Benutzer: Gast  Login
Titel:

Kernel-Based Differentiable Learning of Non-Parametric Directed Acyclic Graphical Models

Dokumenttyp:
Zeitschriftenaufsatz
Autor(en):
Liang, Yurou; Zadorozhnyi, Oleksandr; Drton, Mathias
Abstract:
Causal discovery amounts to learning a directed acyclic graph (DAG) that encodes a causal model. This model selection problem can be challenging due to its large combinatorial search space, particularly when dealing with non-parametric causal models. Recent research has sought to bypass the combinatorial search by reformulating causal discovery as a continuous optimization problem, employing constraints that ensure the acyclicity of the graph. In non-parametric settings, existing approaches typi...     »
Dewey Dezimalklassifikation:
510 Mathematik
Zeitschriftentitel:
Preprint
Jahr:
2024
Sprache:
en
Volltext / DOI:
doi:10.48550/ARXIV.2408.10976
Verlag / Institution:
arXiv
Hinweise:
To be published in the Proceedings of Probabilistic Graphical Models (PGM) 2024
Status:
Preprint / submitted
Publikationsdatum:
20.08.2024
Semester:
SS 24
TUM Einrichtung:
Lehrstuhl für Mathematische Statistik
Format:
Text
 BibTeX