Benutzer: Gast  Login
Titel:

A Framework for Ultra Low-Power Hardware Accelerators Using NNs for Embedded Time Series Classification

Dokumenttyp:
Zeitschriftenaufsatz
Autor(en):
Reiser, Daniel; Reichel, Peter; Pechmann, Stefan; Mallah, Maen; Oppelt, Maximilian; Hagelauer, Amelie; Breiling, Marco; Fey, Dietmar; Reichenbach, Marc
Abstract:
In embedded applications that use neural networks (NNs) for classification tasks, it is important to not only minimize the power consumption of the NN calculation, but of the whole system. Optimization approaches for individual parts exist, such as quantization of the NN or analog calculation of arithmetic operations. However, there is no holistic approach for a complete embedded system design that is generic enough in the design process to be used for different applications, but specific in the...     »
Zeitschriftentitel:
Journal of Low Power Electronics and Applications
Jahr:
2022
Band / Volume:
12
Heft / Issue:
1
Volltext / DOI:
doi:10.3390/jlpea12010002
WWW:
https://www.mdpi.com/2079-9268/12/1/2
Print-ISSN:
2079-9268
 BibTeX