Benutzer: Gast  Login
Titel:

User Intent Recognition and Satisfaction with Large Language Models: A User Study with ChatGPT

Dokumenttyp:
Zeitschriftenaufsatz
Autor(en):
Bodonhelyi, Anna; Bozkir, Efe; Yang, Shuo; Kasneci, Enkelejda; Kasneci, Gjergji
Abstract:
The rapid evolution of large language models such as GPT-4 Turbo represents an impactful paradigm shift in digital interaction and content engagement. While these models encode vast amounts of human-generated knowledge and excel in processing diverse data types, recent research shows that they often face the challenge of accurately responding to specific user intents, leading to increased user dissatisfaction. Based on a fine-grained intent taxonomy and intent-based prompt reformulations, we ana...     »
Zeitschriftentitel:
arXiv preprint arXiv:2402.02136
Jahr:
2024
Volltext / DOI:
doi:10.48550/arXiv.2402.02136
WWW:
https://arxiv.org/abs/2402.02136
 BibTeX