Benutzer: Gast  Login
Titel:

Parameter identification in linear non-Gaussian causal models under general confounding

Dokumenttyp:
Zeitschriftenaufsatz
Autor(en):
Tramontano, Daniele; Drton, Mathias; Etesami, Jalal
Abstract:
Linear non-Gaussian causal models postulate that each random variable is a linear function of parent variables and non-Gaussian exogenous error terms. We study identification of the linear coefficients when such models contain latent variables. Our focus is on the commonly studied acyclic setting, where each model corresponds to a directed acyclic graph (DAG). For this case, prior literature has demonstrated that connections to overcomplete independent component analysis yield effective criteria...     »
Dewey Dezimalklassifikation:
510 Mathematik
Zeitschriftentitel:
Preprint
Jahr:
2024
Sprache:
en
Volltext / DOI:
doi:10.48550/ARXIV.2405.20856
Verlag / Institution:
arXiv
Status:
Preprint / submitted
Publikationsdatum:
31.05.2024
Semester:
SS 24
TUM Einrichtung:
Lehrstuhl für Mathematische Statistik
Format:
Text
 BibTeX