The ability of generating and interpreting a three-dimensional representation of the environment in real-time is one of the key technologies for autonomous vehicles. While active sensors like ultrasounds have been commercially used, their cost and precision is not favorable. On the other hand, integrating passive sensors, like video cameras, in modern vehicles is quite appealing especially because of their low cost. However, image processing requires reliable real-time algorithms to retrieve depth from visual information. In addition, the limited processing power in automobiles and other mobile platforms makes this problem even more challenging. In this paper we introduce a parking assistance system which relies on dense motion-stereo to compute depth maps of the observed environment in real-time. The flexibility and robustness of our method is showcased with different applications: automatic parking slot detection, a collision warning for the pivoting ranges of the doors and an image-based rendering technique to visualize the environment around the host vehicle. We evaluate the accuracy and reliability of our system and provide quantitative and qualitative results. A comparison to ultrasound and feature-based motion-stereo solutions shows that our approach is more reliable.
«
The ability of generating and interpreting a three-dimensional representation of the environment in real-time is one of the key technologies for autonomous vehicles. While active sensors like ultrasounds have been commercially used, their cost and precision is not favorable. On the other hand, integrating passive sensors, like video cameras, in modern vehicles is quite appealing especially because of their low cost. However, image processing requires reliable real-time algorithms to retrieve dep...
»