Benutzer: Gast  Login
Titel:

Risk factors based vessel-specific prediction for stages of coronary artery disease using Bayesian quantile regression machine learning method: Results from the PARADIGM registry.

Dokumenttyp:
Article; Clinical Trial; Journal Article
Autor(en):
Park, Hyung-Bok; Lee, Jina; Hong, Yongtaek; Byungchang, So; Kim, Wonse; Lee, Byoung K; Lin, Fay Y; Hadamitzky, Martin; Kim, Yong-Jin; Conte, Edoardo; Andreini, Daniele; Pontone, Gianluca; Budoff, Matthew J; Gottlieb, Ilan; Chun, Eun Ju; Cademartiri, Filippo; Maffei, Erica; Marques, Hugo; Gonçalves, Pedro de A; Leipsic, Jonathon A; Shin, Sanghoon; Choi, Jung H; Virmani, Renu; Samady, Habib; Chinnaiyan, Kavitha; Stone, Peter H; Berman, Daniel S; Narula, Jagat; Shaw, Leslee J; Bax, Jeroen J; Min, J...     »
Abstract:
BACKGROUND AND HYPOTHESIS: The recently introduced Bayesian quantile regression (BQR) machine-learning method enables comprehensive analyzing the relationship among complex clinical variables. We analyzed the relationship between multiple cardiovascular (CV) risk factors and different stages of coronary artery disease (CAD) using the BQR model in a vessel-specific manner. METHODS: From the data of 1,463 patients obtained from the PARADIGM (NCT02803411) registry, we analyzed the lumen diameter st...     »
Zeitschriftentitel:
Clin Cardiol
Jahr:
2023
Band / Volume:
46
Heft / Issue:
3
Seitenangaben Beitrag:
320-327
Volltext / DOI:
doi:10.1002/clc.23964
PubMed:
http://view.ncbi.nlm.nih.gov/pubmed/36691990
Print-ISSN:
0160-9289
TUM Einrichtung:
Institut für Radiologie und Nuklearmedizin
 BibTeX