Benutzer: Gast  Login
Titel:

Out-of-distribution detection with in-distribution voting using the medical example of chest x-ray classification.

Dokumenttyp:
Journal Article
Autor(en):
Wollek, Alessandro; Willem, Theresa; Ingrisch, Michael; Sabel, Bastian; Lasser, Tobias
Abstract:
BACKGROUND: Deep learning models are being applied to more and more use cases with astonishing success stories, but how do they perform in the real world? Models are typically tested on specific cleaned data sets, but when deployed in the real world, the model will encounter unexpected, out-of-distribution (OOD) data. PURPOSE: To investigate the impact of OOD radiographs on existing chest x-ray classification models and to increase their robustness against OOD data. METHODS: The study employed t...     »
Zeitschriftentitel:
Med Phys
Jahr:
2024
Band / Volume:
51
Heft / Issue:
4
Seitenangaben Beitrag:
2721-2732
Volltext / DOI:
doi:10.1002/mp.16790
PubMed:
http://view.ncbi.nlm.nih.gov/pubmed/37831587
Print-ISSN:
0094-2405
TUM Einrichtung:
595; Institut für Geschichte und Ethik der Medizin (Prof. Buyx)
 BibTeX