS

Regional VTEC models for BH (IONOBH), for specific countries in the west-
ern part of the Balkan peninsula (IONOWB), and the western Balkans region 
(IONOWB_AI) have been developed using the GNSS observations that were avail-
able from local CORS and the EPN networks in these countries. The IONOBH and 
IONOWB models are based on regional ionosphere coefficients of a Taylor series 
expansion estimated from the CORS observations processed in the Bernese GNSS 
Software. Machine learning techniques were also utilized to develop the IONOWB_
AI model. The IONOWB_AI model includes coefficients of Taylor series expansion, 
spatial (latitude, longitude), temporal (time of day), solar (F10.7), and geomagnetic 
(Kp and Dst) parameters to estimate the VTEC at any specified position and time by 
applying a feed-forward neural network with backpropagation to minimize errors. 
These newly-developed RIMs were validated against GIMs, European RIMs, the 
NeQuick2 climatological empirical model, and the broadcasted Klobuchar model 
for different study periods including those featuring high and low solar cycle 
phases and quiet and disturbed geomagnetic periods. The spring equinox, when 
the highest VTEC values during a year can be expected in this study region, has 
also been covered. The new RIMs were applied in single-frequency positioning to 
evaluate their ability to mitigate the ionospheric refraction effect on precise posi-
tioning applications. 

During the solar maximum, the differences between all examined models were 
higher than at the solar minimum, as expected. Differences between the VTEC val-
ues from the RIMs IONOBH and IONOWB and the GIMs were minor during the 
daytime and higher at night in March 2014. GIMs usually deliver higher VTEC 
values than the RIMs IONOBH and IONOWB. The mean difference in the solar 
maximum (March 2014) was approximately 5 TECU, while the mean difference at 
the solar minimum (March 2018) was approximately 2 TECU (i.e., reduced by more 
than a factor of 2). The largest differences were observed at night when the plas-
maspheric contributions to VTEC prevail; agreement during the daytime is at least 
two times better. During the days before the storm (March 15–16, 2015), the mean 
differences were approximately 3 TECU. On the day of the severe storm (March 17, 
2015), the mean differences were approximately 5 TECU, while during the recovery 
phase, the mean differences were below 2 TECU. Thus, we conclude that the dif-
ferences between VTEC values from the RIMs IONOBH and IONOWB and those 
from the GIMs are dependent on the solar cycle phase and geomagnetic activity. 

The analysis with respect to the European RIMs shows better agreements with 
the OTHR model than with the GIOMO model, especially during the maximum 
of the solar cycle phase (March 2014). Differences between the new RIMs and 
the OTHR are often smaller than differences between GIM CODE and the RIMs. 
However, differences with respect to the OTHR and the GIM CODE are quite 
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similar to one another with similar trends, indicating small differences between 
these two models.

The largest discrepancy was between the newly-developed RIMs and the 
Klobuchar model. The Klobuchar model underestimated VTEC by more than 
20 TECU during the daytime during the solar maximum and the main phase of the 
geomagnetic storm when compared to results from the new RIMs. In the recovery 
phase of the geomagnetic storm and at the solar minimum, the Klobuchar model 
overestimated VTEC by up to 20 TECU. The new RIMs correspond at least 4 to 
10 times better to the GIM CODE than to the Klobuchar model, with mean differ-
ences from 2 to 5 TECU. 

The NeQuick2 climatological model underestimated VTEC most of the time. 
During the solar minimum (March 2018), the NeQuick2 model was in much bet-
ter agreement with the new RIMs than during the solar maximum (March 2014). 
During the main storm phase, differences with respect to the NeQuick2 model 
were the highest. These differences can be explained by the fact that the NeQuick2 
provides a climatological description of the electron density in the ionosphere and 
its performance depends significantly on both solar and geomagnetic activity. Our 
results are consistent with those reported by Shi et al. (2019) and Wang et al. (2017).

The RIM IONOWB_AI, which is based on an ANN and the IONOWB regional 
ionosphere, spatiotemporal, solar, and geomagnetic parameters, can estimate 
VTEC for any location in the western part of the Balkan peninsula. In areas where 
no GNSS observations were used to estimate regional ionosphere parameters, the 
RIM IONOWB_AI provides VTEC with sufficient accuracy compared to the RIM 
OTHR and GIM CODE. Moreover, VTEC maps reveal non-linear VTEC signatures 
and regional ionosphere variations not seen in the GIM CODE. During the daily 
VTEC peaks (at 12 UTC) the mean differences in the study region are mostly below 
1.50 TECU compared to findings generated by the RIM OTHR and GIM CODE. 
During the main storm phase, when the largest VTEC values were detected, the 
RIM IONOWB_AI estimated VTEC with differences that were primarily below 
2 TECU (at 12 UTC) with respect to the RIM OTHR and the GIM CODE. During 
the recovery phase, the observed differences were even lower. By contrast, the 
Klobuchar model failed to describe the VTEC variations associated with geomag-
netic activity. Collectively, our results demonstrate that the VTEC estimated by 
RIM IONOWB_AI provides a much better estimate of the integrated electron den-
sity than can be achieved using the Klobuchar model during the solar maximum 
or a geomagnetic storm.

Single-frequency positioning solutions show a similar or in some cases better 
positional accuracy when applying ionosphere corrections from the new RIMs (i.e., 
IONOBH, IONOWB, and IONOWB_AI) rather than from the final GIM CODE. 
Vertical positional accuracy can be achieved with these newly-developed RIMs at 
the decimeter level. Compared to the final GIM CODE, improvements in position-
ing with the new models are particularly effective when observed during the solar 
maximum. Also, the improvements are more significant for all study periods for 
stations located in the southern part of the region. This may be because of the higher 
ionization observed over those stations, and because no GNSS stations are used in 
this area to produce the GIM CODE. As a result, the RIMs show better performance 
in these regions. During the geomagnetic storm (March 2015), the positional accu-
racy achieved when applying RIMs IONOBH, IONOWB, and IONOWB_AI were 
within a similar range as that obtained with the final GIM CODE. Slightly better per-
formance with the GIM CODE was achieved during March 2015 for stations located 
in the northern part of the study region (GSR1 and POZE). This may be because the 
GNSS stations from neighboring countries in this region were not used to generate 
the new RIMs. VTEC maps show larger differences when comparing outcomes from 
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the RIM IONOWB_AI and GIM CODE in this northern area as a result of drastic 
changes in conditions in the ionosphere during the main phase of the severe geo-
magnetic storm. Given the fact that this was the strongest storm of the previous 
11-year solar cycle and that modeling such intense ionospheric variations remains 
a significant challenge, the results obtained using the new RIMs are satisfactory. As 
the results indicate, positional accuracy depends strongly on solar and geomagnetic 
activity. Moreover, the newly developed IONOBH, IONOWB, and IONOWB_AI 
models facilitate the correction of the ionospheric refraction in a way that leads to 
increased positioning accuracy; improvements in 3D positioning of greater than 80% 
were observed during periods of solar maximum and severe geomagnetic storm.

The results presented here demonstrate that VTEC models generated for small 
regions from dense observations from the CORS networks can provide much 
more accurate estimates of VTEC than can be achieved using the Klobuchar 
model, which is currently used as the standard for single-frequency positioning. 
Additionally, a machine learning approach enabled us to generate spatiotempo-
ral RIMs that can estimate VTEC for areas in which no GNSS observations were 
available. The results reveal that the new RIMs are in much better agreement with 
the GIM CODE than with the Klobuchar model. Taking into account that the GIM 
CODE is considered the most accurate and precise source of VTEC information 
currently available, the new RIMs might surpass this standard and significantly 
improve ionosphere modeling compared to the Klobuchar model. The new RIMs 
correct single-frequency range errors with an accuracy that is similar to that of the 
final GIM products and in some cases even better. Furthermore, the final GIMs 
are produced with a latency of several days or even weeks, and thus they are not 
well suited for real (or even near-real) time positioning applications. The avail-
able real-time Klobuchar model fails to provide an accurate description of the 
ionosphere and, consequently, it cannot precisely reduce the ionospheric signal 
refraction. The RIMs developed as part of this study can be generated from GNSS 
observations from the CORS network in near-real time (within approximately 
three hours) and corrections can be provided to the single-frequency GNSS users. 
The findings suggest that these new models may properly address the needs of 
single-frequency GNSS users and provide an effective ionospheric correction.

Recommendations and plans for future work include:

• Models with a higher temporal resolution may be beneficial for use in capturing 
sudden VTEC variations due to geomagnetic storms, traveling ionosphere 
disturbances, and other features.

• The addition of dense CORS observations from other countries within the 
study region can improve the accuracy of the RIMs and fill and/or reduce the 
observation gaps.

• Observations from the EPN stations near and further away from the border of 
the study region can be introduced to fill in the observation gaps between the 
IPPs if additional CORS observations are not available.

• GNSS data should be processed over a longer period to retrain the ANN model 
and thus improve its accuracy and applicability.

• The machine learning approach can be improved by automatically extracting 
features in the spatial domain using a convolutional neural network and those in 
the temporal domain using a recurrent neural network. It would be interesting 
to compare this combination with the approach presented in this paper. 

• It may also be interesting to test the RIMs over a longer period.
• To facilitate their application in national positioning services, models should 

be implemented in near-real time.
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Abstract: Space weather describes varying conditions between the Sun and Earth that can degrade
Global Navigation Satellite Systems (GNSS) operations. Thus, these effects should be precisely and
timely corrected for accurate and reliable GNSS applications. That can be modeled with the Vertical
Total Electron Content (VTEC) in the Earth’s ionosphere. This study investigates different learning
algorithms to approximate nonlinear space weather processes and forecast VTEC for 1 h and 24 h in
the future for low-, mid- and high-latitude ionospheric grid points along the same longitude. VTEC
models are developed using learning algorithms of Decision Tree and ensemble learning of Random
Forest, Adaptive Boosting (AdaBoost), and eXtreme Gradient Boosting (XGBoost). Furthermore,
ensemble models are combined into a single meta-model Voting Regressor. Models were trained,
optimized, and validated with the time series cross-validation technique. Moreover, the relative
importance of input variables to the VTEC forecast is estimated. The results show that the developed
models perform well in both quiet and storm conditions, where multi-tree ensemble learning outper-
forms the single Decision Tree. In particular, the meta-estimator Voting Regressor provides mostly
the lowest RMSE and the highest correlation coefficients as it averages predictions from different
well-performing models. Furthermore, expanding the input dataset with time derivatives, moving
averages, and daily differences, as well as modifying data, such as differencing, enhances the learning
of space weather features, especially over a longer forecast horizon.

Keywords: machine learning; ensemble learning; ionosphere; Vertical Total Electron Content (VTEC)
forecasting; space weather

1. Introduction

Space weather is recognized as the greatest risk to the Global Navigation Satellite
System (GNSS) [1]. As our society is heavily dependent on GNSS applications that require
high-precision positioning, navigation, and timing, it is urgently necessary to develop
advanced forecasting methods of the space weather impact on GNSS in order to mitigate
the catastrophic consequences of this hazard. The impact of space weather and ionosphere
on GNSS signals can be estimated from GNSS observations in the form of the Slant Total
Electron Content (STEC) [2–4], which is proportional to the relative ionospheric delay of GNSS
signals. STEC is usually mapped to the vertical TEC (VTEC) by approximating the ionosphere
as a single layer model, assuming that all free electrons are concentrated within a shell of in-
finitesimal thickness. VTEC exhibits latitudinal and longitudinal variations, diurnal, seasonal,
semi-annual, and sunspot cycle variations, as well as coupling effects [5–7]. Furthermore,
space weather can produce intense, irregular ionosphere variabilities, which can be difficult
to model with traditional mathematical approaches and to properly minimize in positioning
solutions, degrading positioning and navigation performances [8–11]. A complex chain of
physical and dynamical space weather processes between the Sun, the interplanetary space,
the Earth’s magnetic field, and the ionosphere must be taken into account when model-
ing and forecasting these disturbances in the ionosphere. However, we have a limited
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understanding of these coupled processes and often do not have defined functions that can
describe them precisely. On the other hand, artificial intelligence and machine learning
offer a new possibility to learn these relationships directly from data, discover the hidden
relationships and find functions that describe space weather processes.

Machine learning is today one of the most rapidly growing areas [12]. It is suitable
for problems that are too complex or vast for traditional approaches, or for which there
is no known solution at all, by offering a new possibility of learning directly from data,
as opposed to traditional modeling approaches of explicitly defining rules/functions to
describe relationships and patterns in data [13]. Recently, machine learning methods have
been attracting considerable interest in many technical and scientific fields, including
space weather research [14] with a focus on modeling the nonlinear relations that can
describe the underlying physical behavior of the system. The previous machine learning
applications to the VTEC mostly include deep learning with artificial neural network (ANN).
Different ANN architectures were proposed such as feed-forward ANN [15–17], recurrent
ANN such as popular Long Short-Term Memory (LSTM) [18–20] and combined with
convolution (LSTM-CNN) [21,22], Encoder-Decoder LSTM Extended (ED-LSTME) [23],
neural network autoregressive with external input (NARX) [24,25], conditional Generative
Adversial Network (cGAN) [26], as well as Adaptive Neuro-Fuzzy Inference System
(ANFIS) [27,28]. Only a few of the earlier work applied machine learning methods outside
of deep learning, such as Gradient Boosting Decision Tree (GBDT) [27], eXtreme Gradient
Boosting (XGBoost) [29], Support Vector Machine (SVM) [30] and nearest neighbour [31].

To represent the impact of solar activity on VTEC, the solar radio flux F10.7 is usually
used as an input to a machine learning model, while less often sunspot number or EUV
index. Some studies also introduced the solar zenith angle alongside the F10.7 index.
Geomagnetic activity is usually represented with Kp index and/or Ap index, Dst index
and auroral electrojet indices, or time-weighted Ap, Kp and Dst indices. Diurnal VTEC
variations are commonly modeled with hour of day, while day of year is used for extracting
seasonal VTEC variations. Additionally, input data include information on previous
VTEC values. Furthermore, geographic coordinates and geomagnetic latitude are also
incorporated when developing a single model for different VTEC grids/regions. However,
some studies have different approaches, for instance, using spherical harmonics [18],
Taylor series expansion [16] or principal components of VTEC as input [28]. Moreover,
there are models developed solely on VTEC input and output data, such as [31]. VTEC
data were usually extracted from Global Ionosphere Maps (GIM) such as CODE [15,30],
IGS [24,32], UPC-IonSAT [31] or calculated directly from raw GNSS observations, such as
from the CORS (Continuous Operating Reference Stations) observations [16]. Previous
studies demonstrate that the input data selection for a machine learning model significantly
influences the model prediction, and consequently its accuracy. The temporal resolution of
VTEC machine learning models is often 1 h.

Current state of research is mostly related to short-time forecasting from 1 h forecasting,
such as in [15], to 1-day, such as in [24,33], and 2 day forecasting [31].

Regarding the spatial extent of the studies, forecasting was mostly performed for a
single or few GNSS stations or grids. In addition, some studies have been done for regional,
such as [16,17], and global modeling, such as [31]. For the training, various data lengths
were used, from less than 1 year, several years until covering one or two solar cycles.
However, most of the discussed studies used 2 to 3 years of data length. Ruwali et al. [22]
and Srivani et al. [19] observed that deep learning VTEC models increase their accuracy
significantly with increasing training dataset length.

Regarding the VTEC model performance, the RMSE for 1 h VTEC forecast in low-
latitudes ranges from 2 to 5 TECU with different learning algorithms and different levels of
solar activity [21,25,27,30]. For the mid-latitude 1 h VTEC forecast, RMSE is about 1.5 TECU
in 2018 [30], while 1 day VTEC forecast has an RMSE of 4 TECU in high solar activity
and 2 TECU in low solar activity [32]. Accuracy of the 1 day VTEC forecast globally is
about 3 to 5 TECU depending on the models and level of solar activity [24,26,31]. The
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machine learning VTEC models outperform the traditional linear methods, such as the
empirical orthogonal function (EOF) [34] and the autoregressive integrated moving average
(ARIMA) method [20]. Moreover, the global XGBoost VTEC model provides a lower RMSE
of around 1 TECU than the ANN model in 2017 [29]. The GBDT VTEC model outperforms
ANN and LSTM VTEC models by about 6% during high solar activity [27]. The largest
errors in machine learning VTEC models have been observed for the equatorial anomaly
region and space weather events. Overall, the results of previous studies demonstrate that
machine learning can find nonlinear patterns in the data and outperforms traditional linear
modeling methods.

Previous Research Gaps and Our Contribution

A review of previous work reveals that most machine learning VTEC approaches
have been proposed for different types of ANN, i.e., deep learning methods. However,
there are many other methods in the field of machine learning which has either not been
investigated or have been limited discussed. The probable reason for this gap is that
deep learning methods have been widely known as the ground-breaking methods today
in various fields such as automotive driving, speech-recognition. However, as a matter
of fact, it can be claimed that other machine learning methods have significantly good
performance in the analysis of small datasets, whereas deep learning is often incapable of
performing this task and tend to easily overfit the data [35]. The capabilities of different
types of machine learning methods have not been so far explored nor used widely for
VTEC modeling. Previous results [27,29] confirm remarkably well performance of such
machine learning methods for VTEC forecast, much better than neural networks. This is
probably due to the issue of the limited training dataset, where other machine learning
methods outperform deep learning methods. These machine learning methods have been
less commonly discussed in the overall previous VTEC studies, which are predominantly
based on deep learning. In addition, we realized that this limited number of studies was
restricted to a few machine learning methods. On the other hand, deep learning methods
are already studied in detail in numerous papers, and they also require “big data” in order
to exploit their full potential, as already reported [19,22], as they are often overparametrized,
which tends to overfit the data [35]. As a result, a model can correspond too closely to the
training data to the extent that it negatively impacts the model performance on new data,
i.e., reducing its ability to generalize. Moreover, the complexity of using deep learning
methods was another motivation for selecting a more simple approach to the problem of
VTEC forecasting.

Therefore, we want to bridge this gap and perform studies in direction of exploring
new learning algorithms for VTEC forecast. In this context, we introduce new methods for
VTEC forecast such as Random Forest and Adaptive Boosting (AdaBoost) (Section 2.3.2),
while GBDT and XGBoost have been so far reported in only one paper each [27,29]. More-
over, we combine different models into a meta-ensemble via Voting Regressor to produce a
model of higher accuracy with improved generalization (Table 1).

The way the data are partitioned and the model is validated can introduce additional
bias into the machine learning model as it influences its architecture and parameter selection.
Previous studies implemented simple hold-out validation or the classic k-fold validation
technique. In the hold-out procedure, the data are divided into subsets of fixed data points:
training data (mainly comprising 70% to 90% of the dataset), while the remaining part of
the data is equally divided into validation and test datasets. On the other hand, in the
k-fold cross-validation data are randomly partitioned into k equally sized folds containing
different training and validation data points in each iteration. K-fold cross-validation
is shown to be more accurate than the simple holdout method, because it can reduce
variance and hence, decrease the overfitting problem [36]. However, if observations are
temporally dependent, the simple k-fold cross-validation can be problematic and should
be modified [37], since the training and validation samples are no longer independent.
Ghaffari Razin and Voosoghi [28], however, used different testing method of splitting
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24 VTEC values each day in 12 values for training (1, 3, 5, . . . , 23 UT) and 12 for testing
(2, 4, 6, . . . , 24 UT). This approach is also problematic for temporally dependent VTEC,
leading to simple interpolation of VTEC values, and furthermore, dataset contamination,
when training data are not carefully distinguished from validation or testing data. Because
of these reasons, we are not following previous approaches.

We propose a more appropriate approach for time-series forecasting by modifying
classic k-fold cross-validation into time series cross-validation. In the modified version,
we apply rolling cross-validation to VTEC forecasting, which is more suitable for a time-
series problem, by following [38]. Contrary to the standard k-fold cross-validation, here
the VTEC model is not trained on subsequent observations and forecasted on previous
(past) observations. This would result in past data being predicted using the model that
is trained on future (i.e., subsequent) data. It makes no sense to use the values from the
future to forecast values in the past. In addition, we want to avoid looking into the future
when training the model. Furthermore, when using the classic k-fold method for VTEC
forecasting, the models are trained on observations prior to and after specific time periods
and then forecasting is performed for time periods in between. This represents also the
interpolation of datapoints between the time frames for which the model was trained. It
can lead to more optimistic results and introduce bias in model selection and architecture,
as already mentioned. In VTEC forecasting, there is a temporal dependency between
observations, and this relationship needs to be preserved during validation/testing. Time
series cross-validation preserves a temporal dependency, where a model is evaluated on a
rolling basis using many data folds (Section 2.4.1).

Furthermore, a new set of input data is introduced. Reviewing previous work we
noticed that a similar set of input features has been mostly used. In this study, the input
data are expanded with new observations, such as solar wind plasma speed, index of the
interplanetary magnetic field, as well as derived features of first and second derivatives and
moving averages (Table 1). Since the machine learning model accuracy is highly dependent
on the data, we gave special attention and consideration to the selection and derivation
of appropriate input features that can precisely describe complex VTEC variations. In
addition, systematic analysis, selection and preparation of input data, and selection of data
timeframes in a way to enhance machine learning model performance are addressed and
pointed out in the paper, especially for learning rare space weather events (Section 3.1).
Furthermore, daily differences of input and output data are estimated and machine learning
models for VTEC forecast have been trained for the first time on differences, besides the
original data (Section 2.1). Machine learning performance on differences (de-trended data)
is discussed compared to the original dataset (Section 3). This study also discusses the
contributions of input predictors to the VTEC forecast.

To sum up, this paper presents a novel approach for forecasting VTEC and space
weather impact, with the following main contributions and innovations:

1. Machine learning methods of bagging and boosting are introduced for the VTEC
forecasting problem.

2. Tree-based learning algorithms are applied to overcome the deficiencies of the com-
monly used deep learning approaches to VTEC forecasting in terms of complexity,
“big data” requirements, and highly parameterized model (prone to overfitting the
data). Here, we adopted learning algorithms for VTEC forecasting that are simple,
fast to optimize, computationally efficient, and usable on a limited dataset.

3. Moreover, we introduce an ensemble meta-model that combines predictions from mul-
tiple well-performing VTEC models to produce a final VTEC forecast with improved
accuracy and generalization than each individual model.

4. Time series cross-validation method is proposed for VTEC model development to
preserve a temporal dependency.

5. Additional VTEC-related features are added, such as first and second derivatives, and
moving averages. Special attention is also paid to time period selection and relations
within the data to have more space weather examples and near-solar maximum
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conditions, as well as to enable learning and forecasting of complex VTEC variations,
including space weather-related ones.

6. Machine learning models are trained and optimized solely using daily differences
(de-trended data) along the models with original data.

7. The relative contribution of the input data to the VTEC forecast is analyzed to pro-
vide an insight into what the model has learned, and to what extent our physical
understanding of important predictors has increased.

Table 1. Overview of input and output data for machine learning models.

Input Data (Time Moment: i) Output Data (i + 1 h, i + 24 h)

Day of year (DOY)
Hour of day (HOD)
Sunspot number (R)

Solar radio flux (F10.7)
Solar wind (SW) plasma speed

Interplanetary magnetic field (IMF) Bz index VTEC
Geomagnetic field (GMF) Dst index (10°70°, 10°40°, 10°10°)

GMF Kp index·10
AE index

VTEC (10°70°, 10°40°, 10°10°)
EMA of VTEC over previous 30 days

EMA of VTEC over previous 4 days (96 h)
First VTEC derivative (VTEC′)

Second VTEC derivative (VTEC′′)

During this study, the following questions were raised:

1. Can other, simpler learning algorithms than ANN capture diverse VTEC variations
for 1 h and 24 h VTEC forecasts?

2. Can ensemble meta-model achieve better performance than a single ensemble member?
3. How can VTEC models be improved in terms of data and input features? Also, does

the new input dataset bring new information to the VTEC model?
4. Can data modification, such as differencing, enhance the VTEC model learning and

generalization?

2. Methodology

The VTEC model based on machine learning “learns” directly from the historical data
or given examples, which can be understood as past experiences. Learning is achieved by
optimizing the performance of a machine learning algorithm for a task of VTEC prediction,
which presents the prediction of a continuous variable, commonly referred to as regression
in machine learning.

2.1. Data Selection and Preparation

Machine learning is based on data. Therefore, they are impacting the performance of
machine learning algorithms to a big extent. Thus, when developing a machine learning
model, it is essential to select and prepare data in a way that enables model learning. In
addition, the data have to be representative of new cases that may arise in practice in order
to generalize well.

In this paper we use supervised learning, where the set of measurements of both input
and output data need to be clearly specified and prepared, known as training data, in order
to construct the prediction function. Let us define a training sample of vector xi and an
output yi = F(xi) at time stamp i with i = 1, 2, . . . , N as in Equation (2). Whereas, the
vectors xi can be interpreted as the rows of the N × P predictor matrix X, the columns
represents the input variables x̃p with p = 0, 1, 2, . . . , P− 1. The components xi,p of the
N × 1 column vector x̃p = [x1,p, x2,p, . . . , xN,p]

T represent a time series of the pth input
variable. A series of N observations (xi, yi) was prepared for the training and the cross-
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validation, from January 2015 to December 2016, while the test dataset covers the period
from January 2017 to December 2017. The VTEC values for three grid points at high-latitude
(10°, 70°), mid-latitude (10°, 40°), and low-latitude (10°, 10°) were extracted from the Global
Ionosphere Maps (GIM) of CODE (Center for Orbit Determination in Europe), while
data of solar and magnetic activity were obtained from NASA/GSFC’s OMNIWeb [39].
Therefore, VTEC from GIM CODE was assumed to be the ground truth in this study.
Three grid points for VTEC values were selected along the same longitude (10°) in order
to represent latitudinal VTEC variations corresponding to different ionosphere regions
(low- mid- and high-latitude), alongside other VTEC variabilities. In addition, the hour
of the day (HOD) and the day of the year (DOY) were added as input to model the VTEC
temporal dependencies. In addition, new input quantities were calculated, such as the
exponential moving average (EMA), and first and second time derivatives of VTEC, denoted
as VTEC′ and VTEC′′. Forecasting is performed for 1 h and 24 h in the future (Equation (2)).
Table 1 provides an overview of the data. Separate models were developed for each grid
point and each forecast horizon. The dataset for training and cross-validation (January
2015–December 2016) comprises of totally 17,544 examples, while the test dataset (January–
December 2017) contains 8760 examples. Datasets were prepared with 1 h temporal
resolution.

X =




xT
1

xT
2

. . .
xT

N


 =




x0,1, x1,1, . . . , xP−1,1
x0,2, x1,2, . . . , xP−1,2

. . .
x0,N , x1,N , . . . , xP−1,N


 =




DOY1, HOD1, . . . , VTEC′′1
DOY2, HOD2, . . . , VTEC′′2

. . .
DOYN , HODN , . . . , VTEC′′N


, (1)

X =
[
x̃0, x̃1, . . . , x̃P−1

]
,

y = VTEC(i + t) =




y1
y2
. . .
yN


 =




VTEC1+t
VTEC2+t

. . .
VTECN+t


,

where t = 1 for the 1 h forecasting and t = 24 for the 24 h forecasting, for abbreviations see
Table 1.

Firstly, the data were preprocessed and prepared with an 1 h time sampling. A
few missing values encountered are replaced with the average value of a previous and
subsequent value. Some data were not provided as 1 h samples, such as F10.7 and R (24 h
samples) and Kp (3 h samples). There, values were interpolated with the previous one, as it
is done at the OMNIWeb. Afterwards, two approaches followed:

1. After preprocessing, the data (xi, yi) for i = 1, 2, . . . , N are used for the machine
learning algorithm. In this paper this dataset is referred as non-differenced data.

2. Data (except HOD, DOY, EMA and the time derivatives) are time-differenced (∆xi, ∆yi)
by calculating the difference between an observation at time t + 24 h and an observa-
tion at time step i, i.e., ∆xi = xi+24− xi and ∆yi = yi+24− yi. Differencing was used to
reduce temporal dependence and trends, as well as, stabilize mean of the dataset [38],
by reducing daily variations. In this paper this dataset is referred as differenced data.
Values of EMA and time derivatives were calculated from differenced VTEC. At the
end, predicted VTEC differences were reconstructed by adding up the VTEC values
from the previous day.

2.2. Supervised Learning

Supervised learning can be seen as the function estimation or predictive learning
problem. The learning task can be stated as follows: given the values of an input vector
xi (predictor or the independent variable) the aim is to find an approximation F̂(xi) of
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the function F(xi) which maps the input xi to the output yi (response or the dependent
variable) and provides a prediction denoted by ŷi as

yi + ei = ŷi = V̂TEC(i+t) = F̂(xi) (2)

xi = [DOYi, HODi, Ri, F10.7i, SWi, Bzi, Dsti, Kpi, AEi,

VTECi, VTECEMA(30)i, VTECEMA(4)i, VTEC′i , VTEC′′i ]
T

where ei is an error. F̂(·) refers to the approximation function of the nonlinear relationship
between the output value of the VTEC forecast and the input vector considering solar,
interplanetary and geomagnetic indices, as well as the previous VTEC values. This function
is unknown, and is therefore, approximated by optimizing learning algorithms for the task
of VTEC forecasting. Using prepared training samples of input and an output in Equation
(2), an approximation F̂(xi) of the function F(xi) is estimated by minimizing the value of
objective (loss) function L. Employed objective function in this study is the squared error

L =
1
N

N

∑
i=1

e2
i =

1
N

N

∑
i=1

(yi − ŷi)
2. (3)

In this way, the function that describes the input/output relationship is modified as a
response to differences between the real VTEC value yi and generated VTEC prediction ŷi.
This represents learning by examples commonly referred as learning or training phase [35].

2.3. Tree-Based Machine Learning Algorithms

Tree-based algorithms are conceptually simple, but powerful machine learning meth-
ods that can perform well on both small and large datasets to solve linear and nonlinear
modeling problems. Several tree-based machine learning algorithms have been applied in
this study, namely Regression tree and ensemble learning such as Random Forest, eXtreme
Gradient Boosting (XGBoost), and Adaptive Boosting (AdaBoost).

2.3.1. Regression Trees

Decision trees can be classified based on the type of output variable as classification
(categorical output) and regression (numerical output) trees. Within this study, the re-
gression tree was grown on the training data using recursive binary splitting. A small
regression tree with a depth of 3 is shown in Figure 1 for ease of illustration. There, the tree
for VTEC nowcasting was grown using time information, solar and geomagnetic indices as
input, and VTEC as output.

Each regression tree model can be formally expressed as

T(X; Θ) =
J

∑
j=1

γj(X ∈ Rj) (4)

with a set of parameters Θ = {γj, Rj}J
j=1. {Rj}J

1 are disjoint regions that collectively
cover the space of all joint values of the input variables X from Equation (4). The regions
represent nodes in Figure 1. The parameters of a single tree are the coefficients {γj}J

1 and

the quantities that define the boundaries of the regions {Rj}J
1 such as the splitting variables

xl and the values of those variables (split points) s that splits the nodes of the tree. Since the
regions are disjoint, Equation (4) is equal to

T(X) = γj. (5)
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Figure 1. A small decision tree (maximum depth is 3) for VTEC nowcasting (10°10°) based on input
data of temporal information, solar and magnetic activity, and output of VTEC. Inputs x̃p are denoted
by the indices 0, 1 and 3, which correspond to DOY, HOD and F10.7 index, respectively. Since the tree
is small, it takes into account only inputs that have the highest impact on VTEC. Growing a larger
tree will result in more nodes that can consider other inputs as well.

The approach begins at the top of the tree, called the root node, as presented in Figure 1.
At this point all observations belong to a single region R. The root node in Figure 1 contains
14,036 observation samples. The mean VTEC value γ of all observations within the region
R is 17.642 TECU. The decision splitting in the rote node is given as x̃1 ≤ 6.5, which
represents the split point, while input variable x̃1, representing HOD, is splitting variable
of the region R. The input space is then divided into two distinct and non-overlapping
regions R1 (where the condition is True, i.e., x̃1 ≤ 6.5) and R2 (where condition is False, i.e.,
x̃1 > 6.5). Therefore, considering a splitting variable x̃p with p = 1, 2, . . . , P− 1 and split
point s, two splitting regions can be defined, based on a decision splitting, as [35]

R1(p, s) = {X | x̃p ≤ s}, R2(p, s) = {X | x̃p > s}. (6)

The splitting variable (x̃p) and split point s are found in a way to solve [35]

min
l,s

[min
γ1

∑
xp,i∈R1(p,s)

(yi − γi)
2 + min

γ2
∑

xp,i∈R2(p,s)
(yi − γi)

2] (7)

for any choice xl and s, the inner minimization is solved by

γ1 =
1
N ∑

xi∈R1(p,s)
yi, γ2 =

1
N ∑

xi∈R2(p,s)
yi. (8)

The procedure continues further down on the tree, so that the input space, which
covers all joint values of the predictor variable X, is divided into J distinct and non-
overlapping regions R1,R2,. . . ,RJ . This means that the space of the input variables is
successively split, i.e., a node is divided into two sub-nodes or regions further down on the
tree. A sub-node that is divided into further sub-nodes is called a decision node. The values
in each of rectangle (Figure 1) represent the mean VTEC output γj of the yi falling into
region Rj as in Equation (8). A tree stops growing when a node has fewer than a minimum
number of observations needed for splitting. This node represents the terminal node or
leaf. As can be seen, a decision tree is a simple and highly interpretable method, easily
visualized by a two-dimensional graphic, representing an example of a white-box model.

2.3.2. Ensemble Learning

The goal of ensemble learning is to combine predictions of several simple models or
base learners, such as an J-node regression tree, to improve generalizability and robustness
over a single model. Popular ensemble methods include bagging and boosting.
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Random Forest [40] represents a modification of the so-called bagging or bootstrap
aggregation technique, which builds a large collection of de-correlated trees and then
averages them (Figure 2). When building each tree, a random sample of v input variables
is considered as split candidates from a full set of p inputs. Since the forecasting of time
series is performed, each new training set is drawn without replacement from the original
training set. Thus, a single regression tree Tb (for b = 1, 2, . . . , B) is grown by recursively
repeating the following steps for each tree node until the minimum node size is reached:

1. Select random sample of v input variables from the full set of p variables;
2. Find the best splitting variable and split point among the v input variables;
3. Split the node into two sub-nodes.

This procedure is applied to all B trees. The function can be expressed as an average
of all B trees

F̂(xi) =
1
B

B

∑
b=1

T(xi; Θb), (9)

where Θb characterizes the bth tree in terms of splitting variables, cutpoints at each splitting
node and terminal node values. Breiman [40] demonstrated that randomness and diversity
in trees construction lead to lower generalization error and an overall better model with
reduced variance.

In the boosting method, the trees are grown sequentially using the information from
previously grown trees with modified version of the training data (Figure 2). Each boosted
tree can be expressed as

Fm(xi) = Fm−1(xi) +
Jm

∑
y=1

γjm(xi ∈ Rjm), (10)

while the final model can be represented as a sum of such trees

F̂(xi) = FM(xi) =
M

∑
m=1

T(xi; Θm) = FM−1(xi) +
JM

∑
y=1

γjM(xi ∈ RjM) (11)

for the set of regions and constants Θm = {Rjm, γjm}Jm
1 . Fm−1(xi) represents the previous

model, while left side of Equation (11) represents the current tree.
In the AdaBoost [41], the data are modified by applying weights w1, w2, . . . , wN to

each of the training examples (xi, yi) (Figure 2). In the first step, all weights are initial-
ized to wi =

1
N , i.e., the data are trained in the usual manner. For each successive step

m = 2, 3, . . . , M, weights are modified individually and the training is repeated using the
weighted observations. More specifically, at step m, the weights increase for the wrongly
predicted observations in the previous step, while the weights for correctly predicted ob-
servations decrease. Therefore, observations that are difficult to predict receive increasing
attention as iterations proceed. In the end, weighted predictions from all trees, i.e., steps,
are combined to produce the final prediction as in Equation (11).

Gradient boosting offers a generalization of boosting to an arbitrary differentiable
objective function in Equation (3). In the first step, a tree is trained on the original training
data. Then for i = 1, 2, . . . , N the gradient is computed as [35]

− gim = −[ ∂L
∂F(xi)

] F=Fm−1 . (12)

For the squared error loss, the negative gradient represents the residual between the
original and the estimated output −gim = yi − Fm−1(xi). For each successive iteration
(m = 2, . . . , M), a regression tree is fitted to the residuals gim (from the previous iteration)
within terminal regions Rjm (j = 1, 2, . . . , Jm) (Figure 2). Afterwards, the function is updated
as in Equation (10). XGBoost [42] is an optimized gradient boosting algorithm that applies
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shrinkage technique as the regularization strategy to avoid overfitting. This is implemented
by scaling the contribution of each tree by a factor 0 ≤ ν < 1 in Equation (10) as

Fm(xi) = Fm−1(xi) + ν ·
Jm

∑
y=1

γjm(xi ∈ Rjm), (13)

where the parameter ν represents the learning rate of the boosting procedure.

Figure 2. Diagrams of bagging and boosting methods.
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Voting Regressor is an ensemble meta-estimator that comprises several machine learn-
ing models and averages their individual predictions across all models to form a final
prediction. This method is useful for a set of well performing models to compensate for
their individual weaknesses in order to build a single model that can better generalize.

It is often useful to provide information about the underlying relationships between
the inputs and the outputs of the model to improve understanding of what the model has
learned. Using tree-based methods, it is possible to easily estimate the relative importance
or contribution of each input variable to forecasted VTEC. Proposed by [43], it is calculated
as the improvement in minimization of the objective function as a result of using input
variable xl to split the node within a tree. The relative importance of a variable xl is then
calculated as the sum of such improvements overall all internal nodes, for which it was
chosen as the splitting variable. For a collection of decision trees {Tm}M

1 , the relative
importance is averaged over all trees.

2.4. Model Selection and Validation

Parameters, such as the splitting variable and the value of the splitting point, are
estimated from data during the learning phase using an optimization algorithm, as already
discussed. However, every learning algorithm has certain parameters, known as hyperpa-
rameters, that cannot be estimated from data, but need to be tuned for a given modeling
problem. Hyperparameters determine the model architecture and control the model com-
plexity. Their optimal values depend on the data and the problem. They are typically found
by trying different combinations and evaluating the performance of each model. However,
the residual sum of squares on the training data cannot be used to determine their values,
since that would reduce the ability of a model to generalize future data. Therefore, we used
three sets of data, namely the training set (to train the model), validation (to measure the
model performance and optimize its parameters/hyperparameters), and test set (used only
at the end to estimate the generalization error). In this way, we selected the most optimal
(hyper)parameters and provided a measure of the overall reliability and accuracy of the
proposed machine learning models.

2.4.1. Time Series Cross-Validation

Since observations are temporally dependent, we applied the time series cross-validation
technique to preserve a temporal dependency, where a model is trained, optimized, and
evaluated on a rolling basis using many data folds. For reliable performance evaluation, a
large number of folds should be adopted [44]. The data are divided into two folds at each
iteration: a training set and cross-validation set (Figure 3). The model is trained on the
training set, while the (hyper)parameters, that minimize the RMSE, are found using the
cross-validation set. The training set consists only of observations that occurred prior to
observations that form the cross-validation set. The cross-validation data from the previous
iteration are included as part of the next training data set and subsequent data points are
forecasted. The final metric is calculated as the average of the RMSE obtained in each
cross-validation iteration.

Figure 3. Evaluation of model performance using time series cross-validation with 20 folds to prevent
overfitting and evaluate model performance in a robust way. The final metric is calculated as the
average RMSE of every cross-validation iteration.
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2.4.2. Model Architecture

Hyperparameters of tree-based models, that commonly need to be optimized, are
the maximum depth of the tree (max_depth), number of trees in ensemble learning
(n_estimators), the value of learning rate (in boosting), etc. The size of a tree controls
the complexity of the model. Too large tree results in a more complex model that can overfit
the training data, and consequently may not generalize well. The size v = 6 (max_features)
of the random subsets of input variables is considered when splitting a node to introduce
randomness in tree construction in order to improve the accuracy and reduce the overfitting
problem. The lower size of v reduces the correlation between any pairs of trees in Random
Forest and hence, reduces overfitting. However, if there are only a few relevant variables
out of many, v should be set to a higher value, so that the algorithm can find the relevant
variables. For XGBoost, smaller values of learning rate ν (more shrinkage) result in a lower
test error but require a larger number of iterations m [45]. Moreover, data are subsampled
for every tree to further prevent overfitting. Optimal hyperparameters and the range of
values used to search optimal values for hyperparameters are provided in Table 2, where
min_samples_split and min_samples_leaf are the minimum number of samples required
in an internal node and leaf node, respectively. Similar values for hyperparameters were
found for the global XGBoost VTEC model in [29], namely 100 trees, a maximum tree depth
of 6, and a learning rate of 0.1.

Table 2. Hyperparameters of developed machine learning models.

Model Selected Hyperparameters Range of Search

max_depth = 5–8 [4, 5, 6, 7, 8, 9, 10, 15, 20]
Decision Tree min_samples_split = 10–20 [2, 5, 10, 15, 20]

min_samples_leaf = 10 [2, 5, 10, 15, 20]

max_features = 6 [4, 5, 6, 7, 8]
max_depth = 8–10 [4, 6, 8, 10, 12, 15, 20]

Random Forest min_samples_split = 10 [2, 5, 10, 15, 20]
min_samples_leaf = 5 [2, 5, 10, 15, 20]

n_estimators = 300 [50–500] interval of 50

AdaBoost max_depth = 6–8 [3, 4, 5, 6, 7, 8, 9, 10, 15]
n_estimators = 50 [50, 100, 150, 200, 300]

max_depth = 4–6 [3, 4, 5, 6, 7, 8, 9, 10, 15]
XGBoost n_estimators = 100 [50, 100, 150, 200, 300]

learning_rate = 0.1 [0.01, 0.05, 0.1, 0.15, 0.2, 0.25, 0.3]
subsample = 0.5 [0.3, 0.5, 0.7, 1]

Individual models were trained for each grid point and each forecast window, i.e.,
six models were developed for each machine learning method in Table 3. A total of
72 models were developed: 36 for non-differenced data and 36 for differenced data. Learn-
ing algorithms were implemented in the Python programming language using Scikit-learn
library [46].

Table 3. Overview of developed VTEC machine learning models.

Abbreviation Machine Learning Model Approach

DT Decision (Regression) Tree Single tree
RF Random Forest Bagging ensemble
AB AdaBoost Boosting ensemble

XGB XGBoost Boosting ensemble
VR1 Random Forest, AdaBoost & XGBoost Meta-ensemble
VR2 Random Forest & XGBoost Meta-ensemble
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Figure 4 depicts a flowchart of the VTEC machine learning model development. Based
on its performance on training and validation data, the model was optimized in terms
of hyperparameters and data. In the case of high bias, the model with an approximation
function is not complex enough, and therefore, it underfits the data. As the model com-
plexity increases, the variance tends to increase, while the bias tends to decrease, which
results in a decrease in training error (Figure 5). However, too much complexity leads to
an increase in the validation error and consequently to a large test error due to overfitting
(high variance). The aim is to find a balanced model that neither learns from the noise
(data overfitting) nor makes poor assumptions about the data (data underfitting). The final
model complexity is chosen in a way to trade off bias with variance, i.e., balance bias with
variance to minimize the validation error and, consequently, the test (generalization) error.
High bias was fixed by adding new input features and increasing the values for max_depth,
max_features, n_estimators. The high variance was addressed by decreasing the values for
max_depth, max_features, n_estimators, learning_rate, subsample, as well as increasing
the values for min_samples_split and min_samples_leaf (Table 2).

Figure 4. Flowchart of VTEC machine learning model development from data exploration, selection,
and preparation to training and cross-validation until the final machine learning model with the
target approximation function is not found. The model is optimized in terms of its performance. Poor
performance on training and validation data is the result of high bias, while poor performance on
validation data is the result of high variance. They can be solved by increasing or decreasing the
model complexity, respectively. The final machine learning model can be used to forecast VTEC on
new input data.
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Figure 5. Training and validation/test errors as a function of model complexity. Optimal model
complexity yields a balanced model that has neither large bias (data underfitting) nor large variance
(data overfitting).

The training and validation time with 20-folds for the single Decision Tree model is
under 5 s, while it increases for the ensemble learning models from 30 s for XGBoost to
about 5 min for Random Forest (Table 4). Overall, their execution time is under 5 min,
while the testing time is less than one second for each of the models, demonstrating the
computational efficiency of the proposed models.

Table 4. Execution time in seconds of the VTEC models using NVIDIA Tesla P100 GPU with 16 GB
memory.

Machine Learning Model Training and Validation Testing
(s) (s)

DT 2–4 <0.01
RF 300–330 ∼0.30
AB 65–85 ∼0.10

XGB 30–40 ∼0.05
VR1 ∼250 ∼0.35
VR2 ∼200 ∼0.25

3. Results
3.1. Exploratory Data Analysis

Exploratory data analysis is performed to identify significant patterns and correlated
data, as well as to summarize their properties to support the selection of input data for
the machine learning model. It is important to prepare a suitable dataset for learning
algorithms to enable the learning of important features for VTEC forecasting. Our goal was
to create training data with enough relevant and not too many irrelevant inputs and also
not too much correlated input data. These properties can be verified with the correlation
matrix between the input and the output data (Figure 6).

Using the non-differenced data (Figure 6, top left), a weak positive and negative linear
relationship between VTEC and the time information, hour and DOY, respectively, can be
noticed. A weak to a moderate positive relationship can be seen between VTEC and solar
indices (R and F10.7). The relationship to the solar wind and magnetic activity data (Bz,
Dst, AE) indicates a very weak to no relationship at all. On the other hand, the relationship
between differenced VTEC and the time information disappears and there is a very weak
relationship with solar indices (Figure 6, bottom left). However, the relationship between
differenced VTEC and differenced data of solar wind and magnetic activity increased. The
relationship between VTEC(t) with VTEC(t + 1 h) and VTEC(t + 24 h) is very high positive
for non-differenced data, while for differenced data is high positive for VTEC(t + 1 h) and
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low positive for VTEC(t + 24 h). The heatmap for periods of strong and severe geomagnetic
storms (Kp ≥ 7) reveals a weak to moderate relationship between VTEC and all input
data (Figure 6, right). The relationship to data of solar wind speed, Bz, Kp, and AE is
significantly increased. These relationships are not visible in the heatmap over the entire
training period (Figure 6, left) as these events are rare and unrepresented in the dataset
(Figure 7). However, during the space weather event, it becomes apparent that these data
are relevant and should be taken into account. The VTEC prediction during space weather
events is clearly a case of unrepresented classes, i.e., data imbalance, where space weather
events are in minority compared to the quiet period.

Figure 6. Correlation matrix between the model input and ground-truth VTEC. Top: non-differenced
data, bottom: differenced data. left: training data (2015–2016), right: training data for Kp ≥ 7.
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Figure 7. Percentage of Kp data with the values Kp < 3, 3 ≤ Kp < 4, 4 ≤ Kp < 5, and Kp ≥ 5
denoting quiet, moderate, active and storm conditions, respectively, in the geomagnetic field, over
solar cycle 24 (2009–2019) (top left) and for years 2015, 2016 and 2017 (bottom). Top right: Number of
hours of the Kp data with values Kp≥ 5 vs. the maximum values of the sunspot number R and the
solar radio flux F10.7 (both referring to the right y-axis) from 2009 to 2019.

As highlighted in Figure 7 (top left), 85% of the 3 h Kp data from 2009 to 2019 indicates
quiet conditions in the geomagnetic field, while only 2% of the Kp data have reached an
index of 5 or higher. This indicates that geomagnetic storms are strongly underrepresented
and occur rather rarely, leading to imbalanced examples. On the other hand, these examples
are of special interest as they contain useful knowledge and important information for
forecasting purposes. Machine learning boosting algorithms have been shown to be suitable
for applications with imbalanced data [47]. The number of geomagnetic storm conditions
(Kp ≥ 5) was the highest in the years after the solar maximum (reached in April 2014),
i.e., from 2015 to 2017, and in 2012, before the solar maximum (Figure 7, top right). Years
2015 and 2016 have more of these events than other years (Figure 7, bottom). In addition,
they are near the solar maximum. Therefore, they have been chosen for training and cross-
validating the models to have more examples of storm events and near-solar maximum
conditions. The subsequent year 2017 is selected for testing as it includes the strongest
storm of solar cycle 24 (in September 2017). In the training dataset, there are 99 days with
reported Kp ≥ 5, with 56 days in 2015 and 43 days in 2016. In the test dataset, Kp ≥ 5
applies for 37 days.

3.2. K-Fold Selection for Cross-Validation

To achieve optimal results, the appropriate k-fold size was analyzed with respect to the
accuracy of two machine learning models, namely Decision Tree and Random Forest. For
the analysis VTEC is predicted for high-latitude, mid-latitude and low-latitude ionospheric
regions using the varying k-fold sizes: k = (6, 10, 20, 30, 40, 50) (Figure 8). The graph to
the left presents the RMSE for cross-validation and test datasets with Decision Tree and
Random Forest for 6 and 20 folds. The low-latitude VTEC forecast (RMSE) is improved
for about 1 TECU by increasing the k-fold size from 6 to 20, while the RMSE for the high
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and mid-latitude VTEC is similar for both k-folds. Only for Decision Tree, a slight RMSE
degradation for the high-latitude VTEC is observed for test data with 20 folds, which may
be due to overfitting as a single tree tends to overfit the data. However, the improvement in
the low-latitude VTEC is significantly higher. The graph to the right illustrates the RMSE as
a function of the number of k-folds for the low-latitude VTEC, where k = 20 folds appear to
be optimal. The low-latitude VTEC has more complex variations, such as those due to the
equatorial anomaly. Using a smaller k-fold size, the model is trained and cross-validated
with larger data samples in a single k-fold with a smaller number of iterations. In that case,
it may overlook some VTEC variations that are not much represented in the single split. By
increasing the k-folds size, the model is trained on smaller data subsets with more iterations.
Thus, the signal can be learned better. However, too large k-fold will result in very small
data subsets that can lead to overfitting during training, resulting in higher RMSE on the
cross-validation set, as for k = 50. Similar behavior is observed for the boosting models.
However, the goal is to neither overfit nor underfit the data. From Figure 8 it is apparent
that k = 20 folds are optimal for a 2-year cross-validation period (2015–2016).

Figure 8. Number of time series k-folds splits as function of RMSE. Left: RMSE for Decision Tree
(DT) and Random Forest (RF) on cross-validation and test datasets for k = 6 and 20. Right: RMSE for
the RF model on coss-validation data for k = 6, 10, 20, 30, 40, 50.

RMSE on training and cross-validation data sets is presented for each k-fold for the
model VR1 in Figure 9. Training curves are mostly constant after the 5th fold, while cross-
validation curves are changing more significantly. The training set is small in the first folds,
which results in lower RMSE during training, as it is easier to fit the smaller dataset. On
the other hand, the larger RMSE values are for cross-validation, as such a small training
data set is not representative. While increasing the number of k-folds, the training data set
becomes larger, which slightly increases RMSE during training, while decreasing RMSE
during cross-validation. Thus, the largest errors for the cross-validation are mostly in the
first 5 folds. After the 10th fold, RMSE values of cross-validation are similar to RMSE
values of training or even smaller as k further increases. The average RMSE values for
training and cross-validation for all k-folds are summarized in the bar graphs in Figure 9.
Differences in RMSE between training and cross-validation are larger for non-differenced
data than for differenced data. Differenced data have a lower training RMSE, while the
cross-validation RMSE is mostly similar between differenced and non-differenced data.
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Figure 9. RMSE on training and validation data from 1st to 20th k-fold (left). The bar graph represents
the average RMSE for all 20 k-folds (right). Top: 1-h, bottom: 24 h forecast. Results are provided for
the model VR1 for both non-differenced and differenced (diff.) data.

3.3. Relative Importance of Input Variables to VTEC Forecast

Relative importance of the input variables for the 1 h and 24 h VTEC forecasts using
non-differenced and differenced data for the period 2015–2016 is estimated (Figure 10),
including an analysis for geomagnetic activity conditions (Kp ≥ 5) (Figure 11).

The results demonstrate that the previous VTEC information as an input variable has
the largest contribution to the VTEC prediction. Its significance for non-differenced data
is about 60%, while for differenced data it is from 60% to 70% for 1 h and 30% to 50% for
24 h forecasts (Figure 10). Another important input variables for non-differenced data are
exponential moving averages, especially over the last four days (96 h). On the other hand,
time-derivatives of VTEC are more important for 1 h forecast with differenced data, in
particular the first derivative. For 24 h forecast with differenced data, exponential moving
averages have higher importance. For the high-latitude ionospheric region (10°70°), the
second derivative has also a higher contribution. For models with non-differenced data,
other dominant input variables are temporal information (hour and DOY), followed by
solar activity data (F10.7 index), while other variables (solar wind and magnetic field)
have little or no influence on the VTEC forecast. In the case of differenced data, on the
other hand, the contribution of the temporal information decreased. At the same time, the
contribution of other input variables increased, namely solar wind speed (SW) and indices
of magnetic field (AE, Kp, Dst, Bz). Their significance is larger for 24 h forecasts.

During geomagnetic storm conditions, the relative importance of input variables,
describing the solar activity, solar wind, and magnetic activity, increased for almost all
ionospheric regions, especially for non-differenced data, while the contribution of previous
VTEC value mostly decreased (Figure 11). In addition, the contribution of the first time
derivative for non-differenced data increased. It is especially interesting to see the higher
significance of the AE index for high-latitude, the Kp index for mid-latitude, and the Dst
index for low-latitude ionospheric regions for differenced data, having in mind that these
indices are measured in those regions.
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Figure 10. Relative importance of input variables to VTEC forecast estimated from the Random Forest
models. Results are presented for 1 h forecast with non-differenced data (first row) and differenced
data (second row), and for 24 h forecast with non-differenced data (third row) and differenced data
(fourth row) for high-latitude (left), mid-latitude (middle) and low-latitude (right) VTEC.
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Figure 11. Relative importance of input variables to VTEC forecast for geomagnetic storm conditions
(Kp ≥ 5) estimated from the Random Forest models. Results are presented for 1 h forecast with
non-differenced data (first row) and differenced data (second row), and for 24 h forecast with non-
differenced data (third row) and differenced data (fourth row) for high-latitude (left), mid-latitude
(middle) and low-latitude (right) VTEC.

3.4. Accuracy Performance of Machine Learning Models

The RMSE and correlation coefficients for cross-validation, test, and geomagnetic
storm (7–10 September 2017) datasets for the 1 h and 24 h forecasts with different machine
learning models, namely Decision Tree and ensemble learning (Random Forest, AdaBoost,
XGBoost and Voting Regressors), using two types of data (non-differenced and differenced)
are presented in Figure 12. The period of the severe geomagnetic storm (7–10 September
2017) covers the main and recovery phase of the storm. In addition, an overview of the
RMSE for the year 2017 and for the storm in September 2017 is shown in Table 5.
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Figure 12. The RMSE and correlation coefficient (Corr.) for cross-validation (first column), test
(second column) and geomagnetic storm (7–10 September 2017) (third column) datasets, for 1 h and
24 h forecast horizons for Decision tree (DT), Random forest (RF), Adaboost (AB), XGBoost (XGB)
and two Voting regressor models (VR1 and VR2). Models trained of differenced data are marked with
“diff” The evaluation on the test dataset is a measure of the models’ generalization to new examples.

The RMSE for the cross-validation dataset is higher than for the test dataset because
the training period (2015–2016) includes larger absolute VTEC values as it is closer to
the solar maximum (in April 2014). The RMSE is about twice higher for 1 day forecast
than for 1 h forecast for all the models. The VTEC forecast with a single Decision Tree
tends to have the highest RMSE and the lowest correlation coefficients for all datasets.
Ensemble learning improved the accuracy. The lowest RMSE is mostly achieved with the
Random Forest, XGBoost and Voting Regressor models. During the severe geomagnetic
storm in September 2017, the RMSE is about 0.3 to 0.5 times higher for the 1 h forecast and
0.7 to 1 times higher for the 24 h forecast than for the entire test year 2017 (Table 5). The
boosting method provided the lowest RMSE during the space weather event (XGBoost
in particular), demonstrating its usefulness for predicting rare events. From the cross-
validation and test results (Figure 12) it can be seen that the lower RMSE for the mid- and
low- latitudinal ionospheric regions for 1 h and 24 h forecasts mainly have models trained
on differenced data. This can be also observed for the high-latitude ionosphere for the 24 h
forecast. The correlation coefficients are above 90% for the 1 h and 24 h forecast horizons
for the training and cross-validation dataset (2015–2016), while the correlation coefficients
for the test dataset (2017) are above 90% for the 1 h and above 85% for the 24 h forecast
horizons. For the year 2017, the lowest RMSE for the high-latitude VTEC is 0.54 TECU
and 1.6 TECU for the 1 h forecast (non-differenced data) and the 24 h forecast (differenced
data), respectively (Table 5). The lowest RMSE for VTEC in the mid-latitude is 0.86 TECU
and 1.86 TECU for the 1 h (differenced data), and the 24 h (non-differenced data) forecast
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horizons, respectively. The highest accuracy of the VTEC forecast for the low-latitude
region is the RMSE of 1.09 TECU and 2.15 TECU for the 1 h and 24 h forecast horizons,
respectively, both with differenced data.

On the other hand, during the storm, models trained on non-differenced data have a
smaller RMSE and a higher correlation coefficient for the 1 h forecast, while for the 24 h
forecast the smallest RMSE and the highest correlation coefficients are mostly for models
with differenced data. Correlations between the ground-truth VTEC and predicted VTEC
for the storm test period are from 90% for the 1 h forecast, while for the 24 h forecast they
are from 55% (the highest 73%), 72% (the highest 81%) and 94% (the highest 95%) for the
high-latitude, mid-latitude, and low-latitude ionospheric regions, respectively. For the
1 h forecast, the highest correlation coefficients are achieved with Voting Regressor and
non-differenced data, while for the 24 h forecast the highest correlation coefficients are
with boosting methods (AdaBoost and XGBoost) and differenced data. The lowest RMSE
for the high-latitude VTEC is 0.71 TECU and 1.67 TECU for the 1 h (non-differenced data)
and 24 h (differenced data) forecast, respectively (Table 5). In terms of the mid-latitude
VTEC, the lowest RMSE is 1.18 TECU and 3.29 TECU for the 1 h (non-differenced data)
and 24 h (differenced data) forecast, respectively. The low-latitude VTEC forecast achieved
the lowest RMSE of 1.12 TECU and 3.96 TECU for the 1 h (non-differenced data) and 24 h
(non-differenced and differenced data) forecast, respectively.

Table 5. Overview of RMSE for different machine learning models for test period of year 2017 and
severe geomagnetic storm 7–10 September, 2017 for high-latitude (10E 70N), mid-latitude (10E 40N)
and low-latitude (10E 10N) VTEC. The subscript diff. indicates models trained on differenced data.
The maximum and minimum values of the RMSE are marked in red and green, respectively.

DT RF AB XGB VR1 VR2

70N, 40N, 10N 70N, 40N, 10N 70N, 40N, 10N 70N, 40N, 10N 70N, 40N, 10N 70N, 40N, 10N

2017 RMSE (TECU) RMSE (TECU) RMSE (TECU) RMSE (TECU) RMSE (TECU) RMSE (TECU)

1 h
0.75, 1.18, 1.79 0.54, 0.92, 1.20 0.60, 0.98, 1.31 0.59, 0.92, 1.17 0.59, 0.95, 1.18 0.58, 0.93, 1.14

1 hdiff.
0.76, 0.96, 1.19 0.70, 0.87, 1.10 0.71, 0.92, 1.14 0.69, 0.86, 1.10 0.68, 0.86, 1.09 0.69, 0.86, 1.09

24 h
1.28, 2.15, 2.55 1.06, 1.86, 2.20 1.15, 1.95, 2.26 1.15, 1.96, 2.25 1.11, 1.91, 2.17 1.11, 1.92, 2.21

24 hdiff.
1.18, 2.08, 2.22 1.08, 1.89, 2.15 1.12, 1.96, 2.17 1.10, 1.89, 2.17 1.08, 1.89, 2.15 1.08, 1.88, 2.15

7–10 September

1 h
0.89, 1.48, 1.62 0.73, 1.31, 1.29 0.74, 1.37, 1.20 0.76, 1.18, 1.12 0.72, 1.23, 1.16 0.71, 1.19, 1.17

1 hdiff.
1.10, 1.55, 1.66 0.94, 1.52, 1.58 0.99, 1.53, 1.63 1.00, 1.40, 1.49 0.88, 1.42, 1.52 0.91, 1.44, 1.51

24 h
2.10, 4.12, 4.29 1.77, 3.95, 3.95 1.89, 3.92, 4.23 1.95, 3.87, 4.04 1.90, 3.84, 4.01 1.86, 3.87, 3.96

24 hdiff.
2.12, 4.09, 4.10 1.87, 3.57, 4.08 1.67, 3.29, 4.09 1.77, 3.29, 3.96 1.76, 3.41, 4.02 1.78, 3.39, 4.00

The relative RMSE change with respect to the persistence (naive) forecast is presented
in Figure 13. The persistence model considers that the VTEC(i + t) is equal to the VTEC(i),
where t takes values of 1 and 24 for the 1 h and 24 h forecasting, respectively, i.e., we
assume the state of the frozen ionosphere with respect to the previous hour or previous
day. Persistence forecast is the most common baseline method to measure the forecast
performance in supervised machine learning, as well as, in data-driven, physics-based and
traditional statistical VTEC forecasting [24,31,48–50]. The models for the 1 h forecast of the
low-latitude VTEC have reduced RMSE of about 60% for the test period and about 70%
during the geomagnetic storm with respect to the baseline. The relative RMSE reductions
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with respect to the persistence forecast are up to 20%, near 40%, and around 60% for
the high-, mid-, and low- latitude VTEC points, respectively, for the 1 h forecast with a
non-differenced RF model. For the 24 h forecast, the machine learning models have a
lower RMSE by 10–25%, 15–25%, and 5–10% for the high-, mid-, and low- latitude VTEC
points, respectively. For the 1 h forecast of the high-latitude VTEC, the RMSE is increased
when using differenced data. However, in the case of the 24 h forecast, the models with
differenced data mostly forecast the high-latitude VTEC by 5% to 10% lower RMSE than
the models with non-differenced data. In addition, they improve the 1 h and 24 h mid- and
low-latitude VTEC forecasts by about 2–5% with respect to the models with non-differenced
data in 2017. For the storm period, models with non-differenced data provide 1 h forecast
for the VTEC points at high-, mid-, and low-latitudes with an RMSE of about 10–15% lower
than the models with differenced data. On the other hand, for the longer (24-h) forecast,
the models with differenced data mostly outperform the models with non-differenced
data, especially during the storm, when the relative RMSE decrease is up to 10% for the
high-latitude VTEC and 10% to 15% for the mid-latitude VTEC. The differences in the
low-latitude 24 h VTEC forecast are smaller (<4%) between different models and data.

Figure 13. Relative RMSE change with respect to the persistence (naive) forecast. Top: 1 h forecast,
bottom: 24 h forecast. Left: test data (2017), right geomagnetic storm (7–10 September 2017). Models
trained of differenced data are marked with “diff.”.

Machine learning performance depends highly on data and, therefore, data should be
prepared in a way to enhance learning. Figure 14 shows the VR1 model improvement by
including the inputs such as exponential moving averages and time derivatives of VTEC.
First, models were trained with the first ten input data in Table 1, i.e., without exponential
moving averages and time derivatives, denoted as Data1. Later those inputs are added to
improve learning, referred to as Data2. For both non-differenced and differenced data, the
RMSE is reduced (by 0.2 to 0.5 TECU) as additional inputs of moving averages and time
derivatives are added.
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Figure 14. The RMSE for cross-validation (left), test (mid) and geomagnetic storm (right) datasets
for 1 h (top) and 24 h (bottom) forecasts for the VR1 model. Models trained with differenced data are
marked with “diff”. Data2 refers to data in Table 1, while Data1 comprises Data2 excluding inputs of
EMA, VTEC′ and VTEC′′.

Further, differenced and undifferenced data were combined, where exponential mov-
ing averages and time derivatives were calculated from non-differenced VTEC, to forecast
non-differenced VTEC (Figure 15). The analysis was done for the XGBoost model, because
it is fast compared to other models (Table 4), while accuracy is comparable between the
models (Table 5). The RMSE for the 1 h VTEC forecast for test data including the severe
geomagnetic storm is similar for models with non-differenced data and data combination.
For the 24 h forecast, the RMSE for mid- and low-latitude VTEC with data combination is
lower than for the non-differenced data, while more similar to the RMSE for differenced
data (Figure 15). Data combination for forecasting non-differenced VTEC improved the
model accuracy compared to the non-differenced data for the 24 h forecast and during the
space weather event.

Figure 15. The RMSE for test dataset (right) and geomagnetic storm (7–10 September 2017) (left) for
1 h (top) and 24 h (bottom) forecasts for the XGBoost model. Models trained using differenced data
are marked with “diff”, while “combination” denotes differenced and non-differenced data together,
where exponantial moving averages and time derivatives are calculated from non-differenced VTEC,
while the model output is non-differenced VTEC.
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Values of VTEC from machine learning models and GIM CODE VTEC were analyzed
in more detail for the severe space weather event in September 2017 (Figure 16, left)
including their differences (Figure 16, right).

Figure 16. Left: VTEC values from machine learning models and ground truth VTEC from GIM
CODE for the severe geomagnetic storm (7–11 September 2017). Right: Differences between VTEC
from machine learning models and GIM CODE VTEC. From top to bottom: 1 h forecast with
non-differenced data, 1 h forecast with differenced data, 24 h forecast with non-differenced data,
24 h forecast with differenced data, Dst index, and Kp index ·10. The yellow arrow denotes the
sudden storm commencement (SSC) time, while the purple arrows point to two Dst minima, which
correspond to the maximum phase of the geomagnetic storms.

The CMEs with earthward trajectories were emitted from the Sun on 4 and 6 September
2017 [51]. The first CME arrived on 6 September at about 23:43 UT leading to moderate
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geomagnetic conditions on 7 September (Figure 16). The solar wind shock from the second
CME, originating from the intense X9.3 solar flare of September 6, caused a sudden storm
commencement (SSC) at about 23 UT on 7 September. This led to severe geomagnetic
storms in September with the maximum value of Kp = 8. The main phase of the storm was
characterized by the two pronounced minima of Disturbance storm time (Dst) index at
about 1:00 and 14 UT on 8 September. Afterward, the recovery phase started and lasted for
about 3 days until 11 September [51]. Shortly after SSC, there is a sudden VTEC increase in
high latitude. This peak is reproduced in a 1 h forecast and slightly in a 24 h forecast with
differenced data. The largest differences are visible for the 1 day forecast for low-latitude
VTEC on 8 September, i.e., during the maximum intensity of geomagnetic storms. On the
other hand, 1 h forecast much better adapts to rapid changes in the ionosphere and can
reproduce sudden intense variations during this space weather event. On 10 September,
both 1 h and 1 day forecasts stabilize and have much lower differences from the ground
truth during the recovery storm phase and a decrease in VTEC values. Overall, differences
for the 1 h forecast are up to about 5 TECU, while for the 24 h forecast they are about twice
as high, i.e., up to 10 TECU for all three latitudinal regions during sudden and intense
irregular VTEC variations resulting from the space weather event. Figure 17 presents
the scatter plot of the predicted and ground truth (GIM CODE) VTEC for the datasets
from January 2015 to December 2016 (training) and January-December 2017 (testing) for
the VR1 model. The highest correlations between predicted and GIM VTEC in test data
mostly have the models with differenced data, while having lower correlation coefficients
for training data than models with non-differenced data. This suggests that models with
non-differenced data show a slightly better fit during training than models with differenced-
data, resulting in a slightly lower correlation for test data. VTEC forecast (green) from the
VR1 model for 1 h and 24 h are shown as time series in Figure 18, and as 2D maps as a
function of DOY and HOD in Figure 19 for year 2017. It is interesting to observe that the
models trained on non-differenced data overestimate the lowest VTEC values, particularly
for the high-latitude grid point (Figure 18). In contrast, the models trained with differenced
data are able to predict the lowest VTEC values. Sudden VTEC peaks are better captured
with the 1 h forecast models than 24 h forecast models (Figures 18 and 19). Daily, seasonal
and semi-annual VTEC variations are well predicted with the VR1 model (Figure 19). The
maximum absolute differences between the GIM CODE and VR1 model are about 4 TECU
for high-latitude and 7 TECU for the mid- and low-latitude points for the 1 h forecast,
while for the 24 h forecast they are up to 8 TECU for high-latitude and to 12 TECU for
the mid- and low-latitude points. However, most of the time, the differences are within
1 and 2.5 TECU for the 1 h forecast and within 2.5 and 5 TECU for the 1 day forecast for
the high-latitude and mid-/low-latitude grid points, respectively. 1 day predicted GIM
CODE (C1PG) provides VTEC with mostly lower values than the final GIM CODE and
VR1 model (Figure 19). In addition, the GIM C1PG is mostly unable to predict VTEC peaks
with the maximum absolute differences from the final GIM CODE up to 9 TECU, 17 TECU,
and 14 TECU for high-, mid-, and low-latitude grid points.
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Figure 17. Predicted VTEC by the VR1 models vs. ground truth VTEC for training and cross-
validation (blue) and test (green) datasets. First row: 1 h forecast with non-differenced data,
second row: 1 h forecast with differenced data, third row: 24 h forecast with non-differenced data,
fourth row: 24 h forecast with differenced data for high-latitude (left), mid-latitude (middle) and
low-latitude (right) VTEC grid points.
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Figure 18. Forecasted VTEC by the VR1 model (green) and ground truth VTEC (orange) during year
2017. Top: 1 h, bottom: 24 h forecast. Left: non-differenced data, right: differenced data.

Figure 19. Upper panel left: VR1 model 1 h forecast (top) with non-differenced data (left) and dif-
ferenced data (right), corresponding VTEC differences (dVTEC = VTECGIM −VTECVR1) (bottom).
Upper panel right: VR1 model 24 h forecast (top) with non-differenced data (left) and differ-
enced data (right), dVTEC (bottom). Bottom panel left: 1 day predicted GIM CODE (C1PG) (left),
dVTEC = VTECGIM −VTECC1PG (right). Bottom panel right: GIM CODE.
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4. Discussion

The relative importance of the input variables shows that the VTEC forecast with non-
differenced data is mostly based on previous VTEC values, temporal information (h), and
solar index (F10.7), especially for mid- and low- latitude VTEC. The contribution of other
variables (solar wind speed, Bz, AE, Kp, Dst) is extremely small in those models or is not
represented at all. The reason can be the strong correlations of VTEC(t) with VTEC(t + 1 h)
and VTEC(t + 24 h) and with temporal information. In addition, the correlation between
solar activity indices (F10.7 and R) and VTEC is much higher for non-differenced data than
for differenced data. On the other hand, the correlations between VTEC, and solar wind,
and magnetic activity increase for differenced data, leading to their higher contributions to
the VTEC forecast. As a result, the models trained on differenced data use almost all of the
input data for forecasting VTEC, especially during storm periods.

The performance of machine learning models is slightly different for non-differenced
and differenced data. Using differenced data, the RMSE for cross-validation and test
datasets are mostly consistent between different ensemble models. On the other hand,
the differences between the models with the non-differenced data are more pronounced.
Models with differenced data provided mostly better results on the test dataset for both the
1 h and 24 h forecast. During space weather events, improvements are observed over the
longer forecasting horizon.

Ensemble learning improved the VTEC forecast from about 25% to 50% over the
single tree. Larger improvements are visible for models with non-differenced data. Using
differenced data there is less disagreement between Decision Tree and ensemble models.
This suggests that differentiation facilitated learning of structural patterns in the data even
using less optimal models such as Decision Tree. During the storm event, ensemble learning
majorly improves forecast, especially over the 24 h forecasting horizon.

Regarding different machine learning models, Voting Regressor meta-ensemble mod-
els provided the lowest RMSE and the highest correlation coefficients. The lowest RMSE
values provided are 0.6, 0.9, and 1.1 TECU for the high-, mid-, and low-latitude VTEC,
respectively, for the 1 h forecast. For the 24 h forecast, the RMSE is about twice higher,
resulting in 1.1, 1.9 and 2.1 TECU for the high-, mid- and low-latitude VTEC, respectively.
During the severe storm in September 2017, the lowest RMSE is 0.7, 1.2 and 1.2 TECU for
the high-, mid-, and low-latitude 1 h VTEC forecast, respectively, with Voting Regressor
models. For the 24 h forecast horizon, the RMSE is higher, reaching 1.8, 3.4 and about
4 TECU for the high-, mid- and low-latitude VTEC, respectively. During the storm, the
RMSE for the 24 h mid-latitude VTEC forecast with AdaBoost and non-differenced data is
3.9 TECU, while for the differenced data is 3.3 TECU. This shows an improvement of more
than 0.50 TECU during the severe storm when the model is trained on the differenced data.
Other ensemble models show similar results. Our ensemble learning models provide the
high-latitude VTEC forecast (10°, 70°) with a lower RMSE than the LSTM model in [20],
i.e., around 1 TECU and 2 TECU for the 1 h and 24 h forecast, respectively, during the
September 2017 storm. The LSTM model [20] for the high-latitude VTEC forecast (138°, 57°)
resulted in an RMSE of about 5 TECU during storm events (−150 nT ≤ Dst ≤ −100 nT).
The feed-forward ANN provides a mid-latitude VTEC forecast with an average RMSE of
about 5 TECU during geomagnetic storms [34], while our best performing Voting Regressor
model provides the 1 h and 24 h mid-latitude VTEC forecasts with an RMSE of 1.20 and 3.40
TECU, respectively, during the severe geomagnetic storm. In 2017, its mid-latitude VTEC
forecast is below 1 TECU, being better than the SVM model in 2018 (RMSE 1.5 TECU) [30].
The 1 day mid-latitude VTEC forecast values with our models have RMSE below 2 TECU
which is in line with the LSTM model performance in 2016 [32]. The 1 h low-latitude VTEC
forecast from the Voting Regressor model has twice lower RMSE (about 1.1 TECU) in 2017
than the LSTM-CNN models in 2016 [22] and in 2018 [21] and slightly better (for 0.4 TECU)
than the SVM model in 2018 [30]. The GBDT model provides 1 h low-latitude VTEC
forecasting with an RMSE of about 3 TECU in 2015 and 3–4 TECU during the geomagnetic
storm [27]. Our XGBoost model has RMSE below 1.5 TECU for the 1 h low-latitude VTEC
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forecast during severe storm. Moreover, our XGBoost model provides the VTEC forecast
for three ionospheric grid points with the mean RMSE below 1 and 2 TECU for the 1 h and
24 h forecast horizons, respectively, in 2017, and about 3 TECU for 24 h forecast during
the September 2017 storm. The XGBoost model [29] has a global average RMSE of around
2.5 TECU in 2017, while during the September storm has a higher RMSE of about 8 TECU.
The autoregressive neural network model [24] provides the 1 day global VTEC forecast
with an RMSE from 3.4 to 5.1 TECU from May 2017 to February 2018, while the cGAN
model [26] has an RMSE of about 1.74 TECU from 2017 to 2018. The nearest neighbour [31]
resulted in an RMSE of about 4 TECU in 2015 and 2 TECU in 2018. Our ensemble learning
models have the average RMSE for three ionospheric regions below 2 TECU for the 1 day
forecast from January to December 2017. It should be taken into account that the discussed
studies use different datasets for forecasting VTEC for different locations or regions during
similar or different time periods.

5. Conclusions

This paper presents the development of machine learning models for ionosphere
VTEC forecasting exploiting different learning algorithms from single Decision Tree to
ensemble learning. The approach is presented for three grid points of different latitudes
along the same longitudinal band. Of course, the presented methodology can be extended
to cover larger regions by training the models on VTEC data from different grid points. The
models are data-driven, gaining insights and knowledge from the data describing the solar
activity, solar wind speed, interplanetary and Earth’s magnetic field, and the ionosphere.
In addition, a time series cross-validation method is implemented and the impact of the
different sizes of k-folds on the VTEC forecasting is analyzed, especially for the low-latitude
region. The study has further investigated the performance of machine learning models in
terms of the data, where original and transformed data were used. The second approach
was a differentiation with respect to values of the previous day to remove/reduce trends
related to daily variations.

Looking at the different models, combining a large number of trees in an ensemble,
such as Random Forest and boosting, significantly improve the accuracy and even outper-
form a single Decision Tree solution. The optimal accuracy and generalization are achieved
by combining tree-based ensemble models in a meta-model of Voting Regressor. The use of
differenced data instead of original data results in an RMSE improvement of more than
0.5 TECU for 24 h forecast during a severe storm. Such improvements are also visible for
the 1 h and 24 h forecasts in 2017. Only in the case of the 1 h VTEC forecast during the
storm, the models with non-differenced data perform clearly better, i.e., have a smaller
RMSE value. Including additional input such as exponential moving averages and time
derivatives further reduces the RMSE by up to 0.5 TECU. Relative RMSE decrease with
respect to the persistence (naive) forecasting is from 15% to more than 70% for the 1 h
forecast, and from 5% to 25% for the 24 h forecast. Differences to the final GIM CODE are
mostly within 2.5 TECU for the 1 h forecast, and within 5 TECU for the 1 day forecast.

Based on these results, we can answer the questions raised at the beginning of this paper:

1. The new, proposed learning VTEC models can capture variations in electron content
consistent with ground truth for both 1 h and 1 day forecasts.

2. The ensemble meta-models (VR1 and VR2) improve the VTEC forecasting over each
individual model in the ensemble and deliver optimal results.

3. Including additional input features, such as moving averages and time derivatives, is
beneficial to increase the accuracy of the models.

4. Data modification in the form of differencing enhances the VTEC model performance
for a longer (24-h) forecast, including a geomagnetic storm.

The proposed VTEC models have perspectives to be used as a useful source of infor-
mation for single-frequency GNSS users to mitigate the ionospheric delay and thereby,
directly reduce the ionospheric range error. For instance, the final GIM CODE improves
3D single-frequency position estimates by about 5.5 m, 1 m, and 2.5 m on average in high-,
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mid-, and low-latitude regions, respectively, compared to the real-time available Klobuchar
model [52]. However, considering that the final GIMs are usually provided with a time de-
lay of 1–2 weeks, and the rapid GIMs with 1–2 days [53], their application in real-time is not
possible. There are also ultra-rapid GIMs provided with latency of 2–3 h [54] and real-time
(RT) GIMs [53,55]. The accuracy of RT GIMs is typically worse than final, post-processed
GIMs due to the shorter span of observations, higher noise in carrier-to-code leveling, and
difficulty in carrier ambiguity estimation in real-time processing mode [53]. Considering
that 1 TECU corresponds to 0.162 m in L1 signal delay, differences between our developed
models and the GIM CODE of 1 and 2.5 TECU for the high-latitude, and 2.5 and 5 TECU
for the mid-/low-latitude grid points for the 1 h and 1 day forecast, respectively, result in
L1 delay difference of about 0.2 m to 0.8 m. This suggests that our 1 h and 1 day VTEC
forecast models are expected to improve the GNSS position estimates much more than the
Klobuchar model in the studied locations. Thus, forecasted VTEC information can be used
to support positioning applications. For a regional or global application, the models should
of course be spatially expanded. For operational purposes, the model needs to use VTEC
input from the rapid or RT GIMs or estimate it directly from GNSS observations.

The study shows promising results for the application of tree-based ensemble machine
learning for VTEC forecasts. This approach has the potential to forecast VTEC in different
ionospheric regions during quiet and storm periods. In further work, we plan to extend the
models to additional locations to forecast VTEC at the regional or global level. Furthermore,
the results support the idea of data importance, which is the core of machine learning and
one of the major drivers of machine learning performance. Therefore, future studies will
concentrate on further data exploration and modification in order to find the most optimal
dataset from which the model can learn, especially over longer forecasting horizons and
during space weather. The integration of additional input data that can further characterize
space weather in a form useful for learning is intended. In addition, models with longer
forecast horizons and multi-epoch predictions are to be developed. An investigation that
includes more space weather events will be undertaken and the results should be validated
for the latest time period as a new solar cycle is progressing. Another point of interest is
the comparison with the neural network-based approach that has so far mainly been used
in the area of ionospheric VTEC forecasting. To achieve an objective comparison, the same
datasets should be used, and testing should be carried out for the same time period and
locations. In addition, the uncertainty of VTEC predictions needs to be quantified, such as
in [33], in order to better define the efficiency of the models, provide trustworthy results,
and increase the reliability of the VTEC predictions.
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Abbreviations
The following abbreviations are used in this manuscript:

AdaBoost Adaptive Boosting
AB AdaBoost
DOY Day Of Year
HOD Hour Of Day
DT Decision Tree
GIM Global Ionosphere Map
GNSS Global Navigation Satellite System
LSTM Long Short-Term Memory
r correlation coefficient
RMSE Root Mean Square Error
RF Random Forest
SW Solar Wind speed
TECU Total Electron Content Unit
VTEC Vertical Total Electron Content
VR Votting Regressor
XGBoost eXtreme Gradient Boosting
XGB XGBoost
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1. Introduction
Space weather has been identified as a natural hazard to the modern technical infrastructure on which our 
society is highly dependent. Its accurate and reliable modeling and forecast are therefore essential and rely on 
modeling nonlinear solar-terrestrial coupling processes. The last few years have witnessed a huge growth in 
the use of machine learning (ML) and deep learning (DL) to predict complex space weather phenomena, from 
conditions on the Sun to their effects on Earth (including the ionosphere). Over the next decade, we expect 
continued rapid development and adaptation of emerging ML/DL tools for operational forecasting systems. 
However, there is considerable concern about trusting the results of ML/DL models and treating them as a 
black box because they are difficult to interpret. One of the main issues of previous work is the lack of transpar-
ency, as there is no indication when those results should not be trusted, which may lead to scientific skepticism 
toward ML and DL. Despite their widespread use, there has been little discussion on probabilistic ML/DL and 
uncertainty quantification (UQ) in the space weather domain. Most studies have focused on providing a single 

Abstract Machine learning (ML) has been increasingly applied to space weather and ionosphere problems 
in recent years, with the goal of improving modeling and forecasting capabilities through a data-driven 
modeling approach of nonlinear relationships. However, little work has been done to quantify the uncertainty 
of the results, lacking an indication of how confident and reliable the results of an ML system are. In this paper, 
we implement and analyze several uncertainty quantification approaches for an ML-based model to forecast 
Vertical Total Electron Content (VTEC) 1-day ahead and corresponding uncertainties with 95% confidence 
intervals (CI): (a) Super-Ensemble of ML-based VTEC models (SE), (b) Gradient Tree Boosting with quantile 
loss function (Quantile Gradient Boosting, QGB), (c) Bayesian neural network (BNN), and (d) BNN including 
data uncertainty (BNN + D). Techniques that consider only model parameter uncertainties (a and c) predict 
narrow CI and over-optimistic results, whereas accounting for both model parameter and data uncertainties with 
the BNN + D approach leads to a wider CI and the most realistic uncertainties quantification of VTEC forecast. 
However, the BNN + D approach suffers from a high computational burden, while the QGB approach is the 
most computationally efficient solution with slightly less realistic uncertainties. The QGB CI are determined to 
a large extent from space weather indices, as revealed by the feature analysis. They exhibit variations related to 
daytime/nightime, solar irradiance, geomagnetic activity, and post-sunset low-latitude ionosphere enhancement.

Plain Language Summary Space weather describes the varying conditions in the space 
environment between the Sun and Earth that can affect satellites and technologies on Earth, such as 
navigation systems, power grids, radio, and satellite communications. The manifestation of space weather in 
the ionosphere can be characterized using the Vertical Total Electron Content (VTEC) derived from Global 
Navigation Satellite Systems observations. In this study, the machine learning (ML) approach is applied 
to approximate the nonlinear relationships of Sun-Earth processes using data on solar activity, solar wind, 
magnetic field, and VTEC. However, the measurements and the modeling approaches are subject to errors, 
increasing the uncertainty of the results when forecasting future instances. For reliable forecasting, it is 
necessary to quantify the uncertainties. Quantifying the uncertainty is also helpful for understanding the 
ML-based model and the problem of VTEC and space weather forecasting. Therefore, in this study, ML-based 
models are developed to forecast VTEC within the ionosphere, including the manifestation of space weather, 
while the degree of reliability is quantified with a target value of 95% confidence.
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prediction/forecast for each input (deterministic), while probabilistic predictions/forecasts have usually not 
been addressed. The present paper aims to alleviate these issues by extending ML-based models to quantify 
uncertainty in order to develop the probabilistic model for Vertical Total Electron Content (VTEC) within the 
ionosphere.

The uncertainty can be classified into two main categories (Abdar et al., 2021; Hüllermeier & Waegeman, 2021; 
Siddique et al., 2022):

•  Model parameter uncertainty: it occurs due to incomplete knowledge, which can be due to a lack of training 
data or training data information poor. This is the deterministic part of uncertainty, which can be reduced with 
more knowledge about the system, for example, by adding more information-rich data.

•  Data uncertainty: it is related to uncertainty in measurements, which is due to the noise inherent in the data 
or the stochastic nature of the process generating the data. This is the stochastic part of uncertainty, caused by 
randomness, and therefore irreducible.

In the ML literature, these uncertainties are often referred to as epistemic and aleatoric uncertainties, respectively 
(Abdar et al., 2021; Hüllermeier & Waegeman, 2021). The third source of uncertainty relates to the limitation of 
the learning model to approximate the target function. This is not easy to quantify accurately. For example, model 
selection involves a particular choice of hyperparameters, and it is impossible to fully explore the hyperparameter 
space. The choice of hyperparameters can significantly impact the model's accuracy, complexity, and compu-
tational cost. Thus, it comes down to a trade-off between the complexity of the model to capture higher-order 
nonlinear functions and its ability to generalize to unseen data. Ultimately, the ML process consists of various 
steps of learning and approximating an unknown mapping function from input to output, and the errors and 
uncertainties associated with these steps may contribute to the uncertainty of the model output.

The most commonly used UQ approaches for ML, in general, are the deep ensembles technique and the Bayesian 
approximation (Abdar et al., 2021; Kendall & Gal, 2017; Rahaman & Thiery, 2021). There are few examples of 
UQ studies for estimating a continuous variable in the space weather domain, such as artificial neural network 
(ANN) with Monte Carlo (MC) dropout as a Bayesian approximation and the negative log-likelihood (NLL) loss 
function for thermospheric density prediction (Licata & Mehta, 2022), BNN for the geomagnetically induced 
currents (Siddique et  al.,  2022), as well as, a least squares-based ensemble of convolutional neural networks 
(CNN) for the geomagnetic Dst index prediction (Hu et al., 2022). It has been shown that ANN with MC drop-
out and NLL loss requires much more computational time than ANN with NLL loss and direct probability 
prediction, but both approaches demonstrated similar accuracy (Licata & Mehta, 2022). Siddique et al. (2022) 
highlight that estimating uncertainties allows quantifying the degree of reliability of the ML-based model but 
does not necessarily increase the model accuracy. The least squares-based weighting of the CNN ensemble with 
a class-balanced cost function was used to account for the imbalance between storm and non-storm cases and 
provide probabilistic Dst prediction (Hu et al., 2022). The least squares inclusion of both input and output data 
uncertainties with Bayesian learning using a Long Short-Term Memory neural network resulted in better gener-
alization when applied to the prediction of Earth orientation parameters and Global Navigation Satellite Systems 
station coordinates (Kiani Shahvandi & Soja, 2022). The initial study of an ML ensemble approach to VTEC 
forecast in Natras et al. (2022b) showed higher accuracy and improved generalization compared to a single-model 
approach, with uncertainties estimated as ensemble spread. Other studies on ML-based VTEC modeling and 
forecasting, such as Y. Han et al. (2022), Kaselimi et al. (2022), L. Liu et al. (2020), Lee et al. (2020), to name a 
few, have not quantified the uncertainties or provided confidence intervals (CI) of VTEC output, leading to a lack 
of information on how certain and reliable their ML-based VTEC results are; Natras et al. (2022a) provides an 
overview of these studies and their results.

Based on the review of existing literature, there has been little discussion on probabilistic ML/DL for VTEC and 
space weather in general. In this study, we aim to fill this gap by developing and adapting UQ techniques for 
ML-based VTEC forecasting to produce a probabilistic VTEC model. With this in mind, we analyze and discuss 
the effectiveness of various techniques for estimating uncertainties and 95% CI of 1-day VTEC forecasting for 
both quiet and extreme space weather conditions. Section 2 begins with an overview of data preparation, then 
describes four methods for estimating uncertainty, and ends with an outline of models and hyperparameters 
optimization. Section 3 provides a detailed analysis of the UQ models for test case studies. Our conclusions are 
drawn in the final section.

Writing – review & editing: Randa 
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2. Methodology
2.1. Data

This study deals with supervised learning, in which a set of both input and output data is clearly specified and 
prepared, called training data, which is needed to learn the function that maps the input variables to an output 
variable. A training sample consists of the vector xi and an output yi = F(xi) with i = {1, 2, …, N}. The vectors xi 
can be interpreted as the rows of the N × P predictor matrix 𝐴𝐴 𝐗𝐗 =

(

𝐗𝐗
𝑇𝑇

𝑖𝑖

)

 , whereas the columns represent the input 
features 𝐴𝐴 �̃�𝐱𝑝𝑝 with p = {0, 1, 2, …, P − 1} (Natras et al., 2022a).

In this study, VTEC is obtained from Center for Orbit Determination in Europe (CODE) global ionospheric maps 
(GIM), computed via spherical harmonics up to degree 15 (Schaer, 1999), and interpreted as GT. Because the 
temporal resolution of the CODE GIM was updated from 2 hr to 1 hr in 2015, we used data starting from January 
2015 to develop the VTEC model with 1-hr intervals. September 2017 was an extremely active space weather 
period, with the Sun emitting 27 M-class and 4 X-class flares, as well as several earthward-directed coronal mass 
ejections (CME) (https://www.nasa.gov/feature/goddard/2017/september-2017s-intense-solar-activity-viewed-
from-space). Therefore, the year 2017 is selected for testing, and data from January 2015 to December 2016 
are used for training and cross-validation, The training set consists of a total of 17,544 samples, while the test 
set contains 8,760 samples. To model the solar-terrestrial processes and the impact of space weather on VTEC, 
data on solar and geomagnetic activity were downloaded from the OMNIWeb NASA Service and added as 
input features. The data set is prepared with a 1-hr resolution, denoted D1, corresponding to Table 1 of Natras 
et al. (2022a). It consists of the following input features of xi at timestamp i:

 (a)  VTEC for grid points at 10° of longitude, and 10°, 40°, and 70° of latitude;
 (b)  OMNIWeb data: sunspot number, F10.7 solar radio flux, solar wind plasma speed, interplanetary magnetic 

field Bz index, geomagnetic field (GMF) Dst index, GMF Kp index, auroral electrojet (AE) index;
 (c)  Derived VTEC features: exponential moving average (EMA) of VTEC over the previous 30 and 4 days, first 

and second VTEC derivatives;
 (d)  Hour of the day (HoD) and day of the year (DoY),

and the output yi = VTEC(i + 24) for the 1-day forecast. Grid points for VTEC were selected along the same 
longitude (10°) to represent VTEC latitudinal variations alongside other VTEC variability. Separate models were 
developed for each grid point.

The input data for artificial neural networks were standardized to obtain data with a mean of zero and a standard 
deviation of one. Learning algorithms based on decision trees (Sections 2.2.1 and 2.2.2) do not require data 
normalization since they are not sensitive to the scale of input features, and the data were not standardized in these 
cases. Moreover, a neural network benefits from transforming time information to preserve its cyclic significance:

𝐻𝐻𝐻𝐻𝐻𝐻sin = sin

(

2𝜋𝜋 ⋅𝐻𝐻𝐻𝐻𝐻𝐻

24

)

, 𝐻𝐻𝐻𝐻𝐻𝐻cos = cos

(

2𝜋𝜋 ⋅𝐻𝐻𝐻𝐻𝐻𝐻

24

)

 

𝐷𝐷𝐷𝐷𝐷𝐷sin = sin

(

2𝜋𝜋 ⋅𝐷𝐷𝐷𝐷𝐷𝐷

365.25

)

, 𝐷𝐷𝐷𝐷𝐷𝐷cos = cos

(

2𝜋𝜋 ⋅𝐷𝐷𝐷𝐷𝐷𝐷

365.25

)

. (1)

2.2. Methods

In the following, we present different approaches to determine model and data uncertainties in ML-based UQ 
VTEC models.

2.2.1. Ensemble Approach

Ensemble modeling combines multiple diverse models to predict an outcome using either different algorithms 
or different data sets. The ensemble model, called Super-Ensemble (SE) (Natras et al., 2022b), aggregates the 
mean result across all base models to produce a final prediction with reduced generalization error. This approach 
improves the prediction compared to the single base model within the ensemble by averaging the results over a 
set of functions of well-performing models (Natras et al., 2022b). In this study, ensemble modeling combines 
three learning algorithms, namely Random Forest (Breiman, 2001), Adaptive Boosting (AdaBoost) (Freund & 
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Schapire, 1997) and Gradient Boosting (Friedman, 2001) on three data sets 
consisting of different versions of input features and output. These algo-
rithms are based on decision tree learning but follow different computation 
strategies. Random Forest belongs to the bagging approach of learning many 
diverse random trees, while the other two algorithms are boosting approaches 
of sequential learning that aim to reduce the errors of the tree from the previ-
ous step. Moreover, boosting is realized differently in AdaBoost by assigning 
different weights to observations depending on the model performance in the 
previous step and in Gradient Boosting by training the models on the gradi-
ent of the objective cost function of the previous step. For more details, see 
Natras et al. (2022a).

In addition to training the ensemble members with different learning algo-
rithms, further randomness is introduced into the ensemble by training with 
different versions of the data set to increase the number of ensemble members 
and increase the diversity between them, as shown in Figure 1. Therefore, we 
created three sets of data from the D1 data set introduced in Section 2.1:

1.  Data set D1 with xi, yi for i = 1, 2, …, N;
2.  Daily differences for the input features and output: The data, except HoD 

and DoY, are time-differenced with Δxi, Δyi by calculating the difference 
between an observation at time step i + 24 and observation at time step i 
so that Δxi = xi+24 − xi and Δyi = yi+24 − yi. The EMA and time deriva-
tives of VTEC are calculated from the differenced VTEC values. At the 
end, the VTEC forecast is reconstructed from the forecasted VTEC daily 
difference by adding the VTEC value from 24 hr ago.

3.  The input of the data set from point 1 and the input of the daily differ-
enced data set from point 2 are used as input features, while the output 
comes from the data set from point 1.

Daily differences remove the dominant daily VTEC variations so that the model can learn the remaining signa-
tures associated with other sources of VTEC fluctuations. Such a data strategy demonstrated improved gener-
alization and accuracy of 1-day VTEC forecasting in ensemble tree learning (Natras et al., 2022a), as well as in 
the convLSTM VTEC model (L. Liu et al., 2022). In addition, differencing reduces temporal dependencies and 
trends and stabilizes the mean of the data set, which can improve modeling.

The employed cost function is the mean squared error (MSE), defined as

𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝑚𝑚 =
1

𝑁𝑁

𝑁𝑁
∑

𝑖𝑖=1


(

𝑦𝑦𝑖𝑖, 𝐹𝐹 (𝐱𝐱𝑖𝑖)
)

=
1

𝑁𝑁

𝑁𝑁
∑

𝑖𝑖=1

𝑒𝑒
2
𝑖𝑖
=

1

𝑁𝑁

𝑁𝑁
∑

𝑖𝑖=1

(

𝑦𝑦𝑖𝑖 − 𝑦𝑦𝑚𝑚𝑖𝑖

)2
, (2)

where 𝐴𝐴  is the loss function, yi is the GT VTEC, 𝐴𝐴 𝐹𝐹 (𝐱𝐱𝑖𝑖) is an approximation function of the function F(xi) that maps 
the input xi to the output yi, and 𝐴𝐴 𝐴𝐴𝐴𝑚𝑚𝑖𝑖

 is the VTEC forecast of the mth model with m = {1, 2, …, M}.

The ensemble approach can be viewed as an approximation of a distribution, and thus, its diversity can be used 
as an indicator of the model parameter uncertainty (Hüllermeier & Waegeman, 2021). In this case, the results of 
M independently trained models are averaged, forming a joined distribution p(y|X) as

𝑝𝑝(𝐲𝐲|𝐗𝐗) =
1

𝑀𝑀

𝑀𝑀
∑

𝑚𝑚=1

𝑝𝑝(𝐲𝐲|𝐗𝐗, 𝜃𝜃), (3)

where θ represents a set of model parameters. Nine models, M = 9, are developed for each of the 3 VTEC grid 
points, resulting in a total of 27 models. The randomness in the nine models in this study is introduced by the 
learning algorithms and the data. More specifically, by training the three algorithms mentioned above on each of 
the three data sets individually. The final output 𝐴𝐴 𝐴𝐴𝐴𝑖𝑖 is estimated as the ensemble mean μi

𝑦𝑦𝑖𝑖 = 𝜇𝜇𝑖𝑖 =

1

𝑀𝑀

𝑀𝑀
∑

𝑚𝑚=1

𝑦𝑦𝑚𝑚𝑖𝑖
 (4)

Figure 1. Flowchart of the ensemble modeling procedure trained on three 
different data sets using the three different learning algorithms Random 
Forest, AdaBoost, and eXtreme Gradient Boosting (XGBoost). After the nine 
individual model runs, the results are combined into a Super-Ensemble model, 
which provides the Vertical Total Electron Content forecast values and their 
uncertainty.
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and the standard deviation across the ensemble for observation time i is defined as

𝜎𝜎𝑖𝑖 =

√

√

√

√
1

𝑀𝑀

𝑀𝑀
∑

𝑚𝑚=1

(

𝑦𝑦𝑚𝑚𝑖𝑖
− 𝑦𝑦𝑖𝑖

)2
. (5)

The standard deviation of the ensemble members with respect to the ensemble mean, known as the ensemble 
spread, provides an estimate of the uncertainties. The ensemble spread is represented as a probabilistic prediction 
in terms of lower bounds (LB) and upper bounds (UB) with 95% confidence, defined by

𝑈𝑈𝑈𝑈 = 𝑦𝑦𝑖𝑖 + 2𝜎𝜎𝑖𝑖, 𝐿𝐿𝑈𝑈 = 𝑦𝑦𝑖𝑖 − 2𝜎𝜎𝑖𝑖. (6)

2.2.2. Quantile Gradient Boosting

Quantile methods (Koenker & Hallock, 2001) can be seen as an extension of classical least squares model estima-
tion for the conditional mean function to the estimation of models for the conditional median function and the full 
range of other conditional quantile functions. The quantile function does not require a specification of variance 
changes and can thus model heterogeneous variation in the objective loss distribution (Chan, 2021). Moreover, 
this approach avoids the distributional assumption, that is, it does not assume a Gaussian error distribution (unlike 
most traditional methods) and can be used when the error distribution is non-Gaussian (Chan, 2021). Quantiles 
can be estimated by multiplying different quantile values β by positive and negative residuals in the loss function 
to obtain the quantile loss as

(𝑒𝑒𝑖𝑖|𝛽𝛽) =

⎧

⎪

⎨

⎪

⎩

𝛽𝛽 ⋅ 𝑒𝑒𝑖𝑖 if 𝑒𝑒𝑖𝑖 ≥ 0,

(𝛽𝛽 − 1) ⋅ 𝑒𝑒𝑖𝑖 if 𝑒𝑒𝑖𝑖 < 0

𝑒𝑒𝑖𝑖 = 𝑦𝑦𝑖𝑖 − 𝑦𝑦𝑖𝑖

𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶(𝐞𝐞|𝛽𝛽) =
1

𝑁𝑁

𝑁𝑁
∑

𝑖𝑖=1

(𝑒𝑒𝑖𝑖|𝛽𝛽).

 (7)

The quantile values of β are set to 0.025 and 0.975 for estimating the lower and upper confidence bounds, 
respectively, to obtain a CI of 95%. The mean quantile β = 0.50 provides the median VTEC forecast. To estimate 
other CI levels of 90% and 99%, the quantile values must be changed to 𝐴𝐴 𝐴𝐴 = {0.05, 0.95} and 𝐴𝐴 𝐴𝐴 = {0.005, 0.995} , 
respectively.

Quantile loss has been shown to model data uncertainty in neural networks (Amell et al., 2022; Tagasovska & 
Lopez-Paz, 2019). In this study, we applied quantile loss with a Gradient Boosting tree. The Gradient Boosting 
algorithm and its implementation for VTEC forecast are explained in Natras et al. (2022a). We chose Gradient 
Boosting because it is fast (Natras et al., 2022a), performs well on structured input data even for relatively small 
data sets (Duan et al., 2020), and has proven to be a powerful method in many data science competitions (Chen 
& Guestrin, 2016). Moreover, Vasseur and Aznarte (2021) compared the performance of 10 ML algorithms with 
quantile loss for predicting NO2 pollution and found that Gradient Boosting outperformed the other models with 
better results for all metrics examined.

2.2.3. Bayesian Neural Network

The Bayesian neural network (BNN) represents a modification of an ANN in which the deterministic network 
parameters or weights are replaced by probability distributions of those weights (Abdar et al., 2021; Blundell 
et al., 2015; Kendall & Gal, 2017); for more details on the architecture and computation of an ANN, see Natras, 
et al. (2023a). The probability distributions are used to model the uncertainty in the weights and consequently 
can be used to estimate the uncertainty due to the model parameter uncertainty based on Bayes' theorem. The 
posterior parameters θ to be trained are the mean μ and standard deviation σ of the posterior weight distribution. 
They can be learned by variational Bayesian inference during the training process, facilitated by a standard neural 
network backpropagation technique during the training process (Blundell et al., 2015). That technique is called 
Bayes by Backprop and is implemented in this study.

Given a training data set D = (xi, yi) with i = 1, 2, …N, the likelihood function p(D|w) can be constructed, which 
is a function of the weights w. Maximizing the likelihood function yields the maximum likelihood estimate of 
w. The usual optimization objective in ML training is to minimize the NLL. Multiplying the likelihood by a 
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prior distribution p(w) is proportional to the posterior distribution p(w|D)  ∝  p(D|w)p(w) according to Bayes' 
theorem (Koch, 2018). An analytical solution for the posterior p(w|D) in neural networks is not feasible. We can 
approximate the true posterior with a variational distribution q(w|θ) of the function whose parameters we want 
to estimate. This can be done by minimizing the Kullback-Leibler (KL) divergence between q(w|θ) and the true 
posterior p(w|D).

KL divergence measures how close the variational probability distribution of the weights q(w|θ) is to the posterior 
probability distribution of the weights p(w|D). It is also called relative entropy in probability and information 
theory (Murphy, 2012). Normally, the reverse KL divergence is used

𝐾𝐾𝐾𝐾(𝑞𝑞(𝑤𝑤|𝜃𝜃)‖𝑝𝑝(𝑤𝑤|𝐷𝐷)) = 𝑞𝑞(𝑤𝑤|𝜃𝜃) ⋅ log
𝑞𝑞(𝑤𝑤|𝜃𝜃)

𝑝𝑝(𝑤𝑤|𝐷𝐷)

= −log 𝑝𝑝(𝐷𝐷|𝑤𝑤) +𝐾𝐾𝐾𝐾[𝑞𝑞(𝑤𝑤|𝜃𝜃)‖𝑝𝑝(𝑤𝑤)].

 (8)

The idea behind variational inference is to choose an approximation q(w|θ) to the distribution and then try to 
make this approximation as close as possible to the true posterior p(w|D). This reduces variational inference to an 
optimization problem, and from Equation 8, the objective cost function can be defined as follows

𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 =
1

𝑁𝑁

𝑁𝑁
∑

𝑖𝑖=1

(−log 𝑝𝑝(𝐷𝐷|𝑤𝑤) +𝐾𝐾𝐾𝐾[𝑞𝑞(𝑤𝑤|𝜃𝜃)‖𝑝𝑝(𝑤𝑤)]), (9)

which can be split into two parts: the left term of the loss function on the right side corresponds to the NLL, and 
the right term is the KL divergence between the variational distribution q(w|θ) and the prior p(w), which can also 
be seen as the regularization term.

The prior weight distribution is a Gaussian distribution with a mean μ = 0 and a diagonal covariance with a stand-
ard deviation σ = 1. A sample of the weights w is obtained by randomly sampling ϵ from 𝐴𝐴  (0, 1) , then scaling it 
by a standard deviation σ, and shifting it by a mean μ as

𝑤𝑤 = 𝜇𝜇 + 𝜎𝜎 ⋅ 𝜖𝜖𝜖 (10)

For numerical stability, the network is parametrized with ρ instead of σ. ρ is transformed with the so-called soft-
plus activation function as

𝜎𝜎 = log(1 + exp(𝜌𝜌)) (11)

to ensure that σ is always non-negative (Blundell et al., 2015). The algorithm proceeds by sampling from the vari-
ational posterior distribution, computing a forward pass through a network, and then backpropagating through the 
model parameters to update them. The gradients are calculated with respect to the mean and the standard devia-
tion to update the previous distribution parameters using the stochastic gradient descent optimization algorithm 
(Bottou, 2012). The parameters are updated stepwise, controlled by the learning rate, along a preferred direction, 
which is a function of the previous gradient.

The Gaussian likelihood is assumed in this study, parameterized by the mean and standard deviation as

𝑝𝑝(𝐷𝐷|𝑤𝑤) = 𝑙𝑙(𝑦𝑦|𝜇𝜇𝜇 𝜇𝜇) =
1

𝜇𝜇

√

2𝜋𝜋

𝑒𝑒
−
1

2

(

𝑦𝑦−𝜇𝜇

𝜇𝜇

)2

. (12)

The NLL loss is defined as

 = −log 𝑙𝑙(𝑦𝑦𝑖𝑖|𝜇𝜇𝜇 𝜇𝜇)

=
1

2

[

log
(

𝜇𝜇
2
)

+
(𝑦𝑦𝑖𝑖 − 𝜇𝜇)

2

𝜇𝜇2
+ log(2𝜋𝜋)

]

=
1

2

[

log
(

𝜇𝜇
2
)

+
(𝑦𝑦𝑖𝑖 − 𝜇𝜇)

2

𝜇𝜇2
+ 𝐶𝐶

]

𝜇

 (13)
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where yi is the observed value or GT, μ is the predicted mean, and σ is the standard deviation. C is a constant equal 
to log(2π), which can be neglected. The loss function in Equation 13 is also known as the negative logarithm of 
predictive density (Licata & Mehta, 2022).

For BNN, we assume a fixed data noise, as usual. Then the loss in Equation 13 corresponds to the squared error 
loss, and the left term on the right side in Equation 9 becomes the standard MSE cost, similar to Equation 2. This 
Bayesian approach to an ANN aims to capture the model parameter uncertainty due to limited training data. Each 
time the BNN model is run with the same input variables, a new set of parameters is sampled from the distribu-
tion, and a result is produced. In this study, the VTEC forecast is estimated as the mean of an ensemble of results 
from 100 iterations, while the 95% CI is calculated as in Equation 6.

The BNN implementation described so far is deterministic, that is, it produces a single VTEC forecast for each 
run, and the uncertainty is calculated from an ensemble of many iterations. The BNN can be extended to a prob-
abilistic implementation by enabling the model to output a distribution and quantify the data uncertainty. In this 
case, the data noise is assumed to be data-dependent rather than fixed, and thus, it is learned as a function of 
the data. Therefore, the NLL from Equation 13, which accounts for the observation noise, is used in Equation 9 
to compute how likely the GT values are to deviate from the estimated distribution produced by the model. The 
model can then provide a probability distribution as an output, that is, μ and σ, instead of a single point estimate. 
To provide μ and σ as output values, a custom output layer is created with two neurons, shown in Figure 2: one 
for mean output and one for standard deviation output. The 95% CI is computed from the predicted standard 
deviation according to Equation 6.

All approaches used in this study are summarized in Table  1. The 95% CI in the SE, BNN, and BNN  +  D 
approaches is approximated by multiplying the standard deviation by 2. If necessary, other CI can also be esti-
mated. For example, multiplying the standard deviation by 1.64 gives a 90% confidence level, and by 2.58 gives 
a 99% confidence level. For the QGB approach, the quantile values must be adjusted accordingly to estimate 90% 
and 99% CI, as already mentioned in Section 2.2.2.

2.3. Models Optimization and Hyperparameters

Optimization of a ML model includes adjusting the hyperparameters to minimize the objective cost function. In 
this study, the hyperparameters were tuned using 20-fold time-series cross-validation (Natras et al., 2022a) and 

Figure 2. Simplified representation of the Bayesian neural network (BNN) architecture with probabilistic implementation to 
output the probability distribution parameters: μ and σ. The yellow circles represent the bias neurons. The green circles are 
the input neurons (simplified here to 3, but 14 in the BNN + D VTEC model), the blue circles are hidden neurons (4 here, but 
32 in the BNN + D VTEC model), and the orange circles are the output neurons.
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grid search within the hyperparameter range, see Table S1 in Supporting Information S1. Table 2 summarizes the 
selected values for the hyperparameters.

3. Results
The analysis is performed for the year 2017 (1 January–31 December 2017), for a period with space weather 
events (6–10 September 2017), and for a quiet period concerning solar and geomagnetic activity (25–29 April 
2017). Figures 3 and 4 show the 1-day VTEC forecast in orange with a 95% CI in green using the SE and BNN 
approaches, and the QGB and BNN + D approaches, respectively, for the quiet period (left) and the storm period 
(right) in 2017. The results of mean/median VTEC from different ML-based UQ VTEC models are summarized 
in Table 3.

As the baseline models, we use the frozen ionosphere and the Multi-Layer Perceptron (MLP) model. For the 
frozen ionosphere, we define that VTEC(i + 24) equals VTEC(i), that is, we assume the state of the frozen 
ionosphere with respect to the previous day. This assumption is consistent with the prevailing diurnal VTEC 
variability, where the next day's VTEC should not be significantly different from the previous day's VTEC under 
quiet conditions. The MLP model is the classical type of neural network and represents a fully connected ANN 
consisting of one or more hidden layers of neurons. MLP is the most commonly used ML method for VTEC 
modeling and forecasting (e.g., Ferreira et al., 2017; Orus Perez, 2019; Özkan, 2022). The International Refer-
ence Ionosphere (IRI) 2016 is used as a third baseline, where VTEC was extracted at the height of 450 km, and 
the upper height for TEC integration was set at 20,000 km. The IRI analysis was conducted for two study periods: 
one in April and a second in September 2017, and the detailed analysis is shown in Figure 5.

The period 6–10 September 2017, represents the most intense solar activity period with the strongest solar flare 
of X9.3 class, which peaked at 12:02 UT on 6 September. Earthward-directed CMEs were emitted from the Sun 
on 4 and 6 September (Imtiaz et al., 2020). The first CME arrived at about 23:43 UT on 6 September and caused 
moderate geomagnetic conditions on 7 September, while the second CME from the X9.3 solar flare triggered 
a sudden storm commencement at 23 UT on 7 September. This resulted in severe geomagnetic storms on 8 
September with a maximum Kp = 8 (Figure 4, bottom). The main phase of the storm was characterized by the 
two pronounced minima of the Dst index at around 1 and 14 UT on 8 September. Thereafter, the recovery phase 
began and lasted for about 3 days, that is, until 11 September.

The SE and BNN methods provide narrow CI ranging from less than 1 TECU to 2 TECU from the mean VTEC 
forecast, as shown in Figure 3. However, about 50% of GT VTEC values in 2017 are outside their 95% CI in 
Table 3. This indicates that the approaches that capture only the model uncertainties produce over-confident 
VTEC CI. During the disturbed space weather period in September 2017, the GT is outside the CI by up to 4 

Model Hyper-parameters

SE see Table 2 in Natras et al. (2022a)

QGB tree depth = {3, 4, 5}, number of trees = {50, 100, 150}, lr = 0.1

BNN batch = 500, epoch = {500, 1,000}, lr = 0.001, 1 hl with 32 neurons

BNN + D batch = 500, epoch = 2,000, lr = {0.01, 0.1}, 1 hl with 32 neurons

Table 2 
Selected Hyperparameters (hl Stands for Hidden Layer and lr for Learning Rate)

Approaches Cost/Loss Learning algorithms Abbreviations

Ensemble modeling: Super-Ensemble MSE Bagging and Boosting SE

Quantile Gradient Boosting Quantile Gradient Boosting QGB

Bayesian inference MSE + KL Bayesian Neural Network BNN

Bayesian inference NLL + KL Bayesian Neural Network BNN + D

Table 1 
Approaches of Applying Different Uncertainty Quantification Methods on Different Learning Algorithms and Their 
Abbreviations
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Figure 3. Mean Vertical Total Electron Content (VTEC) forecast and 95% confidence intervals (CI): SE (first panel) and 
Bayesian neural network (second panel) for selected grid points. Third panel: ground truth (GT) VTEC outside CI (positive 
value: the amount by which GT is higher than upper CI, negative value: the amount by which GT is lower than lower CI). 
Fourth panel: indices of F10.7, Dst, and Kp ⋅ 10 (Kp < 3, 3 ≤ Kp < 4, 4 ≤ Kp < 5, and Kp ≥ 5 denote quiet, moderate, active 
and storm conditions, respectively). Left: 25–29 April 2017, right: 6–10 September 2017.
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Figure 4. Median/mean Vertical Total Electron Content (VTEC) forecast and 95% confidence intervals (CI): Quantile Gradient 
Boosting (first panel) and BNN + D (second panel) for three selected grid points. Third panel: ground truth (GT) VTEC 
outside CI (positive value: amount by which GT is higher than upper CI limit, negative value: amount by which GT is lower 
than lower CI limit). Fourth panel: indices of F10.7, Dst, and Kp ⋅ 10. Left: 25–29 April 2017; right: 6–10 September 2017.
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TECU for the high latitude point and 8 TECU for the low latitude point, while it is half lower during the quiet 
period in April 2017. The largest absolute GT VTEC values outside the CI occur during the strongest solar flare 
on 6 September, during moderate geomagnetic conditions on 7 September, during geomagnetic storms on 8 
September, and at the beginning of the recovery period on 9 September. These results show that the forecast CI 
of the SE and BNN approaches exclude most of the sudden and intense VTEC variability during space weather 
events. However, the mean VTEC from the SE approach mostly achieves the lowest RMS for the entire test year. 
On the other hand, the QGB and BNN + D approaches provide 3 to 4 times wider CI, as shown in Figure 4, that 
contain more than 95% of GT in 2017 and even 100% during the quiet period. The largest absolute values of GT 
outside the CI are on 7 September, as well as during the first and second Dst minima, that is, the maximum inten-
sity of the geomagnetic storm. The magnitude of the GT outside the CI is 4–5 TECU during the September 2017 
space weather events and less than 2 TECU with much lower frequency during the quiet period. For instance, 
in the BNN + D approach, there is only one GT value outside the CI during the quiet period in April 2017. The 
median VTEC from the QGB approach mostly has a slightly lower correlation with GT than the other approaches, 
while the mean VTEC of the BNN + D approach has the highest correlation during intense space weather in 
Table 3. For the SE, BNN, and BNN + D approaches, the average width of the 90% CI from the VTEC mean 

Model

1 January–31 December 2017 6–10 September 2017 25–29 April 2017

RMS, Corr., CIavg, In(%) RMS, Corr., CIavg, In(%) RMS, Corr., CIavg, In(%)

VTEC:10°70°

 SE 1.03, 0.92, 0.74, 51.89 1.73, 0.71, 1.06, 33.33 0.71, 0.89, 0.62, 60.83

 QGB 1.05, 0.91, 2.29, 94.63 1.73, 0.71, 3.99, 94.17 0.77, 0.88, 2.54, 100.0

 BNN 1.18, 0.91, 0.78, 48.82 1.79, 0.73, 0.98, 40.0 0.73, 0.91, 0.78, 73.33

 BNN + D 1.07, 0.91, 2.20, 96.75 1.90, 0.74, 3.20, 90.83 0.69, 0.90, 2.04, 100.0

 Baseline MLP 1.09, 0.92, /, / , 2.10, 0.80, /, / , 0.77, 0.90, / , / ,

 Baseline Frozen 1.18, 0.89, / , / , 2.17, 0.58, / , / , 0.81, 0.85, / , / ,

 Baseline IRI 2016 3.39, 0.82, / , / , 1.89, 0.92, / , / ,

VTEC:10°40°

 SE 1.83, 0.90, 0.92, 43.46 3.31, 0.80, 1.44, 41.67 1.32, 0.96, 0.66, 36.67

 QGB 1.89, 0.89, 3.45, 94.17 3.35, 0.80, 4.59, 82.50 1.27, 0.96, 3.61, 100.0

 BNN 1.95, 0.90, 1.20, 47.48 3.09, 0.85, 1.44, 39.17 1.40, 0.96, 1.24, 60.83

 BNN + D 1.89, 0.90, 3.78, 95.11 2.94, 0.86, 4.24, 93.33 1.53, 0.94, 3.90, 99.17

 Baseline MLP 1.92, 0.89, / , / , 3.50, 0.85, / , / , 1.48, 0.96, / , / ,

 Baseline Frozen 2.22, 0.86, / , / , 4.00, 0.72, / , / , 1.33, 0.95, / , / ,

 Baseline IRI 2016 5.63, 0.78, / , / , 2.78, 0.95, / , / ,

VTEC:10°10°

 SE 2.08, 0.98, 1.32, 53.50 3.71, 0.96, 2.10, 39.12 2.19, 0.99, 1.22, 47.50

 QGB 2.22, 0.98, 5.53, 96.21 3.98, 0.95, 6.51, 89.17 2.09, 0.99, 5.18, 95.83

 BNN 2.28, 0.98, 1.66, 52.56 3.45, 0.96, 1.78, 40.00 1.90, 0.99. 1.60, 55.00

 BNN + D 2.67, 0.97, 5.70, 97.38 3.63, 0.96, 7.02, 98.33 2.07, 0.99, 6.16, 100.0

 Baseline MLP 2.34, 0.97, / , / , 4.19, 0.96, / , / , 2.16, 0.99, / , / ,

 Baseline Frozen 2.40, 0.97, / , / , 4.21, 0.94, / , / , 2.31, 0.99, / , / ,

 Baseline IRI 2016 8.41, 0.91, / , / , 4.76, 0.94, / , / ,

Note. RMS stands for Root Mean Square, and Corr. for the correlation coefficient. RMS and Corr. are calculated between the 
median (QGB) or mean (SE, BNN, BNN + D) VTEC and ground truth. CIavg represents the average distance of the lower 
and upper bounds from the forecast median (QGB) or mean (SE, BNN, BNN + D) VTEC. In(%) represents the percentage 
of ground truth within the 95% confidence intervals. The best results are highlighted in green. When all developed models 
have the same correlation coefficients, no values are highlighted, that is, all are black.

Table 3 
Statistics on the Test Data Set for 1-Day Probabilistic Vertical Total Electron Content Forecast
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Figure 5.
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can be estimated by multiplying the value for CIavg in Table 3 by 0.8, and for the 99% CI by multiplying it by 1.3. 
Accordingly, the 90% CI will be 20% narrower, and the 99% CI will be 30% wider than the 95% CI.

The mean/median VTEC of the studied approaches mostly outperforms the baseline frozen ionosphere, with the 
most significant improvement from around 20%–30% during severe space weather (6–10 September) for all three 
investigated VTEC grid points. Their differences are not as significant for the quiet period in April 2017, that is, 
from 0.1 to 0.3 RMS. The mean/median VTEC values of the developed models have lower RMS than the baseline 
MLP model for most of the study cases. In particular, for the storm period, they improve the RMS by about 0.50 
TECU or 15%, while the MLP model still maintains high correlations with GT. The RMS of the IRI 2016 is about 
twice as large as the RMS for the mean/median VTEC of the developed ML-based UQ VTEC models for both 
quiet and storm study cases.

The detailed analysis for the IRI 2016 is presented in Figure 5. In April 2017, the IRI is mainly within the CI of 
QGB or BNN + D, while in September 2017, it is sometimes at the edge and sometimes outside these intervals. 
The differences between the IRI VTEC values and the GT VTEC, and between IRI and the median VTEC of 
QGB and mean VTEC of BNN + D models are similar. They are mostly more prominent than the differences 
between the median/mean VTEC of QGB/BNN + D and the GT data. The enormous IRI differences exist for 
the low-latitude VTEC position, where VTEC from IRI is underestimated by up to more than 20 TECU. Vertical 
Total Electron Content from IRI agrees much better with the mean/median VTEC values from the ML-based UQ 
VTEC models and the GT data in April 2017 than September 2017. Consequently, the RMS values between IRI 
and GT and ML-based UQ VTEC models are smaller in April 2017, that is, when the ionosphere is quiet, while 
they are twice as significant when the ionosphere is disturbed in September 2017. This space weather effect is 
also reflected in the correlation coefficients between IRI and GT, as well as ML-based UQ VTEC models.

The upper and LB of the 95% CI estimated using different approaches are visualized in Figure 6 without the 
VTEC mean/median, that is, they are adjusted around y = 0. In the case of the quiet period (Figure 6, left), 
the QGB and BNN + D CI are similar in size for the mid-latitude grid point, while the QGB CI is wider for 
the  high-latitude point, and the BNN + D confidence upper bound is slightly larger for the low-latitude point. 
The SE and BNN CI are of a similar order of magnitude. The main difference is that the BNN CI is smoother 
and more constant over the study period, while the SE CI is variable. During the storm case (Figure 6, right), the 
CI become wider as the changes in the GMF occur. The SE and QGB CI are about two times wider and more 
variable on the day of the geomagnetic storm maximum (8 September) and the following day of the recovery 
phase (9 September), while the  BNN and BNN + D CI slightly increase. The largest upper confidence bound 
for high- and mid-latitude points in this period comes from the QGB approach, while for the low-latitude point, 
the QGB and BNN + D upper confidence bounds are similar in size. For both study cases, it can be seen that the 
QGB and SE CI are more variable and have frequent peaks, while for BNN and BNN + D, they are smoother 
and more consistent from day-to-day. The CI of all approaches are wider around local noon for the mid-latitude 
point, while for the low-latitude point, an additional increase in the upper bound is visible after sunset and lasts 
for several hours. Post-sunset increase in the QGB and BNN + D upper low-latitude VTEC bounds is visible for 
6 to 9 September with F10.7 > 110 sfu, and from 25 to 29 April during a period of low geomagnetic activity, 
with both periods close to equinox. The effect is more pronounced in QGB. The post-sunset VTEC enhancement 
has been detected at low latitudes within the equatorial ionization anomaly using actual VTEC observations 
in Dashora et al. (2019), Kutiev et al. (2007), Kumar et al. (2022), J. Liu et al. (2020). It develops 2–3 hr after 
sunset, with a peak around 7:00–8:00 p.m. local time (Kumar et  al.,  2022; Kutiev et  al.,  2007), and occurs 
during prolonged periods of low geomagnetic activity (Kutiev et al., 2007), as well as during geomagnetic storms 
(Dashora et al., 2019), with stronger intensity around equinoxes (J. Liu et al., 2020), and when the F10.7 solar 
flux exceeds 110 sfu (Kumar et al., 2022). Therefore, the patterns of increase in the upper low-latitude VTEC 
bounds after sunset are consistent with observations of the low-latitude VTEC post-sunset enhancement reported 
in previous studies.

The results of the analysis in Figure 6 show that the CI exhibit variations depending on daytime/nighttime, solar 
irradiance, space weather conditions, that is, geomagnetic storms, and the post-sunset ionosphere enhancement at 

Figure 5. First panel: Vertical Total Electron Content (VTEC) from International Reference Ionosphere (IRI) 2016, ground truth (GT) data, and the mean/median 
VTEC values from uncertainty quantification ML-based VTEC models. Second panel: IRI 2016 and confidence intervals of Quantile Gradient Boosting (QGB) and 
BNN + D. Third panel: VTEC differences between IRI 2016 and GT, the QGB median VTEC, and the BNN + D mean VTEC, as well as the differences between QGB/
BNN + D and GT. Fourth panel: RMS and correlation of GT and ML-based mean/median VTEC values with respect to IRI 2016. Left: 25–29 April 2017, right: 6–10 
September 2017.
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Figure 6. 95% confidence interval of all developed uncertainty quantification ML-based Vertical Total Electron Content 
models (first panel), SE and Quantile Gradient Boosting (second panel), Bayesian neural network (BNN) and BNN + D (third 
panel) for three selected grid points. Fourth panel: indices of F10.7, Dst, and Kp ⋅ 10. Left: 25–29 April 2017; right: 6–10 
September 2017.
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low latitudes. Therefore, they are narrower during the night, wider around local noon for the mid-latitude point, 
wider and more variable with the change of Kp and Dst indices, and wider after sunset for the low latitude point 
under certain conditions mentioned above.

Further analysis is performed regarding geomagnetic activity in Figure  7. The forecast mean/median VTEC 
accuracy in terms of RMS and correlation coefficients decreases with increasing geomagnetic activity. The 
biases are largest and negative during storms, suggesting that the models underestimate the mean/median VTEC 
for storms. Due to the complex, distinct VTEC irregularities during different geomagnetic storms, the lack of 
VTEC samples covering different geomagnetic storms under different dependent factors such as storm intensity, 
season, magnetic local time, storm onset time, magnetic latitude and solar cycle phase (Greer et al., 2017; J. Liu 
et al., 2010; Vijaya Lekshmi et al., 2011), as well as the overall presence of storm events in the data set, resulting 
in a high imbalance compared to the quiet condition samples (see Figure 7 in Natras et al. (2022a)), the developed 
ML-based UQ VTEC models have lower accuracy in forecasting the mean/median VTEC during storms. To 
evaluate the full performance of the ML-based UQ VTEC models and achieve realistic accuracy representation, 
we need to consider the full probabilistic prediction, that is, the CI.

Figure 8 represents boxplots of the GT VTEC outside the forecast 95% CI concerning different geomagnetic 
activity levels. The analysis is performed only for data samples where the GT falls outside the forecast CI, which 

Figure 7. Statistics of mean/median Vertical Total Electron Content forecast from the developed models to ground truth versus Kp index for 2017. Top: RMS, mid: 
correlation coefficients (Corr.), bottom: bias. The labels quiet, moderate, active and storm correspond to Kp < 3, 3 ≤ Kp < 4, 4 ≤ Kp < 5, and Kp ≥ 5, respectively.
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we can refer to here as outliers from the CI. Most outliers are between 0 and 1 TECU outside of the CI. There 
is a clear tendency for the interquartile range and the maximum absolute values of the outliers to increase with 
increasing geomagnetic activity in SE and BNN models. The interquartile range and the maximum and minimum 
outliers also tend to be the largest in these models. In contrast, the BNN + D and QGB models have the lowest 
percentage of outliers: 3%–5% and 4%–6%, respectively. Considering that the CI are set at 95%, outliers up to 
5% from the CI indicate reliable performance. According to these results, both BNN + D and QGB approaches 
achieve the target of 95% confidence. Moreover, the amount of outliers from the CI for these two methods is less 
affected by geomagnetic conditions.

The relative importance of input features for probabilistic VTEC forecasting by the QGB model (Figure 9) is esti-
mated for the upper confidence bound (top), median VTEC (middle), and lower confidence bound (bottom) using 
the methodology presented in Text S1 in Supporting Information S1. For the median VTEC, the most important 
input feature is the lagged VTEC at time step ti for forecasting VTEC at time step ti+24h. This is due to the prevail-
ing diurnal VTEC variations, where day-to-day VTEC usually does not change much during quiet conditions. On 
the other hand, other input features have much greater importance in estimating the lower and upper limits, such 
as the AE, Kp, Dst, and SW indices. Here, the objective function minimizes the positive and negative residuals 
between the GT and the model results for the upper and LB, respectively; see Equation 7. These residuals are 
more strongly influenced by solar and geomagnetic activity than the median VTEC. Thus, the lagged VTEC 
contributes 20%–50% less to the confidence bounds estimate than to the median VTEC estimate, while  the space 
weather input features increase their contribution. These results suggest that the CI are determined by the space 
weather features in addition to the VTEC-related features.

Figure 8. Boxplots for ground truth (GT) outside the forecast confidence intervals (CI) versus different geomagnetic conditions (quiet, moderate, active, and storm 
correspond to Kp < 3, 3 ≤ Kp < 4, 4 ≤ Kp < 5, and Kp ≥ 5, respectively). In each graph, the percentage of outliers in 2017 is given (bottom left). It corresponds to 
the data samples for which GT falls outside the forecast CI. Positive value: the amount by which GT is higher than the upper CI bound; negative value: the amount by 
which GT is lower than the lower CI bound. The boxes (the interquartile range) represent the range between the 25th (first quartile) and 75th percentile (third quartile), 
that is, the middle 50%. The gray line in each box corresponds to the median. The gray lines outside the boxes represent the lower 25% and the upper 25% of the values, 
with the ends of the line representing the minimum and maximum values. First row: 10°70°, mid row: 10°40°, third column: 10°10°. From left to right: SE, Quantile 
Gradient Boosting, Bayesian neural network (BNN), BNN + D.
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Figure 9. The relative importance of input features for the 1-day Quantile Gradient Boosting Vertical Total Electron Content (VTEC) forecast, consisting of upper 
bound (top), median VTEC (mid), and lower bound (bottom). VTEC’ and VTEC” represent the first and second derivatives, respectively; exponential moving average 
(EMA) 4d (VTEC) and EMA 30d (VTEC) represent EMAs of VTEC over 4 and 30 days, respectively. The input features refer to time step i, while the output or 
forecast is the VTEC at time step i + 24, that is, yi = VTEC(i+24). Left column: 10° 70°, mid column: 10° 40°, right column: 10° 10°.
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As for the computational complexity analysis in Table 4, the two BNN-based 
approaches are the most computationally intensive. A single training iteration 
with two years of data takes about 1 hr or more on the NVIDIA Tesla P100 
GPU computing processor with 16 GB, which can be considered a disadvan-
tage of the BNN method. The most computationally efficient model is QGB, 
which takes only 1 min for a training iteration with 2 years of data. When 
the models are trained and optimized, the execution is fast and takes 1 s for 
1 year of data.

4. Conclusion
This work is the first to thoroughly examine probabilistic VTEC forecasting 
using ML techniques and quantifying uncertainties. In addition to forecast-

ing a single VTEC value, the models estimate 95% CI to provide information on how confident and reliable 
results are by considering the uncertainties in the model parameters and/or data. In summary, we have imple-
mented  and  analyzed several approaches for 1-day UQ ML-based VTEC forecasting, including:

•  SE of multiple models trained with different tree-based learning algorithms and data sets to estimate uncer-
tainties as ensemble spread,

•  QGB, in which probabilistic output is estimated by minimizing quantile loss, with quantiles set at 0.025 and 
0.975, for the lower and upper confidence bound, respectively, and 0.50 for median VTEC to capture the data 
uncertainties,

•  Bayesian Neural Network (BNN), where the probability distributions of the parameters are learned to estimate 
the model uncertainty,

•  BNN including data uncertainty (BNN + D) to capture the data uncertainty.

The findings can be summarized as follows:

1.  The SE and BNN approaches provide the lowest uncertainties and, thus, overconfident results. In reality, the 
GT VTEC in 2017 is outside the forecast CI about 50% of the time.

2.  The approaches that capture data uncertainties, QGB and BNN + D, provide wider CI that contain GT around 
95% of the time and are, therefore, more realistic and reliable.

3.  As for the forecasting of the mean/median VTEC, the SE approach often yields the lowest RMS value, demon-
strating the power of an ensemble to improve the accuracy of the deterministic estimate. On the other hand, 
BNN tends to provide the highest correlations to GT, especially during the storm.

4.  The relative importance of the input features shows that the CI for the QGB model are determined by space 
weather indices in addition to VTEC-related input features, with lagged VTEC dominating.

5.  CI, especially of QGB, exhibit variations depending on the daytime/nightime, solar irradiance, geomagnetic 
activity, and post-sunset low-latitude ionosphere enhancement.

6.  The most computationally intensive method is BNN + D, while QGB is the fastest.
7.  The data uncertainties are at least three times larger than the model parameter uncertainties.

The advantages and disadvantages of each investigated UQ method for VTEC forecasting are outlined in Table 5.

Based on these findings, the probabilistic VTEC forecasting that only considers the model parameter uncer-
tainties are insufficient. An ML-based model trained with different learning algorithms using the same/similar 
data sets performs similarly because it learns an approximation function from similar data, resulting in smaller 
discrepancies between the solutions of different ML-based models in an ensemble. The ensemble approach for 
UQ could be improved by training the base models on different subsets of data covering different study cases, 
which would increase diversity and randomness among ensemble members and may better describe uncertainties. 
Probabilistic VTEC modeling and forecasting, which accounts for both model parameters and data uncertainties, 
would be the optimal solution, as shown by the BNN + D results. Due to the computational complexity of the 
BNN + D approach, modification may be required to obtain a computationally efficient and accurate model. In 
this context, the advantage of fast gradient boosting computation on decision trees can be exploited. The QGB 
model could be improved by adding the model uncertainties, for example, via an ensemble of multiple models 
(with data uncertainty-informed base models) or virtual ensembles (Malinin et al., 2021) using a single gradient 
boosting model. Instead of estimating multiple quantile functions separately, the method can be modified to 

Model Training Testing

SE 1,275 s (∼20 min) 1.35 s

QGB 50–80 s (∼1 min) <0.1 s

BNN 1,917–3,648 s (∼30–60 min) 1.37 s

BNN + D 5,900 s (∼100 min) 1.40 s

Table 4 
Computational Cost for a Single Training Run (Mid) and a Test Run (Left) 
for a Single Vertical Total Electron Content Grid Point Using the NVIDIA 
Tesla P100 GPU With 16 GB Memory
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estimate them simultaneously (e.g., X. Han et al., 2021; Y. Liu & Wu, 2011). Moreover, adding information 
about the uncertainty of the input data directly into a model can further improve the probabilistic estimation of 
output and provide a more realistic representation of the uncertainties (e.g., Kiani Shahvandi & Soja, 2022). It 
is also important to note that we assumed GIM CODE data to be GT, which is not error-free. In further work, 
GT uncertainty information may also be included, for example, as an additional input value to the model as in 
Kiani Shahvandi and Soja (2022).

The results from this study show that the uncertainty arising from the data is much larger than that of the model 
parameters. Therefore, the input data of an ML-based ionosphere model are much more important to be consid-
ered for future improvements. Further steps may include investigating and incorporating new input observa-
tions, extracting new input features for VTEC modeling and forecasting that can characterize the effects of space 
weather on the ionosphere in a way that is more helpful to the learning process. Some input observations, such as 
the F10.7 and Kp indexes, have lower resolution. Including data with higher temporal resolution and minimizing 
the need to interpolate values may also reduce uncertainties.

As can be seen from the results, the uncertainties during the space weather event in September 2017 are up to 1.5 
to 2 times larger than during the quiet period in April 2017. The ionospheric response to a geomagnetic storm 
depends on several factors that lead to distinct VTEC irregularities during different storms, as well as on the over-
all presence of storm events in the data set. The VTEC response to geomagnetic disturbances depends not only 
on the intensity of the storm, but also on the season, magnetic local time, storm onset time, magnetic latitude, and 
solar cycle phase (Greer et al., 2017; J. Liu et al., 2010; Vijaya Lekshmi et al., 2011). Therefore, it varies from 
one storm to another, making it difficult for a learning algorithm to find an approximation function that general-
izes to all storms. Another challenge is the small number of storm samples in the training data. The analysis by 
Natras et al. (2022a) shows that only around 11% of the samples from January 2015 to December 2016 belong 
to geomagnetic active and storm conditions, even though these years contain the highest number of geomagnetic 
storms in solar cycle 24. If the training data set contained balanced instances of quiet and storm periods, the fore-
cast accuracy during a space weather event could be improved and the associated uncertainties reduced.

Recommended solutions for the imbalanced data set to be explored in future work include improving the input 
features for learning rare space weather-related VTEC signatures, training on the balanced data set achieved with 
oversampling or undersampling, or developing a cost-sensitive solution that can adjust the penalty for the degree 
of importance assigned to the minority case. Another possible solution is combining physical laws and equations 
with ML to develop a physically informed ML-based VTEC model, which could improve space weather mode-
ling when only few training examples of space weather events exist and reduce uncertainties.

Since dynamic solar-terrestrial processes and space weather govern the ionosphere, and the VTEC quantity is 
essential for positioning applications and early-warning systems of space weather effects, it is crucial to include 
reliability and confidence information in VTEC and space weather forecasting. Moreover, such information will 
increase the explain ability and interpretability of ML-based ionosphere modeling and forecasting, and trust in 
ML results in general. Therefore, we encourage further work on uncertainty estimation to produce trustworthy 
probabilistic ionosphere and space weather forecasts. We hope that the research community will begin to incor-
porate probabilistic frameworks into their ML solutions alongside the tremendous amount of work exploring 

SE QGB BNN BNN + D

PROS Improved mean VTEC Fast to train Higher Corr. to GT CI > 95% GT

No distribution assumption CI ∼ 95% GT

No distribution assumption

CONS Many models to train Estimate each quantile Slow to train Slow to train

Uncertainty too small Gaussian distribution Gaussian distribution

Uncertainty too small

Note. CI stands for confidence interval, GT for ground truth, and Corr. for correlation coefficients.

Table 5 
Advantages and Disadvantages of Different Investigated Uncertainty Quantification Approaches for Vertical Total Electron 
Content Forecasting
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various learning algorithms for VTEC approximation. This study is a starting point for discussing and integrating 
UQ solutions into ML-based VTEC forecasting and will hopefully lead to further ML-based ionosphere and 
space weather studies that take uncertainties into account.

Data Availability Statement
Software used to implement machine learning (ML) approaches are ScikitLearn (Pedregosa et al., 2011) and 
TensorFlow (Abadi et al., 2015). The figures were created in Python using Seaborn (Waskom, 2021) and Matplot-
lib (Hunter, 2007), and in Matlab (MATLAB, 2020). Global ionosphere maps (GIM) produced by the Center for 
Orbit Determination in Europe (CODE) at the University of Bern, available in Dach et al. (2020), were used to 
prepare the VTEC data in this study. Other input data to the ML-based VTEC models: sunspot number, F10.7 
solar radio flux, solar wind plasma speed, Bz index, Dst index, Kp index, and AE index are publicly available 
via NASA/GSFC's OMNIWeb (King & Papitashvili, 2005). The IRI 2016 was retrieved from the Community 
Coordinated Modeling Center (CCMC) Instant-Run System of NASA Goddard Space Flight Center at https://
kauai.ccmc.gsfc.nasa.gov/instantrun/iri. The dataset containing the probabilistic VTEC forecast results for the 
year 2017 from the four ML uncertainty quantification approaches presented and discussed in this study is openly 
available under the Creative Commons Attribution 4.0 International license at Zenodo (Natras et al., 2023b). The 
codes defining the architecture of the BNN and BNN + D VTEC models, the model development process using 
training and cross-validation data, and their evaluation using test data can be found in Natras (2023a). The codes 
for loading the QGB VTEC models and evaluating them using test data are provided along with the developed 
QGB VTEC models in Natras (2023b).
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A4 Conference Publications

CP-I

Reference: Natras, R., Schmidt, M. (2021). Machine Learning Model Development for Space Weather
Forecasting in the Ionosphere. In: CEUR Workshop Proceedings of the CIKM 2021 Workshops
co-located with the 30th ACM International Conference on Information and Knowledge Management
(CIKM 2021), Vol. 3052, pp. 1-7, https://ceur-ws.org/Vol-3052/short10.pdf

Summary: This publication presents the workflow of the machine learning model development for
the space weather forecast in the Earth’s ionosphere. The problem of space weather forecasting using
traditional approaches is discussed, as well as the advantages of using machine learning instead. In
addition, the methods and approaches for building a machine learning model are presented, together
with challenges related to data and algorithms. The machine learning workflow for the problem of
space weather forecast is discussed, from problem formulation and data acquisition, data preparation
and feature engineering, learning algorithms, model training, evaluation and deployment, to challenges
and open issues.
The estimated contribution of R. Natras to CP-I is 90%.

CP-II

Reference: Natras, R., Soja, B., Schmidt, M. (2022): Machine Learning Ensemble Approach for
Ionosphere and Space Weather Forecasting with Uncertainty Quantification. In: IEEE Xplore
Proceedings of 2022 3rd URSI Atlantic and Asia Pacific Radio Science Meeting (AT-AP-RASC), Gran
Canaria, Spain, pp. 1-4, https://doi.org/10.23919/AT-AP-RASC54737.2022.9814334

Summary: This publication presents a novel machine learning approach to ionosphere forecasting,
including forecasting the space weather impact on the ionosphere. It exploits a data-driven approach
in which the models learn underlying processes and relationships from data describing solar activity,
solar wind, interplanetary and Earth’s magnetic fields, and the ionosphere. A multi-model and
multi-data ensemble forecasting approach using diverse models of different learning algorithms with
different training datasets is developed to generate 1-day VTEC forecasts. This approach improved
forecasting accuracy compared to a single-model-based approach. In addition, the forecast uncertainty
was assessed by estimating an ensemble spread. The results show potential for forecasting VTEC in
different ionospheric regions during quiet and storm periods while quantifying the uncertainties.
The estimated contribution of R. Natras to CP-II is 85%.

CP-III

Reference: Natras, R., Halilovic, Dz., Mulic, M., Schmidt M. (2023): Mid-latitude Ionosphere
Variability (2013–2016), and Space Weather Impact on VTEC and Precise Point Positioning. In:
Ademović, N., Mujčić, E., Mulić, M., Kevrić, J., Akšamija, Z., editors, Advanced Technologies, Systems,
and Applications VII. IAT 2022. Lecture Notes in Networks and Systems, vol 539. Springer, Cham., pp.
471–491, https://doi.org/10.1007/978-3-031-17697-5_37

Summary: This publication presents a detailed study of the VTEC variability for Bosnia and Herzegov-
ina by analyzing daily, monthly, seasonal, solar cycle, and space weather-related VTEC variations for a
4-year period, i.e. from 2013 to 2016. VTEC values were derived from GNSS observations of the EPN
station SRJV, located in Sarajevo. VTEC varied according to solar activity and solar cycle progression.
The largest VTEC values and standard deviations occurred during the spring equinox. Moreover,
ionospheric winter anomaly was observed during high solar activity. Furthermore, the impact of a
severe St. Patrick’s geomagnetic storm in March 2015 was studied in terms of VTEC variations and
dual-frequency PPP. During a storm, VTEC values change from about 50% to 150% with respect to the
mean VTEC of quiet days. Cordinate variations were visible in all three components, north, east and
up, where the highest position error was up to 0.2 m in the up component.
The estimated contribution of R. Natras to CP-III is 70%.
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Reference: Barta, V., Natras, R., Srećković, V., Koronczay, D., Schmidt, M., Šulic D. (2006): Multi-
instrumental investigation of the solar flares impact on the ionosphere on 05–06 December 2006. In:
Frontiers in Environmental Science, 10. https://doi.org/10.3389/fenvs.2022.904335

Summary: This publication studies the solar flare impact on the ionosphere above Europe on 05 and
06 December 2006 using ground-based (ionosonde and VLF) and satellite-based data (Vertical Total
Electron Content (VTEC) derived from GNSS observations and VLF measurements from DEMETER
satellite). Based on the Kp and Dst indices, 05 December 2006 was a quiet day, while there was
a geomagnetic storm on 06 December 2006. The total fade-out of the EM waves emitted by the
ionosondes was experienced at all investigated stations during an X9 class flare on 05 December 2006.
The variation of the fmin parameter (first echo trace observed on ionograms, it is a rough measure of
the “non-deviative” absorption) and its difference between the quiet period and during the flares have
been analyzed. A latitude-dependent enhancement of fmin (2–9 MHz) and fmin (relative change of
about 150%–300%) was observed at every station at the time of the X9 (on 05 December) and M6 (on
06 December) flares. Furthermore, we analyzed VTEC changes during and after the flare events with
respect to the mean VTEC values of reference quiet days. During the X9 solar flare, VTEC increased
depending on the latitude (2–3 TECU and 5%–20%). On 06 December 2006, the geomagnetic storm
increased ionization (5–10 TECU), representing a “positive” ionospheric storm. However, an additional
peak in VTEC related to the M6 flare could not be detected. We have also observed a quantifiable
change in transionospheric VLF absorption of signals from ground transmitters detected in low Earth
orbit associated with the X9 and M6 flare events on 05 and 06 December in the DEMETER data.
Moreover, the amplitude and phase of ground-based, subionospherically propagating VLF signals
were measured simultaneously during the investigated flares to analyze ionosphere reaction and to
evaluate the electron density profile versus altitude. For the X9 and M6 flare events, we have also
calculated the ionospheric parameters important for the description and modeling of this medium
under forced additional ionization.
The estimated contribution of R. Natras to CP-III is 30%.
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