Diese Arbeit befasst sich mit den Aufgaben der 3D-Objektposenschätzung und Domain Adaptation basierend auf Deep-Learning Methoden. Der erste Teil präsentiert Ansätze von unterschiedlicher Komplexität zur Bestimmung einer Pose, welche auf Manifold Learning, dichten Punktkorrespondenzen und differenzierbarem Rendering beruhen. Darauf folgen eine Reihe von Arbeiten, welche sich explizit mit dem Domain-Gap Problem auseinandersetzen, welches entsteht wenn auf synthetischen Daten trainiert wird, und dieses mit Hilfe von den vorgestellten Techniken, Reverse Domain Adaptation und Adversarial Domain Randomization, löst.
«
Diese Arbeit befasst sich mit den Aufgaben der 3D-Objektposenschätzung und Domain Adaptation basierend auf Deep-Learning Methoden. Der erste Teil präsentiert Ansätze von unterschiedlicher Komplexität zur Bestimmung einer Pose, welche auf Manifold Learning, dichten Punktkorrespondenzen und differenzierbarem Rendering beruhen. Darauf folgen eine Reihe von Arbeiten, welche sich explizit mit dem Domain-Gap Problem auseinandersetzen, welches entsteht wenn auf synthetischen Daten trainiert wird, und...
»