
Fakultät für Informatik
Technische Universität München

Learning to Estimate 3D Object Pose from Synthetic Data

Sergey Zakharov

Vollständiger Abdruck der von der Fakultät für Informatik der Technischen Universität
München zur Erlangung des akademischen Grades eines

Doktors der Naturwissenschaften (Dr. rer. nat.)

genehmigten Dissertation.

Vorsitzender:
Prof. Dr. Daniel Cremers

Prüfende der Dissertation:
1. Priv.-Doz. Dr. Slobodan Ilic
2. Prof. Dr. Vincent Lepetit

Die Dissertation wurde am 15.07.2020 bei der Technischen Universität München
eingereicht und durch die Fakultät für Informatik am 28.10.2020 angenommen.

Abstract

3D object pose estimation is one of the most important problems in computer vision
with applications in robotics, augmented reality, autonomous driving, medicine and
many other areas. This thesis introduces a number of deep learning-based solutions to
this task with a focus on industrial usability. The first part presents pose estimation
methods of various complexity relying on manifold learning, dense correspondences,
and di↵erentiable rendering. This is followed by works explicitly tackling the domain
gap problem when training from synthetic data using the introduced reverse domain
adaptation and adversarial domain randomization techniques.
In the first part of the thesis, we address the core problem of 3D object pose estima-

tion. We gradually increase the problem’s complexity, starting from a simple 3D rotation
estimation, continuing further to estimating the 6D pose by adding a translation com-
ponent, and finishing with a full-fledged 9D pose estimation pipeline predicting both the
pose, scale, and shape of the object. The first method aims at learning a discriminative
feature space that allows to e↵ectively retrieve both the pose and class using scalable
nearest neighbor search methods. Subsequently, we improve the solution by introducing
a multi-task pipeline, which combines the strengths of manifold learning and regression
making the entire pipeline end-to-end. Next, we propose a 6D pose estimation solution
based on dense correspondences and a fast PnP solver. This technique significantly im-
proves the quality of poses, is more robust to occlusions and clutter, while remaining
real time. Moreover, we introduce a deep learning-based refiner that further improves
the pose quality. The last method provides a solution to the more ambitious 9D pose es-
timation problem. Here, we not only estimate the rotation and translation of the object,
but also its scale and shape. It utilizes a more advanced dense correspondence network,
di↵erentiable SDF shape database, and a newly introduced di↵erentiable SDF renderer.
Furthermore, we present a new challenging dataset for 6D pose estimation and a number
of benchmarks to test current state-of-the-art detectors with respect to the properties
desired in the industry.
The majority of deep learning models learn from labeled data, which are expensive

and often infeasible to acquire. The sound alternative is to use available synthetic
CAD models to generate free training data and annotations. However, models trained
on such data perform poorly on real images due to a significant domain gap. The
second part of this thesis, introduces two methods tackling this problem. The first
method is based on an idea of the reverse domain adaptation in depth and RGB data.
Instead of the common pipeline that maps synthetic images into the real domain, we
train networks to map real images back to the synthetic domain. This not only allows
to improve the overall performance of the system, but also introduces some practical
benefits, i.e., the downstream network can be trained purely on synthetic data and never

iii

Abstract

has to be retrained, as opposed to the standard pipelines. The second method utilizes
an adversarial procedure to make the task network robust to the possible appearance
changes defined by specifically designed di↵erentiable modules. The procedure uses an
introduced deception network that modifies input images while still preserving their
geometrical meaning. The task network is trained together with the deception network
utilizing a min-max procedure and, as a result, it becomes much more robust to possible
appearance changes.

iv

Zusammenfassung

Die 3D-Objektposenschätzung ist eine der wichtigsten Probleme im Bereich des maschi-
nellen Sehens mit einer Reihe von Anwendungen in Robotik, Augmented Reality, au-
tonomen Fahren, Medizin und vielen anderen Bereichen. Diese Arbeit befasst sich
mit den Aufgaben der 3D-Objektposenschätzung und Domain Adaptation basierend
auf Deep-Learning Methoden. Der erste Teil präsentiert Ansätze von unterschiedlicher
Komplexität zur Bestimmung einer Pose, welche auf Manifold Learning, dichten Punk-
tkorrespondenzen und di↵erenzierbarem Rendering beruhen. Darauf folgen eine Reihe
von Arbeiten, welche sich explizit mit dem Domain-Gap Problem auseinandersetzen,
welches entsteht wenn auf synthetischen Daten trainiert wird. Es wird versucht, dieses
mit Hilfe der vorgestellten Techniken, Reverse Domain Adaptation und Adversarial Do-
main Randomization zu lösen.
Der erste Teil der Arbeit thematisiert das Kernproblem der Posenschätzung von 3D-

Objekten. Wir erhöhen die Komplexität des Problems schrittweise, angefangen mit einer
einfachen 3D-Rotationsschätzung, weiter bis zur Schätzung der 6D-Pose und endend mit
einer vollwertigen 9D-Posenschätzungspipeline, die sowohl die Pose als auch den Maßstab
und die Form des Objekts schätzt. Die erste Methode zielt darauf ab, einen Funktion-
sraum zu lernen, der es ermöglicht, sowohl die Pose als auch die Klasse unter Verwen-
dung skalierbarer Nearest-Neighbour-Suchmethoden e↵ektiv abzurufen. Anschließend
verbessern wir die Lösung durch die Einführung einer Multi-Task-Pipeline, die die Stärken
des Multitask-Lernens und der Posenregression kombiniert und die gesamte Pipeline
durchgängig macht. Als nächstes schlagen wir eine Lösung zur 6D-Posenschätzung vor,
die auf dichten Punktkorrespondenzen und einem schnellen PnP-Löser basiert. Diese
Technik verbessert die Qualität von Posen erheblich, ist robuster gegenüber Okklusio-
nen und echtzeitfähig. Darüber hinaus führen wir einen Deep-Learning-basierten Re-
finer ein, der die Posenqualität weiter verbessert. Die letzte Methode bietet eine Lösung
für das anspruchsvollere Problem der 9D-Posenschätzung. Hier schätzen wir nicht nur
die Rotation und Translation des Objekts, sondern auch dessen Maßstab und Form.
Es verwendet ein fortschrittlicheres dichtes Korrespondenznetzwerk, eine di↵erenzier-
bare SDF-Formdatenbank und einen neu eingeführten di↵erenzierbaren SDF-Renderer.
Darüber hinaus präsentieren wir einen neuen Datensatz für die 6D-Posenschätzung und
eine Reihe von Benchmarks, um die aktuellen Detektoren hinsichtlich der in der Branche
gewünschten Eigenschaften zu testen.
Die meisten Deep-Learning-Modelle lernen aus gelabelten Daten, die teuer und oft

nicht realisierbar sind. Eine Alternative hierzu besteht darin, verfügbare synthetische
CAD-Modelle zu verwenden, um kostenlose Trainingsdaten zu generieren. An solchen
Daten trainierte Modelle weisen jedoch aufgrund eines erheblichen Domain-Gaps eine
schlechte Leistung bei realen Bildern auf. Im zweiten Teil dieser Arbeit werden zwei

v

Zusammenfassung

Methoden vorgestellt, mit denen dieses Problem gelöst werden kann. Die erste Methode
basiert auf einer Idee der umgekehrten Domain Adaptation in Tiefen- und RGB-Daten.
Anstelle der üblichen Pipeline, die synthetische Bilder auf die reale Domäne abbildet,
trainieren wir Netzwerke, um reale Bilder wieder auf die synthetische Domäne abzu-
bilden. Dies ermöglicht nicht nur die Verbesserung der Gesamtleistung des Systems,
sondern bringt auch einige praktische Vorteile mit sich, d. H. das nachgeschaltete Net-
zwerk kann rein auf synthetischen Daten trainiert werden und muss im Gegensatz zu
den Standard-Pipelines nie umgestellt werden. Die zweite Methode verwendet Adver-
sarial Domain Randomization, um das Task-Netzwerk gegenüber möglichen Änderungen
des Erscheinungsbilds robust zu machen, die durch speziell entworfene di↵erenzierbare
Module definiert werden. Das Verfahren verwendet das Deception-Netzwerk, welches
Eingabebilder modifiziert und dabei ihre geometrische Bedeutung beibehält. Das Task-
Netzwerk wird zusammen mit dem Deception-Netzwerk unter Verwendung eines Min-
Max-Verfahrens trainiert und dadurch viel robuster gegenüber möglichen Änderungen
des Erscheinungsbildes.

vi

Acknowledgments

First of all, I would like to thank PD Dr. Slobodan Ilic and Dr. Andreas Hutter
for providing me an opportunity to conduct this work in collaboration with Siemens
Corporate Technology. I would like to thank PD Dr. Slobodan Ilic additionally for
giving me an explicit research direction and for guiding me throughout the thesis. I
am very grateful to Wadim Kehl, with whom I have actively collaborated throughout
these years and who introduced me to the software frameworks and methodologies that
enabled me to have a solid starting point. I also want to thank Benjamin Planche and
Mai Bui, my collaborators, for the fun research time spent together, responsiveness and
willingness to help with any of the upcoming problems. I’m happy to have my PhD
mate Haowen Deng, with whom I started and finished this journey, for the refreshing
conversations, always being there to help, and shared su↵ering. Further, I want to thank
Prof. Dr. Vincent Lepetit for serving on my committee and Prof. Dr. Daniel Cremers
for serving as a committee’s chairman.
I would also like to express gratitude to the other colleagues from the Department for

Digital Perception at Siemens and the Chair for Computer Aided Medical Procedures at
TUM: Mira Slavcheva, Tolga Birdal, Fabian Bauer, Adrian Haarbach, Andres Sanchez,
Ivan Shugurov, Roman Kaskman, Agnieszka Tomczak, Ivan Pavlov, Mahdi Hamad,
PD Dr. Federico Tombari, Fabian Manhardt, Helisa Dhamo, Johanna Wald, Sailesh
Conjeti, Christian Rupprecht, Iro Laina, Anees Kazi, Gerome Vivar, Nikolas Brasch,
Huseyin Coskun, Mahdi Saleh, Ashkan Khakzar, Fernando Navarro, Magda Paschali,
Yida Wang, Jakob Mayr, Oliver Scheel and others for the great time and discussions.
Moreover, a big thanks goes to the Machine Learning team at Toyota Research Institute:
Adrien Gaidon, Arjun Bhargava, Dennis Park, Chao Fang, Rares Ambrus, Sudeep Pillai,
Quincy Chen, Vitor Guizilini, Kuan-Hui Lee, Jie Li, and Allan Raventos for the great
and fruitful internship time (and all the free food) which led to a publication.
Last but not least, I want thank my caring friends Stefan & Olga Gavranovic, and

Denys & Sasha Korzh, who made my life in Munich much easier and happier and with
whom I share so many beautiful memories. And finally, I want to express gratitude to
my family, my parents Galina and Nikolai, my sister Ksenia, and my wife Alina, for their
unconditional love, support, and advice.

– Sergey

vii

Contents

Abstract iii

Zusammenfassung v

Acknowledgments vii

Contents ix

List of Figures xiii

List of Tables xix

1 Introduction 1
1.1 Challenges of Industrial Computer Vision 1
1.2 Contributions . 4
1.3 Outline . 6

2 Background 9
2.1 Neural Networks . 9

2.1.1 Fully Connected Neural Networks 10
2.1.2 Convolutional Neural Networks . 16
2.1.3 Optimization . 17

2.2 Projective Geometry . 19
2.2.1 Rigid Body Transformations . 19
2.2.2 Pinhole Camera Model . 21

2.3 Pose Estimation . 22
2.3.1 Template-Based Methods . 22
2.3.2 Correspondence-Based Methods . 24
2.3.3 Direct Pose Regression Methods 27
2.3.4 Pose Refinement . 27

2.4 Domain Adaptation . 29

I Pose Estimation 33

3 3D Pose Estimation Based on Manifold Learning 37
3.1 Introduction . 37

ix

CONTENTS

3.2 Methodology . 39
3.2.1 Loss Function . 40

3.2.1.1 Triplet Loss with Dynamic Margin 41
3.2.1.2 Multitask Loss . 42

3.2.2 Dataset Generation . 42
3.2.2.1 In-plane Rotations . 44
3.2.2.2 Treating Rotation-Invariant Objects 45
3.2.2.3 Surface Normals . 46
3.2.2.4 Background Noise Generator 46

3.3 Evaluation . 47
3.3.1 Tests on In-plane Rotations . 48
3.3.2 Tests on the Dynamic Margin Triplet Loss 49
3.3.3 Tests on Background Noise Types 50
3.3.4 Tests on Input Image Channels . 51
3.3.5 Tests on Larger Datasets . 51
3.3.6 Combining Manifold Learning and Regression 52

3.3.6.1 Multi-Task Learning vs Single-Task Learning 52
3.3.6.2 Influence of Network Architecture 53
3.3.6.3 Feature Visualization . 53
3.3.6.4 Scalability . 55
3.3.6.5 Sensitivity to Regularization Parameter � 55

3.4 Conclusion . 56

4 6D Pose Estimation Based on Dense Correspondences 57
4.1 Introduction . 57
4.2 Methodology . 58

4.2.1 Data Preparation . 58
4.2.1.1 Correspondence Mapping 60
4.2.1.2 Online Data Generation and Augmentation 61

4.3 Dense Object Detection Pipeline . 61
4.4 Deep Model-Based Pose Refinement . 62
4.5 Training Details . 64
4.6 Evaluation . 64

4.6.1 Datasets . 65
4.6.2 Evaluation Metrics . 65
4.6.3 Single Object Pose Estimation . 66
4.6.4 Multiple Object Pose Estimation 68
4.6.5 Ablation Study . 68

4.6.5.1 RANSAC Iterations . 68
4.6.5.2 Runtime Analysis . 69
4.6.5.3 Correspondence Quality 69
4.6.5.4 Refinement . 70

4.7 Conclusion . 71

x

CONTENTS

5 9D Pose Estimation for Autolabeling 73
5.1 Introduction . 73
5.2 Methodology . 75

5.2.1 Coordinate Shape Space . 75
5.2.2 Di↵erentiable SDF Rendering . 76
5.2.3 3D Autolabeling Pipeline . 78

5.2.3.1 Initialization and Optimization 79
5.2.3.2 Verification and CSS Retraining 81

5.3 Experimental Evaluation . 82
5.3.1 Correctness of Autolabels . 83
5.3.2 Ablation . 84
5.3.3 Autolabeling for 3D Object Detection 85

5.4 Conclusion . 86

6 RGB-D 6D Pose Estimation Dataset 87
6.1 Introduction . 87
6.2 Related Datasets . 89
6.3 HomebrewedDB Dataset Creation . 90

6.3.1 Calibration of RGB-D Sensors . 91
6.3.2 Sequence Acquisition . 91
6.3.3 3D Model Reconstruction . 92
6.3.4 Depth Correction . 93
6.3.5 Creation of Ground Truth Annotations 93
6.3.6 Accuracy of Ground Truth Poses 94

6.4 Benchmarks and Experiments . 95
6.4.1 Evaluation Metrics . 95
6.4.2 Scalability Benchmark . 95
6.4.3 Scene Benchmarks . 96
6.4.4 Domain Adaptation Benchmark 97
6.4.5 Drawbacks of Training on Real Data 97

6.5 Conclusion . 99

II Domain Adaptation in Depth and RGB 101

7 Reverse Domain Adaptation 105
7.1 Introduction . 105
7.2 Methodology . 107

7.2.1 GAN-Based Architecture for Depth 107
7.2.2 Multi-Modal U-Net Architecture for RGB 109
7.2.3 Learning from Purely Geometrical CAD Data 112

7.2.3.1 Synthetic Data Generation 112
7.2.3.2 Online Data Augmentation 113

xi

CONTENTS

7.3 Experimental Evaluation . 117
7.3.1 Experimental Setup . 117
7.3.2 Real Depth ! Synthetic Depth . 118

7.3.2.1 Comparison to Usual Domain Adaptation GANs 119
7.3.2.2 Ablation of the Solution Components 120

7.3.3 Real RGB ! Synthetic Normals / Depth 121
7.3.3.1 Ablation of the Solution Components 122

7.4 Conclusion . 123

8 Network-Driven Domain Randomization 125
8.1 Introduction . 125
8.2 Methodology . 126

8.2.1 Deception Modules . 127
8.2.1.1 Background Module (BG) 128
8.2.1.2 Distortion Module (DS) 128
8.2.1.3 Noise Module (NS) . 129
8.2.1.4 Light Module (L) . 129

8.2.2 Optimization Objective . 130
8.2.3 Training Procedure . 130

8.3 Experimental Evaluation . 130
8.3.1 Adaptation Tests . 131

8.3.1.1 Classification on MNIST 132
8.3.1.2 Classification and Pose Estimation on LineMOD 132

8.3.2 Generalization Tests . 133
8.3.3 Ablation Studies . 135

8.3.3.1 Deception Modules . 135
8.3.3.2 Input Modalities . 136

8.3.4 Real-World Scenario . 136
8.4 Conclusion . 137

9 Conclusion and Outlook 139
9.1 Summary . 139
9.2 Limitations and Future Work . 140

A Authored and Co-Authored Publications 141

Bibliography 143

xii

List of Figures

1.1 6D pose estimation on a tablet. Our RGB dense pose object detector
(DPOD) from Chapter 4 estimates 6D pose of the object in real time
running on a tablet. 2

1.2 3D object pose estimation. Given a collection of 3D object models,
the goal is to estimate the pose for each of the objects of interest in RGB
/ RGB-D image. 3

1.3 Domain gap. Synthetic data are very di↵erent from real images coming
from commodity sensors not only due to the sensor-specific properties,
but also due to external illumination and object appearance changes. The
problem becomes even more di�cult when objects have no texture. 4

2.1 Neuron representations: Artifitial neuron model is a very rough ap-
proximation of the biological model. 9

2.2 Network structures. Going from a single to multiple layers. 10

2.3 Activation functions. Step function and its smooth alternatives. 11

2.4 Sample neural network to illustrate the forward and backward propa-
gation processes. 12

2.5 Possible loss function landscapes. In many real-world applications
we have to deal with multidimensional non-convex loss functions. 13

2.6 Receptive fields. Groups of pixels are considered for the next layer, as
opposed to treating each pixel individually. 16

2.7 Feature maps and features. Convolutional layers consist of feature
maps each defined by a set of shared weights (features) and a single shared
bias. 17

2.8 Pooling layer. Used to decrease the number of parameters while keeping
the relative spatial structure. 18

2.9 Pinhole camera model. Image is taken from [1]. 21

2.10 Template-based methods. A database of templates covers possible
object views. Each template is compared to the input image and the best
fitting template is used as a pose estimate. 23

2.11 Correspondence-based methods. Given a set of 1-to-1 correspon-
dences between the input image and 3D object model, we can recover the
pose by aligning correspondences minimizing a predefined error metric. . . 25

2.12 Direct pose regression. A neural network maps an input image con-
taining the object directly to its pose estimate. 26

xiii

LIST OF FIGURES

2.13 Domain adaptation methods. An overview of di↵erent method classes
tackling the domain gap problem. 30

2.14 3D Object Pose Estimation. Given an input image, the aim is to
recognize object instances and estimate their poses. This allows to project
them back onto the image. 35

3.1 Pipeline description. Given an input image patch xi, we create cor-
responding triplets (xi,xj ,xk) and pairs (xi,xj) to train our model on
manifold embedding creating robust feature descriptors. Additionally,
the pose can be regressed directly by introducing the regression head as
demonstrated in our multi-task pipeline extension. The pose q can then
be obtained either by a direct pose regression or using the resulting feature
descriptor for nearest neighbor search in the descriptor database. 39

3.2 CNN input format. Triplets are used to learn a well-separated mani-
fold, whereas pairs make the mapping invariant to various imaging con-
ditions. 40

3.3 Triplet loss with dynamic margin. A better separation achieved by
setting di↵erent inter- and intra-class margins. 41

3.4 Di↵erent sampling types. each vertex represents a camera position
from which the object is rendered. 42

3.5 Patch extraction. the object of interest (shown in yellow) is covered by
the cube of 40 cm3 in dimension; only RGB and depth data covered by
the cube is taken to generate a single patch. 43

3.6 Datasets. The training set Strain consists of both real and synthetic
(fine sampling); the test set Stest consists of the real data not used for the
training set Strain. 44

3.7 In-plane rotations. At each vertex extra views are rendered by rotating
the camera around the axis pointing at the object center. 45

3.8 Sampling points for di↵erent objects types. Vertices represent cam-
era positions from which the object is rendered. 45

3.9 Background noise types for synthetic data shown for di↵erent channels,
i.e., RGB, depth, and normals. 46

3.10 Test set samples mapped to a 3D descriptor space. Each color
represents a separate object. 48

3.11 Comparison of triplet loss with (DM) and without (SM) dynamic
margin for the 3D output descriptor. 49

3.12 Comparison of triplet loss with (DM) and without (SM) dynamic
margin for 32D output descriptor. 49

3.13 Comparison of four di↵erent background noise modalities without
any real data used for training. 50

3.14 Comparison of three modalities representing di↵erent input image
channels used in training. 51

xiv

LIST OF FIGURES

3.15 Feature space comparison. By using a multi-task learning framework,
we are able to improve feature descriptors learned for object pose estima-
tion. Depicted here is the feature visualization using left: PCA and right:
t-SNE [2] for five objects of the LineMOD [3] dataset. 52

3.16 Average time and median angular error of nearest neighbor pose
retrieval, regression and our approach. 54

3.17 Sensitivity of � in our loss function Lmtl = (1 � �)Lreg + �Lnn.
Depicted is the influence of di↵erent weighting parameters on the mean
angular error for regression as well as nearest neighbor pose retrieval. . . . 55

4.1 Example output of the DPOD method. Given a single RGB image,
we regress its ID mask and its 2D-3D correspondences. PnP+RANSAC
is then applied to estimate the final pose. The green bounding box shows
the ground truth pose, while the blue one corresponds to the estimated
pose. The almost perfect overlap of the bounding boxes indicates that
estimations are very accurate. 58

4.2 Pipeline description. Given an input RGB image, the correspondence
block, featuring an encoder-decoder neural network, regresses the object
ID mask and the correspondence map. The latter one provides us with
explicit 2D-3D correspondences, whereas the ID mask estimates which
correspondences should be taken for each detected object. The respec-
tive 6D poses are then e�ciently computed by the pose block based on
PnP+RANSAC. 59

4.3 Correspondence model. Given a 3D model of interest (1), we apply a
2 channel correspondence texture (2) to it. The resulting correspondence
model (3) is then used to generate GT maps and estimate poses. 60

4.4 Refinement architecture. The network predicts a refined pose given
an initial pose proposal. Crops of the real image and the rendering are
fed into two parallel branches. The di↵erence of the computed feature
tensors is used to estimate the refined pose. 63

4.5 Qualitative results. Poses predicted with the proposed approach on (a)
the LineMOD dataset and (b) the OCCLUSION dataset. Green bounding
boxes correspond to ground truth poses, bounding boxes of other colors
to predicted poses. For both datasets predicted poses are very close to
correct poses. 65

4.6 Qualitative correspondence quality. Comparison of ground truth
(left), predicted (center) UV maps and heat maps (right) of absolute errors. 70

xv

LIST OF FIGURES

5.1 Our pipeline for 3D object autolabeling. Left: o↵-the-shelf 2D de-
tections are fed into our Coordinate Shape Space (CSS) network to predict
surface coordinates and a shape vector. We backproject the coordinates to
LIDAR in the camera frustum and decode the shape vector into an object
model. Then, we establish 3D-3D correspondences between the scene and
model to estimate an initial a�ne transformation. Right: We iteratively
refine the estimate via di↵erentiable geometric and visual alignment. . . . 74

5.2 CSS representation. Top: Car models from the PD dataset [4]. Bot-
tom: The same cars in the CSS representation: decoded shape vector z
colored with NOCS. 75

5.3 Surface projection. DeepSDF outputs the signed values s for query
locations x. Normals n can be computed analytically by a single backward
pass. Given the signed values and normals, we project the query locations
onto the object surface points p. Only exterior points are visualized. . . . 76

5.4 Oriented tangent discs (right) represent the surface geometry more ac-
curately than billboard ones. We reduced spatial sampling and diameters
for better emphasis. 77

5.5 Automatic annotation pipeline. We fetch frames from the dataset
and separately process each 2D detection using our CSS network and dif-
ferentiable optimization procedure. Afterwards, we perform a verification
to discard incorrect autolabels before saving them into our CSS label pool.
Once all frames are processed, we retrain our CSS network and begin the
next loop over the dataset. 79

5.6 Synthetic PD dataset. (a) Cars from the PD dataset that were used to
train our DeepSDF shape space. (b) Top: Random RGB frame. Bottom:
Patches used for CSS training. 80

5.7 Qualitative results of our labeling pipeline. We mark the ground
truth cuboids in red and our predictions in blue. We can achieve rather
tight fits that lead to cuboids of slightly di↵erent sizes compared with the
ground truth. 81

5.8 Data input modalities: (a) input RGB image, (b) rendered normal map,
(c) rendered NOCS. Light module outputs: (d, e, f). 82

5.9 NOCS prediction quality of our network over consecutive loops for
the same patch. Initially, the predictions are rather noisy because of
the synthetic domain gap. Within each subsequent autolabeling loop the
predictions become more accurate overall. 83

5.10 Detections from the autolabel-trained detectors. We draw local
3D frames to identify correct orientation. 85

6.1 HomebrewedDB scene examples. Our dataset features 13 RGB-D
annotated scenes of various di�culty. The reconstructed 3D models of
the objects are rendered on top of RGB images with obtained ground
truth poses. 88

6.2 Rendered reconstructed 3D models of HomebrewedDB. 91

xvi

LIST OF FIGURES

6.3 Sample RGB images from the sequences presented in the Home-
brewedDB dataset. Complexity of the scenes varies in terms of number
and size of objects, levels of occlusion and clutter. 92

6.4 Sample RGB images from sequences belonging to the domain
adaptation benchmark. From left to right: original sequence, illumi-
nation benchmark sequence, texture change benchmark sequence. 93

6.5 Realism gap. Top: synthetic textureless models. Middle: synthetic
textured models. Bottom: real images. Networks trained on one type of
data significantly underperform when tested on another domain due to a
large visual discrepancy. 103

7.1 Real ! synthetic mapping. Trained on augmented data from 3D
models, our network G can map real scans (either depth or RGB) to the
synthetic domain (either depth or surface normals). The pre-processed
data can then be handed to various recognition methods (TS) to improve
their performance. 105

7.2 Training of the depth-processing network GDEP . Following the
conditional GAN architecture, a generator GDEP is trained against a
discriminator D to recover the original noiseless image from a randomly
augmented, synthetic one. Its loss combines similarity losses Lg and Lf ,
the conditional discriminator loss Ld, and optionally a feature-similarity
loss Lt if a task-specific method T s is provided at training time. 108

7.3 Training of the RGB multi-modal network GRGB. Taking full
advantage of available synthetic data e.g., texture-less CAD models, G
consists of a custom multi-modal pipeline with self-attentive distillation,
trained to recover noiseless geometrical and semantic modalities from ran-
domly augmented synthetic samples. 110

7.4 GDEP augmentation, training, and testing results: (A) Depth
augmentation examples (BG background noise; FG foreground dis-
tortion; OC occlusions) for di↵erent noise amplitudes or types; (B) Val-
idation results, showing how our solution learns during training to re-
cover the clean images (input) from their augmented versions (augm.);
(C) Test results on real data (compared to ground-truth GT). 111

7.5 GRGB augmentation and training results. On the left, we demon-
strate how normal maps are step by step transformed into complex, ran-
dom color images by our online augmentation pipeline. On the right, we
present how GRGB is trained on these images, learning to map them back
to the noiseless geometrical information. 112

7.6 GRGB qualitative results. Intermediary and final mappings when
applying GRGB trained on purely synthetic data to real samples, on
LineMOD [3] and T-LESS [5] datasets. 113

xvii

LIST OF FIGURES

7.7 Qualitative results of depth domain adaptation GANs [6, 7, 8]
on LineMOD [3]. First row contains indicative real images from the
target domain; second row contains the synthetic depth images provided
as sources; followed by the corresponding GANs outputs below. 117

8.1 Training pipeline. Training is performed in two alternating phases.
Phase 1: The weights of the deception network are updated, while those
of the recognition network are frozen. The recognition network’s objective
is maximized instead of being minimized, forcing the deception network
to produce increasingly confusing images. Phase 2: The generated de-
ceptive images provided by the deception network, whose weights are now
frozen, are passed to the recognition network and its weights are updated
such that the loss is minimized. As a result of this min-max optimiza-
tion, the input images are automatically altered by the deception network,
forcing the recognition network to be robust to these domain changes. . . 126

8.2 Architecture of the deception networks used for the presented
experiments. For the case of MNIST classification, three deception
modules are used: the distortion module applying elastic deformations
on the image, the BG/FG module responsible for generating background
and foreground colors, and the noise module additionally distorting the
image by applying slight noise. The LineMOD dataset requires a more
sophisticated treatment and features four deception modules: noise and
distortion (applied on depth channel only), modules similar to the pre-
vious case, pixel-wise BG module and light module generating di↵erent
illumination conditions based on the Phong model. 127

8.3 Deceptive images xd over consecutive iterations. The output be-
comes increasingly more complex for T . 128

8.4 Example samples of the MNIST modalities. MNIST (Source),
MNIST-M (Target), and MNIST-COCO (Generalization) on the left; and
example augmentation images generated by PixelDA and our method re-
spectively. 129

8.5 Example samples of the LineMOD modalities. Synthetic (Source),
Real (Target), and Extended (Generalization) on the left; and example
augmentation images generated by PixelDA and our method respectively. 130

8.6 Deceptive augmentations. Augmentations applied for the SYNTHIA
! Cityscapes scenario. 137

xviii

List of Tables

3.1 Test setups. Each underlined entry represents the tested parameter for
a given test. 47

3.2 Comparison of the network trained without in-plane rotations (base-
line) with the one trained using in-plane rotations (baseline+). 48

3.3 Angular error histogram computed using the samples of the BigBIRD
test set for a single nearest neighbor. 52

3.4 Angular error of the baseline method (NN), regression (R) and our
approach (Rmt, NNmt). 53

3.5 Comparison between the classification and angular accuracy of
the baseline method, NN, and our results on 15 objects of the LineMOD
dataset. 54

4.1 Pose estimation performance. Comparison of our approach to the
other RGB detectors on the LineMOD dataset. The table reports the
percentages of correctly estimated poses w.r.t. the ADD score. Among
the methods trained on synthetic data, our method shows the best results
significantly surpassing the former state-of-the-art. The variant of our
method trained on real data again demonstrates outstanding performance
outperforming most of the competitors. Moreover, our new refinement
pipeline improves the estimated poses even further and shows the best
overall results. 66

4.2 Pose estimation for multiple objects. Comparison of our approach
on real data to the other RGB detectors on the OCCLUSSION dataset.
The table reports percentages of correctly estimated poses w.r.t. the ADD
score. 67

4.3 Detection performance for multiple objects. Comparison of the
state-of-the-art mean average precision (mAP) scores on the OCCLU-
SION dataset. 67

4.4 RANSAC iterations test. The e↵ect of the number of RANSAC iter-
ations on the overall ADD score. 68

4.5 Runtime comparison. Time-e�ciency of our approach with respect to
the other state-of-the-art approaches. 68

4.6 Runtime analysis. Runtime of the proposed approach for all models of
the LineMOD dataset. 69

xix

LIST OF TABLES

4.7 Quantative correspondence quality. Correspondence quality for real
and synthetic data estimated in terms of mean and median absolute errors,
and standard deviation. 70

4.8 Comparison of deep learning-based refinement methods: Our
refinement approach shows the overall best ADD score with respect to
the latest state-of-the art method DeepIM [9]. 71

5.1 Cuboid autolabel quality when inputting into the CSS network (a)
2D ground truth boxes, (b) RCNN detections, and (c) Mask-RCNN de-
tections. We run two self-improving loops to slowly incorporate more
labels into the pool. 83

5.2 The performance comparison of the 3D object detectors trained on
the true KITTI labels vs. our autolabels. Concerning the BEV metric,
the detectors trained on autolabels alone achieve the results equal to the
current state of the art. In the case of the 3D AP metric, the competitive
results are achieved in both considered variants at the IoU 0.5 threshold. . 84

5.3 Ablation study over each optimization variable and each separate loss. . 86

6.1 Di↵erences between the depth of object rendered models at the
ground truth poses and the captured depth (in mm). µ� and ��
is the mean and the standard deviation of the di↵erences, µ|�| and med|�|
is the mean and the median of the absolute di↵erences. 94

6.2 Scalability benchmark. Results of object detection and pose estimation. 96

6.3 Result of object detection and pose estimation presented on
two benchmarks: (1) per scene benchmark spanning over 11 scenes
of the dataset and the (2) domain adaptation benchmark evaluating the
detector’s generalization capabilities. 97

6.4 Pose estimation results in terms of ADD 10% metric on LineMOD
sequences (LM) and HomebrewedDB (HB) sequence with the same objects. 98

7.1 Quantitative results on di↵erent tasks and datasets: (A) Classifi-
cation accuracy of di↵erent instances of the IC network over a subset of
T-LESS (5 objects); (B) Classification and angular accuracy of di↵erent
instances of the ICPE method over LineMOD (15 objects). Instances were
trained on various data modalities (noiseless synthetic for TS ; synthetic
augmented for TA; or real for TR) and tested on the real datasets XR

test

with di↵erent pre-processing (none; pre-processing by GA

DEP
trained on

synthetic augmented data; or by GR

DEP
same method trained using real

data). 118

xx

LIST OF TABLES

7.2 Comparison to opposite domain-adaptation GANs. Given the two
recognition tasks “(A) Instance Classification on T-LESS (5 objects)” and
“(B) Instance Classification and Pose Estimation on LineMOD (15 ob-
jects)” (defined for the experiment in Table 7.1), we train several modal-
ities of the networks T against diverse domain-adaptation GANs trained
on real dataXR

train
(50% of the datasets), and compare their final accuracy

with our results. 119
7.3 Quantitative ablation study. Given the two recognition tasks “(A)

Instance Classification on T-LESS (5 objects)” and “(B) Instance Classi-
fication and Pose Estimation on LineMOD (15 objects)”, we train both
networks on noiseless data and evaluate them on the outputs of di↵erent
modalities of GA

DEP
. Each is either trained (A) with di↵erent augmenta-

tion combinations (BG background noise; FG foreground distortion; OC
occlusions; SI sensor simulation); or (B) with di↵erent loss combinations
(Ld +Lg vanilla GAN loss; Lf foreground-similarity loss; Lt task-specific
loss). 120

7.4 Quantitative comparison of recognition pipelines, depending on
the available training data, for the task of localized instance classification
on T-LESS [5] (11 objects). 121

7.5 Quantitative comparison of recognition pipelines, depending on
the available training data, for the task of localized instance classification
and pose estimation (ICPE) on LineMOD [3] with method T from Chapter 3.122

7.6 Architectural ablation study, with the “ICPE on LineMOD” task. . . 123

8.1 Baseline tests. While performing slightly worse than the leading state-
of-the-art domain adaptation methods using target data, we still manage
to achieve very competitive performance without access to target data. . . 132

8.2 Generalization tests. Our method generalizes well to the extended
datasets, while the adaptation methods underperform due to overfitting. . 133

8.3 Module ablation. Evaluation of the importance of the deception net-
work’s modules. BG – background, NS – noise, DS – distortion, L –
light. 134

8.4 Input modality ablation. Performance evaluation based on the input
data type used: depth, RGB, or RGB-D. 135

8.5 Real-world application. Segmentation performance on SYNTHIA !
Cityscapes benchmark based on Intersection over Union (IoU) tested on 16
(mIoU) and 13 (mIoU*) classes of the Cityscapes dataset. Our method
outperforms source and unguided by a significant margin and remains
competitive to the methods relying on the target data. 136

xxi

1 Introduction

Vision is one of the most important human senses. It allows us to reason about the
world, interact with objects and other people, and it supervises almost every activity
we do in our lives. Transferring vision to computers would potentially allow to perform
this manifold of tasks without any human intervention. This is exactly what computer
vision aims to do and why it is so important.
In recent years, computer vision has made its way into many businesses, spanning such

fields as robotics, augmented reality, autonomous driving, healthcare, etc. This success
was made possible largely due to the occurrence and rapid development of deep learning
– the field of machine learning devoted to models based on artificial neural networks.
However, despite the remarkable progress, the design of the modern deep learning-based
computer vision pipelines still leaves many challenges unresolved, coming either from
the high performance expectations in highly dynamic real-world environments or from
the innate limitations of the deep learning systems.

1.1 Challenges of Industrial Computer Vision

First considered to be trivial, computer vision stays largely unresolved up until this
very day and is proved to be one of the major driving forces and main applications for
dozens of algorithms. But what makes it so di�cult? People can very easily reason
about the surrounding environment, which includes recognizing objects, understanding
their semantic meaning and relationship to the neighbouring objects, approximating
their size and location with respect to the eyes. For example, we can easily position
and recognize a human’s face under an astonishing number of variations in expression,
viewpoint, illumination, and even under heavy occlusions. We also seem to have a
capacity to remember an unlimited number of faces and only need to see it once to
remember. This stellar performance is a merit of the human brain and, unfortunately,
much is still unknown about how human vision works and how the brain perceives
the visual contribution. Computers, on the other hand, only see images as arrays of
pixels ultimately representing di↵erent colors. Given a large collection of numerical
values, a computer has to understand and reason about the contents and there is no
straightforward way to do it.
Early computer vision solutions were based on the hand-crafted feature extraction.

This process allowed to dramatically decrease the solution space by extracting a more
meaningful condense information from the image instead of relying on raw pixels. A
typical workflow would comprise the following stages: key-point detection, descriptor
generation, and classification. Over the years feature detectors became increasingly
more complicated and versatile (SIFT, SURF, HOG, BRIEF, etc.), so did the classifiers

1

1 Introduction

Figure 1.1: 6D pose estimation on a tablet. Our RGB dense pose object detector (DPOD)
from Chapter 4 estimates 6D pose of the object in real time running on a tablet.

(kNN, AdaBoost, SVM, Random Forest, etc.). However, it soon became evident that
hand-crafted features pose a significant bottleneck. Since they are hand-crafted, there
is no guarantee that we extract the most useful information about the object and the
information loss results in a potential performance loss. On the other hand, designing
ever new feature descriptors for new problems deemed infeasible. Thankfully, everything
changed with the emergence of deep learning.

Current state-of-the-art computer vision algorithms are based on deep neural net-
works. They almost completely replaced traditional pipelines utilizing hand-crafted
features. Instead, deep neural networks automatically generate task-specific features
through training over large datasets of annotated data. The process of training aims
to find the features that are best for the problem at hand and, as a result, making
them highly discriminative. Deep neural networks allow to reach performance not even
remotely imaginable before and in some cases neural nets already beat human perfor-
mance. This success allowed computer vision to largely expand its application field and
industrial significance.

Pose Estimation and Object Recognition Importance

Some of the most industry relevant computer vision tasks are pose estimation and object
recognition since in combination they allow not only understand what kind of object we
see, but also its exact location with respect to the camera (see Fig. 1.1 and Fig. 1.2).
For example, it is essential in robot grasping where one needs to know the object’s shape
and pose to decide the best way to grasp it. In autonomous driving applications it is

2

1.1 Challenges of Industrial Computer Vision

Estimated PosesTraining 3D Models

Test RGB/RGB-D Images

M
et

ho
d

Figure 1.2: 3D object pose estimation. Given a collection of 3D object models, the goal is
to estimate the pose for each of the objects of interest in RGB / RGB-D image.

required to know very precise positions of the objects surrounding the car due to strict
safety constrains. Various surgical workflows track the positions of medical tools as well
as human organs to help surgeons in analyzing and performing treatments. All these and
many other applications rely on the quality of object and pose recognition and might
fail completely in case of a poor estimate.
While the task of 2D object recognition is rather well-developed and scales well with

respect to the number of objects, it is not the case when the object’s pose comes into
play. Pose estimation assumes the prior knowledge of the object appearance and requires
more sophisticated techniques to get reliable estimates. This is especially true in the
case of the single shot RGB-based pose estimation, due to perspective ambiguities, as
opposed to the methods relying on depth data. However, while RGB methods are much
more ill-posed and challenging, they also become more and more popular due to the
ubiquitous availability of RGB cameras. Therefore, the success of RGB-based methods
would lead to an easy and cheap deployment, which is of great interest not only for
researchers and enthusiasts, but also for many big industry players.

Domain Gap Problem

The main power and also the main weakness of the neural network-based algorithms are
the data. In practice, and especially in the industry, access to real physical objects is very
limited (e.g., one cannot capture new image datasets for every new client, product, part,
environment, etc.), but 3D CAD models are widely available. It thus became common
to leverage such data to train recognition methods e.g., by rendering large datasets of
relevant synthetic images and their annotations. However, such approaches are subject
to a severe problem of domain gap, in which synthetic images are very di↵erent from
those one gets from commodity RGB cameras (see Fig. 1.3). As a result, models trained
on synthetic data perform poorly on real images or do not work at all.
Bridging the gap between real and synthetic data is the task of the domain adaptation

field, which has become crucial for deep learning methods and is another major topic

3

1 Introduction

Real RGB ImagesTextured 3D Models

Textureless 3D Models

Figure 1.3: Domain gap. Synthetic data are very di↵erent from real images coming from
commodity sensors not only due to the sensor-specific properties, but also due to
external illumination and object appearance changes. The problem becomes even
more di�cult when objects have no texture.

of this thesis. The di�culty of the domain adaptation task largely depends on the
discrepancy between the source and target domains. While in the case of the depth
data it mainly arises from the imperfections of the depth sensor itself, the RGB domain
holds multiple other challenges. The formation of the RGB image is not only a↵ected
by the internal sensor noise and parameters, but also by the perceptive ambiguities and
various external changes. For example, the same very object can look extremely di↵erent
depending on the time of the day, the light sources surrounding it, and the camera the
shot is taken from. Moreover, objects can also change their texture with time through
wearing and other numerous reasons. The change in appearance results in an image
containing completely di↵erent pixel values for the same object. Making it even more
di�cult, it is often the case that CAD models are not textured leaving no color prior
to even start from. This scenario requires methods that either use depth data or are
invariant to color.

1.2 Contributions

In this work, we concentrate on the above-mentioned problems of object pose estimation
as well as domain adaptation and propose solutions that achieve state-of-the-art results
on di↵erent tasks. The main contributions of this thesis can be summarized as follows:

• Scalable object recognition and 3D pose estimation based on manifold
learning Scalability with respect to the number of objects is a critical issue for
methods that not only classify objects, but also estimate their pose. We propose
a solution based on manifold learning, where images are mapped to a highly-
discriminative lower-dimensional manifold space. Once mapped, this allows to
e�ciently retrieve both object’s class and pose. Moreover, we extend this solution
by combining it with the direct pose regression making it end-to-end and show
how this multi-task pipeline improves the discriminative power of the method.

4

1.2 Contributions

• Real-time RGB 6D pose estimation pipeline based on dense correspon-
dences While object detection and 6D pose estimation is much easier to solve
in depth images, RGB solutions are much more desirable due to the widespread
availability of RGB cameras. However, perspective ambiguities and significant
appearance changes of the object when seen from di↵erent viewpoints make RGB-
based methods rather rare and unreliable. We propose a solution based on dense
correspondences as opposed to former state of the art either regressing the pose
directly or relying on a coarse number of correspondences. While being very pre-
cise compared to the former state-of-the-art solutions, the presented approach is
also real-time capable and can be trained entirely on synthetic CAD models. Ad-
ditionally, we present a deep learning-based pose refinement pipeline that further
improves the performance of the method.

• 9D pose and shape estimation pipeline using SDF shape priors and dif-
ferentiable SDF rendering RGB-based 6D pose estimation pipelines assume
the prior knowledge (i.e., dimensionality and scale) about the objects of interest.
However, when we deal with entire classes of objects this assumption becomes in-
feasible. To tackle this issue, we propose a solution based on SDF (signed distance
field) shape priors covering possible shape variations within classes. Furthermore,
we develop an optimization pipeline utilizing a novel di↵erentiable SDF renderer.
The presented solution reliably estimates 9D object poses and their shapes allowing
for automatic labeling of the data. In turn, this allows to train downstream meth-
ods achieving state-of-the-art results without any ground truth labels available for
training.

• RGB-D 6D Pose Estimation DatasetWe present a dataset for 6D pose estima-
tion targeting training from 3D models (both textured and textureless), scalability,
occlusions, and changes in light conditions and object appearance. The dataset
features 33 objects (17 toy, 8 household, and 8 industry-relevant objects) over
13 scenes of various di�culty. We also present a set of benchmarks to test vari-
ous desired detector properties, particularly focusing on scalability with respect to
the number of objects, and resistance to changing light conditions, occlusions and
clutter.

• Reverse domain adaptation method to map unseen real data into syn-
thetic domains Generally, domain adaptation methods aim to make synthetically
generated data look more realistic. Instead, we propose a novel approach tackling
this problem from the opposite angle. Purely trained on synthetic data, playing
against an extensive augmentation pipeline in an unsupervised manner, the pro-
posed approach e↵ectively segments images and recovers clean synthetic-looking
information even from partial occlusions. As a result, this significantly simplifies
training and consistently enhances the performance of the downstream task.

• Network-driven domain randomization As an alternative to vanilla domain
randomization methods, we present a novel adversarial procedure to tackle domain

5

1 Introduction

adaptation between synthetic and real data. In particular, the presented solution
uses the downstream task network as an adversarial guide toward useful augmenta-
tions that maximize the uncertainty of the output. Unlike GAN-based approaches
that require unlabeled data from the target domain, this method achieves robust
mappings that scale well to multiple target distributions from source data alone.
The method was tested on multiple benchmarks and compared to a number of do-
main adaptation approaches, thereby demonstrating similar results with superior
generalization capabilities.

1.3 Outline

This section provides an overview of the subsequent thesis chapters. All the described
methods have been published at major peer-reviewed conferences. We therefore provide
a reference for each related work and encourage the reader to consult online materials
for video demonstrations.

Chapter 2 – Background First, we cover the fundamentals important to grasp the
main concepts that further chapters are based on. In particular, we briefly discuss
various topics from the fields of deep learning and projective geometry, and also provide
an overview of relevant pose estimation and domain adaptation methods.

Part I: Pose Estimation

Chapter 3 – 3D Pose Estimation Based on Manifold Learning Here, we present
a 3D pose estimation and object recognition method based on mapping images to a highly
discriminative lower-dimensional space. A novel dynamic margin loss function allows to
improve the discriminative power of the underlying manifold space, which results in
significantly better estimates and improved scalability properties. To further improve
performance, we propose to combine manifold learning with direct pose regression. The
resulting multi-task learning pipeline not only shows a mutual improvement on both
tasks, but also demonstrates how to make an end-to-end pipeline benefiting from the
underlying manifold structure.

• S. Zakharov, W. Kehl, B. Planche, A. Hutter, S. Ilic. 3D Object Instance Recog-
nition and Pose Estimation Using Triplet Loss with Dynamic Margin. IEEE/RSJ
International Conference on Intelligent Robots and Systems (IROS), 2017

• M. Bui, S. Zakharov, S. Albarqouni, S. Ilic, N. Navab. When Regression meets
Manifold Learning for Object Recognition and Pose Estimation. IEEE Interna-
tional Conference on Robotics and Automation (ICRA), 2018

Chapter 4 – 6D Pose Estimation Based on Dense Correspondences This
chapter aims to solve a more di�cult problem of object detection and 6D pose estimation

6

1.3 Outline

from RGB images. The proposed solution uses dense correspondences, as opposed to the
former state-of-the-art methods. As a result, we get a robust real-time pipeline that can
be trained entirely on synthetic data. Moreover, this chapter also presents a refinement
approach improving the predicted estimates even further.

• S. Zakharov*, I. Shugurov*, S. Ilic. DPOD: 6D Pose Object Detector and Re-
finer. IEEE International Conference on Computer Vision (ICCV), 2019 (*equal
contribution)

Chapter 5 – 9D Pose Estimation for Autolabeling The lack of information about
the detected object adds additional degrees of freedom to the problem of pose estimation.
Additionally to rotation and translation, one has to determine the shape and scale of the
object. The pipeline presented in this chapter does exactly this. To make this possible we
use SDF shape priors and introduce a novel di↵erentiable SDF renderer. The resulting
solution can be used to automatically label datasets.

• S. Zakharov*, W. Kehl*, A. Bhargava, A. Gaidon. Autolabeling 3D Objects with
Di↵erentiable Rendering of SDF Shape Priors. IEEE Conference on Computer
Vision and Pattern Recognition (CVPR), 2020 (*equal contribution)

Chapter 6 – RGB-D 6D Pose Estimation Dataset In this chapter, we present
a dataset for 6D pose estimation targeting training from synthetic CAD models and
such challenges as scalability, robustness to occlusions, illumination and appearance
changes. We present benchmarks for each of the challenges to promote the field of 6D
pose estimation and raise the importance of the domain adaptation problem.

• R. Kaskman, S. Zakharov, I. Shugurov, S. Ilic. HomebrewedDB: RGB-D Dataset
for 6D Pose Estimation of 3D Objects. IEEE International Conference on Com-
puter Vision (ICCV) Workshops, 2019

Part II: Domain Adaptation

Chapter 7 – Reverse Domain Adaptation In this chapter, we present a novel
reverse domain adaptation idea that denoises, declutters, and maps previously unseen
images to synthetic domains. This solution not only improves the performance of the
downstream tasks, but also makes the training process much more practical by domain
adaptation uncoupling.

• S. Zakharov*, B. Planche*, Z. Wu, A. Hutter, H. Kosch, S. Ilic. Keep it Un-
real: Bridging the Realism Gap for 2.5D Recognition with Geometry Priors Only.
International Conference on 3DVision (3DV), 2018 (*equal contribution)

• B. Planche*, S. Zakharov*, Z. Wu, A. Hutter, H. Kosch, S. Ilic. Seeing Beyond
Appearance - Mapping Real Images into Geometrical Domains for Unsupervised
CAD-based Recognition. IEEE/RSJ International Conference on Intelligent Robots
and Systems (IROS), 2019 (*equal contribution)

7

1 Introduction

Chapter 8 – Network-Driven Domain Randomization This chapter presents
a novel domain randomization technique. Instead of using a regular randomization
pipeline i.e., randomly varying backgrounds, changing brightness and contrast, etc.,
we design di↵erentiable augmentation modules and utilize the task network to serve
as an augmentation guide. Experiments on various datasets demonstrate competitive
performance while having superior generalization capabilities.

• S. Zakharov, W. Kehl, S. Ilic. DeceptionNet: Network-Driven Domain Random-
ization. IEEE International Conference on Computer Vision (ICCV), 2019

Chapter 9 – Conclusion and Outlook This chapter concludes the thesis, summa-
rizes our findings, and discusses the directions for future work.

8

2 Background

This chapter gives an overview of the theoretical background required for the further
chapters. We first give a basic introduction to neural networks and the field of deep
learning. Then we cover relevant topics of projective geometry, and provide an overview
of related works on pose estimation and domain adaptation.

2.1 Neural Networks

Humans and higher animals identify, make decisions, and learn at every step of their
lives. The neural network approach arose from a desire to understand how the brain
solves such complex problems and to implement these principles in automatic devices.

Artificial neural networks or ANNs are very simplified analogues of the natural neu-
ral networks. The nervous system of animals and humans is much more complex than
what people can currently achieve with the help of modern technology. However, it
appears that for the successful solution of many practical problems it is enough to know
the general principles of how the nervous system functions. Most of the ANNs repre-
sent mathematical models that have only a distant resemblance with neurophysiology.
This however does not preclude their practical application in various fields, e.g., image
classification, segmentation and natural language processing.

The purpose of this section is to give a quick introduction to neural networks, including
the main concepts and terminology, which are essential for understanding the further
chapters. It is mainly based on the material from [10, 11, 12, 13, 14, 15].

(a) Biological [16]. (b) Artifitial

Figure 2.1: Neuron representations: Artifitial neuron model is a very rough approximation
of the biological model.

9

2 Background

Artificial Neuron

First, let us consider the general working principles of a nerve cell or neuron (Fig. 2.1a).
A neuron consists of a cell body, dendrites and an axon. Dendrites are tree-like thin
structures that extend away from the cell body. An axon is a long tube-like structure that
sends signals to other neurons through a synaptic terminal, which is usually connected
to a dendrite of another cell. Being in the excited state a cell generates an electrical
impulse of about 100mV and a duration of 1ms, which runs along the axon to the
synapse. On the arrival of the signal, the synapse triggers the migration of vesicles
containing neurotransmitters through which the signal is transferred. If the total charge
received by a cell exceeds a certain threshold, the cell becomes excited and fires an
impulse that propagates along the axon and reaches the synapses, thereby contributing
to excitation of other cells.

A mathematical representation of a biological neuron is usually presented by a simple
model of the perceptron, see Fig. 2.1b. It was developed by the scientist Frank Rosenblatt
in the late 1950s and is based on the McCulloch-Pitts Threshold Logic Unit (TLU) model.
As shown in Fig. 2.1b, each input value coming from the left is multiplied by a specific
weight, which is a simulation of the synaptic strength. Then all the weighted inputs are
added together to get a total signal strength. Finally, an activation function is applied
on the sum; in case of a perceptron it is a simple step function (see Fig. 2.3a). If the sum
is greater than a threshold value, also called bias, then the output is set to 1, otherwise
it is set to 0. Although the perceptron is a very rough model of a biological neuron, it
can perform a substantial level of computation.

2.1.1 Fully Connected Neural Networks

The true computing power of an artificial neural network comes from connecting multiple
neurons. Neurons are usually connected into a network by layers. Therefore, the simplest
possible network structure is a single-layer network shown in Fig. 2.2a, where every node
represents a neuron and lines can be thought of as axon-dendrite connections.

(a) Single-layer network (b) Multilayer network

Figure 2.2: Network structures. Going from a single to multiple layers.

10

2.1 Neural Networks

As with every neural network, it contains the input and output layers of neurons.
The input layer on the left is simply the representation of our input data and it is not
counted when specifying the network depth. The data from the input layer is connected
to each artificial neuron in the output layer. In neural network terminology a layer in
which neurons are fully pairwise connected to the neurons of the previous layer is called
a fully-connected layer. Since each output neuron receives the same set of data, the
results are varied based on the values of weights and biases. The output results usually
represent the class scores or real values depending on the nature of the problem, i.e.,
classification or regression. A single-layer network can easily be extended to a multilayer
or a deep network (giving rise to the term deep learning) by adding more layers (see
Fig. 2.2b). This more complex structure helps to achieve a higher level of computational
capability. Any layer between the input and output layers is called a hidden layer.

The network structure on itself is not very exciting if we can not train it to adapt to
specific tasks. The training of a network consisting of a group of neurons is realized by
slightly changing the weights and biases to get the best results or, in other words, such
that the output error is minimized.

Activation Functions

The perceptron neuron model uses a step activation function (Fig. 2.3a). However, in
modern artificial neural networks other types of neurons are used. The main reason
behind not using the step activation function is that it is not smooth. However, the
training of a network requires the calculation of the activation function’s derivatives and
therefore it has to be di↵erentiable or smooth.

(a) Step function (b) Sigmoid function (c) Hyperbolic Tangent (d) ReLU function

Figure 2.3: Activation functions. Step function and its smooth alternatives.

Non-linear activation functions allow neural networks to model complex patterns that
simpler models may miss. The most common types of the activation functions used in
practice are: sigmoid (Fig. 2.3b), hyperbolic tangent (Fig. 2.3c), and rectified linear unit
(Fig. 2.3d). Their mathematical forms are defined as follows.

fsigmoid(x) =
1

1 + e�x
, ftanh(x) =

2

1 + e�2x
�1, fReLU (x) =

(
0 : x < 0

x : x � 0
(2.1)

11

2 Background

Forward Propagation

The process of passing the input data through the network is called the forward propa-
gation. In order to demonstrate it, let us introduce a simple 2-layer network shown in
Fig. 2.4. The bias terms are going to be ignored for simplicity.

Figure 2.4: Sample neural network to illustrate the forward and backward propagation pro-
cesses.

The first step is to calculate the output for each neuron of hidden layer just as it was
shown for a perceptron in Fig. 2.1b: all the input values are multiplied by the respective
weights and summed together, then an activation function is applied on the sum. This
can be e↵ectively computed using the matrix representation. Using input data matrix
X and weight matrices W (1) we first compute activations Z(1) of the hidden layer:

i11 i12
i21 i22

�

X

w11 w12 w13

w21 w22 w23

�

W (1)

=

i11w11 + i12w21 i11w12 + i12w22 i11w13 + i12w23

i21w11 + i22w21 i21w12 + i22w22 i21w13 + i22w23

�

Z(1)

(2.2)
To calculate the final neurons’ outputs the activation function is applied to matrix Z(1)

element-wise:
A(1) = f(Z(1)) (2.3)

In the second step, we compute the activations of the output layer similarly to first
step with the only di↵erence being the input values:

a11 a12 a13
a21 a22 a23

�

A(1)

2

4
w1

w2

w3

3

5

W (2)

=

a11w1 + a12w2 + a13w3

a21w1 + a22w2 + a23w3

�

Z(2)

(2.4)

The final result matrix Ŷ is achieved by applying the activation function to the elements
of Z(2):

Ŷ = f(Z(2)) (2.5)

As we can see, forward propagation is a very trivial process that can be e�ciently com-
puted using matrix representation. Once it is completed, the output votes are available
and can be used to improve the network.

12

2.1 Neural Networks

Gradient Descent Solvers

The network training is performed via the gradient descent algorithm. The idea of the
gradient descent algorithm is to use the gradient of the cost function L with respect to
the parameters in order to update them. Given the gradient at a certain point we can
say which direction we have to go to minimize or maximize the cost function L by the
value of the gradient. To get to the minimum from a randomly initialized point, we have
to move in the direction of a negative gradient with a predefined step size. The update
rule can therefore be formulated as follows:

Wt+1 = Wt � ↵rL(Wt), (2.6)

where rL(Wt) is the derivative of the cost function, Wt are the weights at the current
iteration t, and ↵ is the learning rate.

(a) Convex loss (b) Non-convex loss

Figure 2.5: Possible loss function landscapes. In many real-world applications we have to
deal with multidimensional non-convex loss functions.

Gradient descent provides no guarantees of converging to a good solution, converging
to a solution in a certain amount of time, or converging to a solution at all. The Euclidean
loss function has a parabolic shape (Fig. 2.5a), which has only one minimum so it can
be found by the gradient descent very easily. However, it could be the case that our
cost function is non-convex (Fig. 2.5b), meaning that it does not always go in the same
direction. Given that, the gradient descent method may get stuck in a local minimum
instead of a global one. We can move too slowly along the gradient and never reach the
minimum or move too quickly and skip the minimum. Both are possible and there are
various techniques that try to optimize the gradient descent method.
The most common variations of the gradient descent method are the stochastic gra-

dient descent (SGD) with momentum and adaptive moment estimation (Adam).

SGD is a simplification of gradient descent, in which at each iteration the gradient is
computed with respect to a few training examples comprising a minibatch. Despite the

13

2 Background

noise introduced by this simplification, SGD can lead to an improved convergence, due
to the reduced variance and, moreover, it takes much less time to make an update. The
notion of momentum introduces the additional velocity term influenced by the gradient
and can further improve the convergence:

Vt+1 = µVt � ↵rL(Wt),

Wt+1 = Wt + Vt+1,
(2.7)

One of the biggest problems of SGD solver is the setting of the learning rate. Usually
people reduce the learning rate every n epochs (one run through the training set), which
can be set by a step decay parameter in the available neural network frameworks. Nev-
ertheless, there is no golden rule to set the decay parameter and it heavily depends on
the problem specification. This is the reason much work has gone into developing the
methods that adaptively set the learning rate.

Adam or Adaptive moment estimation is one of the most popular methods that frees
us from the need of setting a learning rate parameter. It defines the following update
rule:

Mt+1 = �1Mt + (1� �1)rL(Wt),

Vt+1 = �2Vt + (1� �2)rL(Wt)
2,

Wt+1 = Wt � µ

q
1� �t+1

2

1� �t+1
1

Mt+1p
Vt+1 + ✏

.

(2.8)

It uses the second order moment V , which is computed as an exponentially decay-
ing average of historical gradients. This eliminates the problem of the learning rate
inevitably converging to zero by considering only the historical gradients within a recent
time window, and not within the entire history as it is defined for AdaGrad. The term
M is called the first order momentum. It is used to avoid the direct usage of the gradient
rL(W) in the update rule and is very similar to the moment rule we discussed earlier.

Finally, the
p

1��
t+1
2

1��
t+1
1

term is used for bias-correction since both V and M are initialized

to zero and are biased towards it.

Backward Propagation

The whole process of computing the derivatives with respect to the weights is called the
backward propagation or backpropagation for short. The name comes from the fact that
the process of computing the gradient of the loss function can be seen as propagating
the error backwards to the weights using the chain rule.

We will continue working with the network we have defined in the forward propagation
section (Fig. 2.4) and the Euclidean cost function. Our weights are distributed across
two matrices, namely W (1) and W (2). It means that to compute the derivative of the
cost function with respect to all the weights, we just need to do so for these two.

14

2.1 Neural Networks

Let us first take the derivative with respect to the matrix W (2):

@L

@W (2)
=

@
P 1

2(y � ŷ)2

@W (2)
(2.9)

=
X @ 1

2(y � ŷ)2

@W (2)
(2.10)

=
X
�(y � ŷ)

@ŷ

@W (2)
(2.11)

=
X
�(y � ŷ)

@ŷ

@Z(2)

@Z(2)

@W (2)
(2.12)

= �(A(1))T (Y � Ŷ)f 0(Z(2)). (2.13)

Using the sum rule, we can rewrite Eq. 2.9 as Eq. 2.10. The derivative of Eq. 2.10
is computed as Eq. 2.10 using the chain rule. Then, again applying the chain rule on

@ŷ

@W (2) in Eq. 2.11, we get @ŷ

@Z(2)
@Z

(2)

@W (2) in Eq. 2.12. The rate of change of ŷ with respect to

Z(2) or @ŷ

@Z(2) is the same as the derivative of the activation function with respect to Z(2)

or f 0(Z(2)). The last term @Z
(2)

@W (2) is simply derived as matrix A(1), due to the fact that

Z(2) = A(1)W (2). Finally, if we replace single output examples y and ŷ with matrices Y
and Ŷ , containing all the output examples, and do certain manipulations as shown in
Eq. 2.12 the sum term can be avoided.

The same operation is performed for @L

@W (1) :

@L

@W (1)
=
X
�(y � ŷ)

@ŷ

@W (1)
(2.14)

=
X
�(y � ŷ)

@ŷ

@Z(2)

@Z(2)

@W (1)
(2.15)

=
X
�(y � ŷ)f 0(Z(2))

@Z(2)

@A(1)

@A(1)

@W (1)
(2.16)

=
X
�(y � ŷ)f 0(Z(2))(W (2))T

@A(1)

@Z(1)

@Z(1)

@W (1)
(2.17)

= �XT (Y � Ŷ)f 0(Z(2))(W (2))T f 0(Z(1)). (2.18)

The derivation for @L

@W (1) goes in a similar manner to @L

@W (2) . We again follow the chain
rule until the point where all the components are known. As you can see, the components
computed for @L

@W (2) are present in the @L

@W (1) derivation as well and, therefore, can be
e�ciently reused.

As a result, we get two matrices of derivatives rL(W (1)) and rL(W (2)) of the same
sizes as W (1) and W (2). Knowing the gradients, the weights can then be easily updated
using one of the update rules we discussed in Section 2.1.1. Concluding this section, the
network can successfully be trained by iteratively doing forward and backward propaga-
tions and updating the parameters using one of the GD-based solvers.

15

2 Background

2.1.2 Convolutional Neural Networks

Fully-connected networks can be used and show state-of-the art performance for many
di↵erent applications. Nevertheless, they are not very well suited for working with
images. The logical approach to adapt fully-connected networks to work with images
would be to treat every pixel as a separate input for a neuron in the next layer. However,
in this case, the spatial structure of the image will not be taken into account. It turns
out, there are better ways to deal with images.

Figure 2.6: Receptive fields. Groups of pixels are considered for the next layer, as opposed
to treating each pixel individually.

Convolutional neural networks, or CNNs, are the networks specifically designed to
work with images and are inspired by the approaches used in image processing. They
have three features that distinguish them from regular neural networks: local receptive
fields, shared parameters, and pooling layers.

Local Receptive Fields The first distinctive feature of CNNs are the local receptive
fields. Instead of considering each pixel as a separate input value for the next hidden
convolutional layer we take groups of pixels. This means that each neuron in the convo-
lutional layer has a group of input pixels assigned to it. The size of this group is called
the local receptive field of the respective neuron.

The local receptive field is moved along the input image and each new position corre-
sponds to a mapping to a di↵erent neuron in the hidden layer as shown in Fig. 2.6. The
shift between the closest receptive field positions is defined by the stride parameter.

Parameter Sharing The second core feature of CNNs is parameter sharing. As
previously stated, each neuron of a convolutional layer is connected to its own local
receptive field in the previous layer. Parameter sharing says that all these neurons share
the same weights and bias, and so this operation can be thought of as convolution.

Convolution is one of the most common operations used in image processing. Loosely
saying, it is performed by sliding a small kernel matrix over the image and applying
it at each new position, which is done by using the summation over the element-wise
multiplication between the kernel and the part of the image covered by it. Therefore, at

16

2.1 Neural Networks

each new position we produce a single output value, resulting in an image of the same or
smaller size depending on the border treatment type. This is exactly what happens in
the convolutional layer: we slide a kernel, or feature, across the image multiplying each
pixel by defined weights and ultimately forming a feature map.

Figure 2.7: Feature maps and features. Convolutional layers consist of feature maps each
defined by a set of shared weights (features) and a single shared bias.

Parameter sharing makes CNNs highly translationally invariant. A certain feature,
e.g. an edge, may be found in any part of the image and detecting it is equally useful no
matter what position of the image it is. Complete convolutional layers consist of several
feature maps (Fig. 2.7), each defined by a set of shared weights and a single shared bias,
allowing the network to detect several kinds of features across the entire image. Apart
from that, this technique is particularly beneficial to the network’s performance since
many fewer parameters need to be tuned compared to fully-connected networks showing
a similar performance on images.

Pooling Layers Another common type of layer that is often used in CNNs is the
pooling layer. It simply reduces the spatial size of the image and, therefore, decreases
the number of parameters still keeping the relative spatial structure. The downsampling
is performed by again sliding a kernel over the image, but with a stride the length of
the kernel. For each position we output a single value based on a type of pooling. For
max-pooling, which is the most popular pooling type, we always take the maximum
value within the treated region. However, other variations of pooling are often used. L2
pooling for example outputs an L2 norm for each treated region.

2.1.3 Optimization

There are various methods and techniques to optimize the way neural networks work
and especially prevent them from overfitting. Overfitting is one of the most common
problems we have to deal with in training. The problem arises when a model adapts
to the training data too well to the point where it starts learning peculiarities and the
noise belonging to it. As a result, while scoring the perfect accuracy with the training
data, it will not be the case for the test data.

17

2 Background

Figure 2.8: Pooling layer. Used to decrease the number of parameters while keeping the
relative spatial structure.

The first logical solution to this problem is to extend the training data. While perfectly
legitimate, it is not always possible to get more data. The other solution would be to
decrease the number of parameters. With fewer parameters there is a lower probability
of overfitting, but models with more parameters can be much more powerful in terms of
their learning capabilities. However, there are methods that do not require additional
data and still help a lot to deal with overfitting.

Regularization The most popular technique to deal with overfitting is regularization.
It modifies the cost function by adding an additional regularization term:

C = C0 +R (2.19)

There are two common types of regularization: L2 and L1. In the case of L2, the
regularization term R is equal to 1

2�w
2, where � is the regularization parameter. By

minimizing the modified cost function, we are basically finding a compromise between
minimizing the original function and finding small weights. This limitation makes it
more di�cult for the network to learn the e↵ects of noise in the training set since it is
much harder to change its behavior by slightly changing the input data, whereas this is
possible with greater weights.

For the L1 regularization, the regularization term R takes a form of �|w|. This has a
similar e↵ect of penalizing the weights with a large weight factor. However, the way the
weights are penalized is di↵erent, coming from the derivatives of the two terms. The L2

regularization shrinks the weights proportionally to their value
⇣
@

1
2�w

2

@w
= �w

⌘
, whereas

L1 shrinks the weights by a constant
⇣
@�|w|
@w

= �sgn(w)
⌘
. Thereby, the weight vectors

become sparse, i.e. many weights are close to zero, prompting the network to use the
most important inputs and ignore the noise, which allows for explicit feature selection.
However, if the mentioned properties of the L1 regularization are not needed, people
tend to use the L2 regularization since it usually gives better results than L1.

18

2.2 Projective Geometry

Dropout Another popular technique is called the dropout. It is very simple yet e↵ec-
tive technique that can be used together with the L1 and L2 regularizations. Instead of
modifying the cost function, the network structure is changed. The idea is to use a layer
where the probability for each neuron to be omitted is set to a certain value. In this
way, always di↵erent combinations of neurons are selected at each iteration (forward +
backward propagation) while training. Using a dropout layer(s) can be thought of as
training several di↵erent networks and averaging them. Whereas a single network may
easily overfit, combining the results from several single networks can reduce the e↵ect of
overfitting.

Batch Normalization Also known as batchnorm [17], it is a very popular normaliza-
tion technique used in almost every neural network. It was initially designed to tackle
the vanishing gradient problem making it possible to train very deep neural networks.
However, batch normalization also helps to dramatically reduce the training time and
has a regularization e↵ect which reduces the generalization error. In essence, batchnorm
normalizes activations to zero mean and unit standard deviation for each neuron allow-
ing them to learn on a more stable input distribution. Not to limit the expressive power
of the network, batchnorm also allows the network to estimate these moments during
training across multiple batches.

2.2 Projective Geometry

To be able to understand the contents of the camera image, one first needs to know
how the image is formed. The important prerequisites for that is the knowledge of the
field of projective geometry. This section presents a quick overview of the Euclidean and
projective geometry topics used in this thesis. For more details please refer to Multiple
View Geometry in Computer Vision, Hartley and Zisserman [1].

Homogeneous Coordinates Generally, 2D points are denoted as x = (x, y)| 2 R2

and 3D points as X = (X,Y, Z)| 2 R3. To conveniently represent transformations, the
notion of homogeneous coordinates is used, where points embeded into projective spaces
having an extra dimension w for 2D and W for 3D spaces forming x̃ = (x, y, z, w)| 2 P2

and X̃ = (X,Y, Z,W)| 2 P3 respectively. When W = 1 allows to write rigid-body
motions as linear transformations using simple matrix-vector multiplications as:

✓
R t
0 1

◆
· X̃ =

✓
R t
0 1

◆
·

0

BB@

X
Y
Z
1

1

CCA =

✓
R ·X+ t

1

◆
(2.20)

2.2.1 Rigid Body Transformations

Rigid body motion changes the position and orientation while preserving relative distance
and angles between any pair of points. All such transformations in 3D Euclidean space

19

2 Background

consist of rotation and translation and form the special Euclidean group SE(3). A single
transformation can be represented in the matrix form:

✓
R t
0 1

◆
, (2.21)

where R 2 SO(3) is the orthogonal matrix representing the rotation and belonging to
the special orthogonal group SO(3) and t 2 R3 is a translation vector.

The special orthogonal group SO(3) is the space of all 3D rotations represented by
3⇥ 3 matrices that satisfy the following properties:

R| ·R = R| ·R = I and det(R) = 1 (2.22)

These properties ensure the rigid-bodiedness of motions by preserving the local ori-
entation and length. While this parametrization is very practical because it allows to
transform points in linear form by matrix-vector multiplication, it su↵ers from over-
parametrization. Despite representing only 3 degrees of freedom (3DoF), such matrix
consists of 9 values, which makes a possible optimization problematic. This is the reason
of appearance of various other rotational representations, e.g., Euler angels, axis angle,
unit quaternions, etc.

Euler Angles One of the most simple representations are Euler angles ↵,�, �, which
represent the rotations around the canonical axes which can be combined to represent
any possible rotation. While being the most compact, this representation has significant
drawbacks. First of all it is not unique, i.e., di↵erent angles can result in the same final
rotation. Second, it su↵ers from the infamous gimbal lock problem, which leads to the
loss of degrees for certain rotation application orders.

Axis-Angle According to Euler’s rotation theorem, all 3D rotations have an axis-angle
representation. In other words, every orientation of a rigid body in space can be described
by a single rotation ✓ about some axis r̂ through the origin. This observation allows to
get away from the ambiguous Euler angle representation. However, while being very
intuitive, one cannot directly combine two rotations to give an equivalent total rotation
when using axis-angle representation. The easy solution is to either convert it back to a
matrix representation or to use quaternions.

Unit Quaternions Another well-established and often used alternative are unit quater-
nions. Unit quaternions are generalization of complex numbers represented as vectors
of 4 elements q = (qw, qx, qy, qz)|, with

||q|| =
q
qw2, qx2, qy2, qz2 = 1, and q�1 =

q

||q|| (2.23)

This representation can be seen as a modification of the axis-angle representation
with qw = cos(✓/2) corresponding to the angle of rotation ✓ and remaining elements
representing the normalized rotation axis (qx, qy, qz)| = r̂sin(✓/2). Quaternions are

20

2.2 Projective Geometry

Figure 2.9: Pinhole camera model. Image is taken from [1].

popular due to their compactness and are the representation that is mainly used in
this work. To rotate a 3D point X using quaternions, it has to be first embedded into
the imaginary part of the quaternion Xq = (0, X, Y, Z), and then transformed using
q ·Xq ·q�1 = (0, X 0, Y 0, Z 0). Alternatively, quaternion can also be easily converted back
to R as follows:

R(q) =

0

@
1� 2qy2 � 2qz2 2qxqy � 2qzqw 2qxqz + 2qyqw
2qxqy + 2qzqw 1� 2qx2 � 2qz2 2qyqz + 2qxqw
2qxqz + 2qyqw 2qyqz + 2qxqw 1� 2qx2 � 2qy2

1

A (2.24)

Another useful property of quaternions is their ability for convenient interpolation. In
particular, given two unit quaternions q1, q2 and interpolation factor µ, we can use e.g.,
linear interpolation (lerp) or spherical linear interpolation (slerp):

lerp(q1,q2, µ) = (1� µ)q1 + µq2 (2.25)

slerp(q1,q2, µ) =
sin((1� µ)↵

sin↵
q1 +

µ↵

↵
q2, with ↵ = arccos(q1 · q2) (2.26)

2.2.2 Pinhole Camera Model

In computer vision, a camera model describes the projection of the 3D world onto the 2D
image plane. The most common and widespread camera model is the so-called pinhole
camera model. It considers the camera as a lens-free infinitesimally small hole. Light
rays passing through this hole form a projection on the image, following the procedure
depicted in Fig. 2.9. Consequently, this model does not account for distortions and is
merely an idealistic approximation. However, this approximation is su�ciently precise
for most application and grants the model popularity due to its simplicity and straight-
forward calibration techniques.
The pinhole camera model is most commonly parametrized by a focal length f , which

is the distance between the camera center and the image plane, and the principle point
ox, oy, describing the intersection between the image plane and the principle axis. This

21

2 Background

forms the intrinsic camera matrix K:

K =

0

@
fx 0 cx
0 fy cy
0 0 1

1

A (2.27)

The parameters of the intrinsic camera matrix are estimated using various calibration
techniques [18].

To project a 3D point X = (X,Y, Z)| onto the image plane at the pixel x = (x, y)|,
the projection operator ⇡ : R3 �! R2 is used:

⇡(X) :=

✓
fX

Z
+ cx,

fY

Z
+ cy

◆|
(2.28)

The inverse operation is called back-projection and it maps given pixel coordinates
back to 3D points as follows:

✓
x� cx
fx

Z,
y � cy
fy

Z,Z

◆|
(2.29)

If Z value is not available, back-projection cannot be uniquely defined. However,
it allows to compute a projective ray from the given pixel back into the world, which
includes the original 3D point.

2.3 Pose Estimation

The topic of 3D object pose estimation is vast spanning a large number of di↵erent
methods. In this section, we cover the most relevant of them. The methods are coarsely
grouped into three categories: template-based, correspondence-based, and methods di-
rectly regressing the pose from the input.

2.3.1 Template-Based Methods

Template methods are based on a rather simple idea. Each template represents a global
descriptor capturing the object’s appearance under a certain view angle. A set of such
templates is extracted to cover all possible object’s views. At the test time, the entire
template set is compared to the input image at all possible locations using a predefined
matching score. The best candidates are often pruned using e.g., non-maximum sup-
pression. Then, since templates incorporate the information about the object view and
scale, using the best candidate allows us to recover the full 6D pose of the object (cf.
Fig. 2.10).

While rather straight-forward, template based methods have a number of drawbacks.
First of all, in real world we cannot extract templates for all possible views and use a
discrete set of views instead. As a result, the found estimate is often very imprecise
and additional post-processing refinement methods are required, e.g., Iterative Closest
Point (ICP). Using a large number of templates can improve the accuracy, but in return

22

2.3 Pose Estimation

OutputTemplate DBInput

Figure 2.10: Template-based methods. A database of templates covers possible object
views. Each template is compared to the input image and the best fitting template
is used as a pose estimate.

leads to a slow matching during the test phase. Moreover, since template-based methods
usually rely on global descriptors, they are often very sensitive to occlusions and clutter.
However, despite the drawbacks, optimized template methods proved to be very e�cient
during the test stage.

The early template-based methods were relying on matching object gradients, e.g.,
using HOG (histogram of oriented gradients) descriptors [19]. Initially built for pedes-
trian detection, HOG can also be used for pose estimation. However, it is built to be to
some degree invariant to the object appearance, which allows to handle the class-specific
variability. While perfectly suited for human detection, rigid object pose estimation
expects a higher degree of discriminability. This motivated researchers to seek for other
solutions. Hinterstoisser et al. introduced the instance specific template methods [20, 21]
relying either on RGB gradients (LINE2D), surface normals computed from depth images
(LINE3D), or on their combination (LINEMOD). Due to a very e�cient implementation
based on quantizing and binarizing gradients, the method was capable to cover the ex-
isting angle and scale combinations and still estimate the pose in real time. A follow-up
work from the same authors [3] demonstrated how to extract templates from synthetic
3D models and then apply them to real data. This was of a great advantage to industrial
applications since all possible views and scales for a given object can be generated at
no cost. However, the pose space used in LINEMOD is discrete and ICP is used to
get reliable estimates. Moreover, despite being real-time, the number of templates in
LINEMOD scales linearly with the number of objects the pose has to be estimated for.
The scalability issue was subsequently covered by the follow-up works. For example,
the work of Konishi et al. [22] proposed to use hierarchical pose trees (HPS) for arrang-
ing templates resulting in faster matching. Alternatively, Rios-Cabrera et al. [23] built
template cascades using discriminative learning again resulting in a significant matching
speed up. Subsequently, Kehl et al. [24] and Hodan et al. [25] proposed to use hashing
functions making matching scale sub-linearly with respect to the number of objects.

23

2 Background

Most recent template approaches rely on CNNs to learn descriptors from data using
the process called manifold learning as opposed to utilizing hand-crafted templates.
Manifold learning is an approach to non-linear dimensionality reduction, motivated by
the idea that high-dimensional data, e.g., images and video, can be e�ciently represented
in a lower-dimensional space. This concept using CNNs was well studied by Hadsell et
al. [26], where image data are mapped directly to the similarity-preserving descriptor
space. In order to learn the mapping, the authors used the so-called Siamese network,
which takes two inputs instead of one. The cost function was defined such that the
squared Euclidean distance between similar objects was minimized and for dissimilar
objects the hinge loss was applied forcing them to be pulled apart using a margin term.

The later manifold learning approaches, such as the work of Guo et al. [27], started to
use triplet networks, which outperform Siamese networks in generating well-separated
manifolds (cf. Ho↵er et al. [28]). A triplet network, as the name suggests, takes three im-
ages as an input, where two images belong to the same class and the third one to another
class. This allows for faster and more robust mapping since both positive and negative
samples are taken into account within a single term. Building on these advances, the
method by Wohlhart et al. [29] introduced the pose into the equation using a triplet CNN
with a specifically designed loss function. The loss function imposes two constrains: the
Euclidean distance between the views of dissimilar objects is large, whereas the distance
between the views of objects of the same class is relative to their poses. Therefore,
the method learns the embedding of the object views into a low-dimensional descriptor
space. The matching is then done by applying e�cient and scalable nearest neighbor
search methods on the descriptor space to retrieve the closest neighbors. Moreover,
apart from only finding the object’s pose, it also finds its identity, solving two separate
problems at the same time and further increasing the value of this method.

The approach presented in Chapter 3 of this thesis is a template-based method largely
inspired by the work of Wohlhart et al. [29]. We extend the method by introducing an
additional rotational degree of freedom (making it 3DoF), improve the descriptor space
by introducing a modified loss function, study the e↵ect of di↵erent input modalities,
and introduce and analyze new training augmentations. Building on the improvements,
we also introduce a multi-task extension combining manifold learning with direct pose
regression leveraging the advantages of both.

2.3.2 Correspondence-Based Methods

A popular alternative to template-based methods are methods utilizing correspondences
(see Fig. 2.11). They usually comprise two stages: establishing correspondences between
the input image and 3D model, and the actual pose estimation that tries to align corre-
spondences by minimizing a predefined error metric. In real-world applications one often
gets false correspondences that can severely harm the resulting pose. However, methods
like RANSAC (Random Sample Consensus) allow to e�ciently handle such cases. The
power of correspondence-based methods lies in their increased robustness to occlusions
and clutter since only a few correspondences are needed to actually estimate a pose.

24

2.3 Pose Estimation

OutputCorrespondencesInput

Figure 2.11: Correspondence-based methods. Given a set of 1-to-1 correspondences be-
tween the input image and 3D object model, we can recover the pose by aligning
correspondences minimizing a predefined error metric.

Early correspondence-based methods relied on sparse feature detectors, extracting
and describing interest points with local descriptors. For example, Lowe [30] used SIFT
(scale invariant feature transform) detecting blobs in scale-space to cluster images from
di↵erent but similar viewpoints to a single model. Although proven to be e�cient for
object recognition, SIFT required a significant computation complexity being a serious
drawback for real-time applications. Therefore, the follow-up works focused on speeding
it up. Bay et al. [31] introduced SURF (speed up robust feature) that approximates SIFT
using Haar filters making it faster. An even faster alternative named ORB (Oriented
FAST and Rotated BRIEF) was proposed by Rublee et al. It combined the strengths
of the FAST key point detector and modified BRIEF descriptor. Later, sparse feature
pipelines were combined with machine learning to improve the interest points [32, 33]
and the matching quality [34, 35]. Most notably Yi et al. [36] introduced LIFT (learned
invariant feature transform) that encodes SIFT into a single end-to-end di↵erentiable
network. Therefore, the three components of standard pipelines (feature extraction,
orientation estimation, and descriptor extraction) could be learned directly from data
and consequently outperform the former hand-crafted methods.

The common drawback of traditional sparse correspondence methods is the texture
requirement. If an object has little to no texture, a sparse feature detector will most
likely fail to detect stable feature points. Similarly to template-based methods, deep
learning helps to significantly improve in this regard. Crivellaro et al. [37] train a part-
based approach representing each part by a set of 3D control points. These control
points are virtual and do not necessarily correspond to specific image features, making
this representation invariant to the part’s location and relying only on its appearance.
Alternatively, Rad et al. presented a holistic three-stage approach called BB8 [38]. In
the first two stages the coarse-to-fine segmentation is performed, the result of which is
then fed to the third network trained to output projections of the object’s bounding
box points. Knowing 2D-3D correspondences, a 6D pose can be estimated using a PnP
(Perspective-n-Point) solver. The main disadvantage of this pipeline is its multi-stage

25

2 Background

OutputNeural NetworkInput

Figure 2.12: Direct pose regression. A neural network maps an input image containing the
object directly to its pose estimate.

nature, resulting in slow run times. Building on the popular 2D detector YOLO [39]
and BB8 ideas, YOLO6D [40] proposed a novel deep learning architecture capable of
e�cient and precise object detection and pose estimation without refinement. As is the
case with BB8, the key feature here is to perform the regression of reprojected bounding
box corners in the image. Once correspondences are estimated, the pose can be estimated
using a PnP solver, similarly to BB8.

Another alternative is to use dense correspondences. While establishing few corre-
spondences is likely to result in an inaccurate pose, dense correspondences can still lead
to a good solution. For example, this was shown in the works of Shotton et al. [41],
Guzman-Rivera et al. [42], and Valentin et al. [43], where the authors used pixel to 3D
scene point correspondence prediction based on random forest for camera localization.
The depth image is then used to establish 3D-3D correspondences and fit a rigid body
transform by means of the iterative pose refinement using RANSAC. Along camera re-
gression works, Taylor et al. [44] introduced a dense correspondence solution for human
pose estimation.

The commonality of the aforementioned dense-correspondence approaches is their re-
liance on depth data. Depth information disambiguates the object’s scale that is the
most critical in RGB images due to perspective projection. Therefore, using only RGB
images for detection and 6D pose estimation is a quite challenging problem. One of
the first representatives of RGB-only camera localization was the work of Brachman et
al. [45] building on the Random Forest solution of Shotton et al. [41]. The more recent
work for human pose estimation by Guler et al. [46] introduces a framework to densely
map canonical 2D coordinates to human bodies.

Building on the ideas of the dense correspondence works, we developed one of the first
RGB-only CNN-based rigid pose estimation methods relying on dense correspondences in
Chapter 4. In Chapter 5 we use the developed method as a component in the introduced
autolabeling pipeline for recovering 9D cuboids and object shapes.

26

2.3 Pose Estimation

2.3.3 Direct Pose Regression Methods

While the previously described methods utilize multi-stage pipelines, deep neural nets
allow to learn an end-to-end mapping from the input image to the pose (see Fig. 2.12).
Arguably, the most recognized such work is PoseNet [47] by Kendall et al., where a CNN
is employed to regress the position and orientation of a camera given an RGB image.
Walch et al. [48] improve the localization results by combining CNN with LSTM (long
short-term memory) units. Subsequently, Kendall and Cipolla [49] studied the e↵ect
of di↵erent loss functions on PoseNet performance further improving the performance.
Alternatively, Kehl et al. in their method SSD6D [50] introduced a 6D pose estimation
pipeline based on a discrete viewpoint classification rather than direct regression of
rotations. All possible poses are divided into a large number of discrete ones, and
each of them is further divided into a smaller number of discrete in-plane rotations.
This significantly reduces the solution space, which helps during training and allows to
achieve more reliable pose estimates. While these methods are able to infer the camera’s
6 degrees of freedom (DoF) in an end-to-end fashion using only an RGB image as input,
the reported accuracies are still significantly lower than the reported results based on
point correspondence and template-based methods.
In Chapter 3, we introduce a multi-task pipeline combining direct pose regression with

manifold learning. By using this combination, we are able to significantly improve the
regression performance as well as to create more robust feature descriptors compared to
the single task methods.

2.3.4 Pose Refinement

Often pose estimation methods result in imprecise pose estimates. A common solution
to this is to use pose refiners as a post-processing step. The most popular refinement
method is the iterative closest point or ICP. However, other types of refiners emerged
such as deep learning-based refiners and refiners based on di↵erentiable rendering.

Iterative Closest Point (ICP)

Iterative Closest Point, or ICP for short, is arguably the most popular approach for
aligning point clouds with dozens of di↵erent implementations. The first classical im-
plementations of it were described in the works of Besl and McKay [51] and Chen and
Medioni [52]. Both variants as well as their later modifications and improvements con-
sist of the following common steps. In the first step, we select and match the points in
both point clouds. Each point pair is then weighted and unreliable points are rejected
according to a predefined criterion. Then, provided with 1-to-1 correspondences, we aim
to minimize a chosen error metric depending on the ICP implementation.
There are two main approaches to choosing an error metric for pairs of points. Besl

and McKay [51] introduced the point-to-point metric, which minimizes the pair-wise
distances between the two point clouds. Alternatively, Chen and Medioni [52] proposed
the point-to-plane metric minimizing the distance between the points of the first point
cloud and the tangent planes to the corresponding points of the second point cloud.

27

2 Background

The point-to-point variant has an analytical solution and is guaranteed to converge
to a minimum, although it might be a local one. On the other hand, the point-to-
plane variant does not have a respective analytical solution and is usually solved using
the Levenberg-Marquardt solver. Despite this limitation the point-to-plane formulation
usually results in a better fitting alignment.

Since RGB-only methods gain more and more popularity due to omnipresent avail-
ability of RGB sensors, ICP methods working in such environment are also of great
importance. One of the most popular edge-based solutions was presented by Harris [53],
and further adapted by Drummond and Cipolla [54], and Kehl et al. [55]. The available
3D model of the object of interest is rendered onto the image and a sparse set of 3D
contour points is extracted. Then, each such 3D point casts a ray perpendicular to its
orientation to find the closest extracted image edge. The error metric is therefore re-
formulated to seek the best alignment by minimizing the corresponding distances in the
image plane.

Deep Learning Pose Refiners

The other prominent direction in pose refinement is based on deep learning. The recent
works of Manhardt et al. [56] and Li et al. [9] show promising results. Both refiners are
conceptually very similar and are designed to output relative transformation between the
real input image patch and the patch containing the object rendered with the predicted
pose. The main di↵erences between them are the used backbone architectures and
loss functions. Both refinement algorithms rely on external object detection and pose
estimation algorithms: for DeepIM [9] it is PoseCNN, and for Manhardt et al. [56] it
is SSD6D [50]. The former relies on real data, whereas the latter focuses on training
on synthetic images. Initial poses are used to render the object on top of a black
background. Afterwards, the rendered patch and a corresponding crop of the real image
are fed into a neural network which predicts a relative transformation. In case of [56]
the network accepts those two images as two separate inputs, then uses a pretrained
Inception network [57] as a fixed feature extractor to produce features that are later
stacked together. Those stacked features are used to predict relative transformation
from the rendered pose to the pose to be estimated. The authors proposed to utilize
a visual loss which aligns contours of observed and rendered objects. On the other
hand, [9] proposed to stack extracted crops right away and use the resulting tensor as
input to the network instead of the standard three-channel image input. They directly
optimize the ADD score [58] as their main loss function, which emphases more the actual
3D pose rather than reprojection similarity. Moreover, they discuss in detail a proper
parametrization of the pose regression so that it is more robust to scale changes.

In Chapter 4 we propose our own refinement solution combining the best features of
the above-mentioned works. Moreover, in contrast to [56, 9], our refinement network
can be trained indi↵erently of whether real or synthetic data is used.

28

2.4 Domain Adaptation

Di↵erentiable Rendering-Based Refiners

The other variety or pose refiners that has recently emerged is based on di↵erentiable
rendering. Di↵erentiable rendering approaches produce 2D images from 3D models sim-
ulating the process of image formation by relating each pixel to the 3D parameters. The
di↵erentiability allows to obtain a dense pixel supervision for a variety of 3D reasoning
tasks including pose estimation.
The first advances in di↵erentiable rendering were the works of Loper et al. [59] and

Kato et al. [60]. Instead of making the full complex rendering pipeline di↵erentiable, they
opted to only approximate the backward gradient using hand-crafted functions. While
showing promising results in the task of 3D reconstruction from images, the discrepancy
between forward and backward propagation may result in uncontrolled behavior limit-
ing the applicability to other possible tasks. The more recent work of Liu et al. [61]
introduced a fully di↵erentiable pipeline by reformulating conventional discrete render-
ing operations showing significant improvements in the tasks of mesh reconstruction
and image-based pose refinement. In this case, the loss term for the pose refinement
is defined as a di↵erence between an input image and a rendering. A gradient-based
solver, e.g. SGD or Adam, is then used to update the parameters such as the pose or
color of the model. In contrast to the above-mentioned rasterizer-based solutions, Li
et al. [62] propose a path tracing approach towards di↵erentiable rendering of triangle
meshes. It allows to easily simulate more advanced rendring e↵ects such as mirrors and
shadows. However, the ray-tracing-based solutions proved to be much more resource-
and time-consuming than their rasterizer-based counterparts.
Parallel to the work of Liu et al. [61], we introduce a fully di↵erentiable surfel-based

renderer that can also be extended to render signed distance fields (SDFs) as shown in
Chapter 5. This allows to not only optimize over the object’s pose and color, but also
its shape.

2.4 Domain Adaptation

The domain gap, or more particularly realism gap, is a very well known problem for
computer vision methods that rely on synthetic data, as the knowledge acquired from
these modalities usually poorly translates to the more complex real domain, resulting in
a dramatic accuracy drop. Several ways to tackle this issue have been investigated so
far and in this section we will cover the most relevant of them (see Fig. 2.13).

Simulation Tools A first obvious solution is to improve the quality and realism of the
synthetic models. Several works try to push forward simulation tools for sensing devices
and environmental phenomena. For instance, state-of-the-art depth sensor simulators,
e.g., Landau et al. [63] and Planche et al. [64] work fairly well, as the mechanisms
impairing depth scans have been well studied and can be rather well reproduced. In
the case of color data however, the problem lies not in the sensor simulation, but in
the actual complexity and variability of the color domain (e.g., sensibility to lighting
conditions, texture changes with wear-and-tear, etc.). This makes it extremely arduous

29

2 Background

BABA✓T

BABA✓
TS

BABA✓
T BAB✓

G

BABA✓
TA

Domain Randomization

GAN Approaches (Real Unlabeled)Training on Real Labelled Data

Sensor / Environment Simulators

S A T

×
✓

GSimulation
Pipeline

Augmentation
Pipeline

Task-specific
Network

Image
Generator

Processed

Trained on

GeneratedAugmented

Pseudo-real Simulated

ResultsReal

Synthetic

Le
ge

nd

Figure 2.13: Domain adaptation methods. An overview of di↵erent method classes tackling
the domain gap problem.

to come up with a satisfactory mapping, unless precise, exhaustive synthetic models
are provided (e.g., by capturing realistic textures). Proper modeling of target classes is
however often not enough, as recognition methods would also need information on their
environment (background, occlusions, etc.) to be applied in real-life scenarios.

GAN Approaches For this reason, and in complement simulation tools, recent CNN-
based methods are trying to further bridge the realism gap by learning a mapping from
rendered to real data, directly in the image domain. These solutions, e.g., Taigman et
al. [65], Shrivastava et al. [6], Bousmalis et al. [66], and Isola et al. [67], are mostly based
on unsupervised conditional generative adversarial networks (GANs).

• Generative Adversarial Networks (GANs) First introduced by Goodfellow
et al. [68], and quickly improved and derived through numerous works, e.g., [69, 70,
71, 67, 72], the GAN framework has proven itself a great choice for image genera-
tion [68, 69, 73], edition [67, 7, 6, 66], or segmentation [74, 75, 76]. The generator
network in these solutions benefits from competing against a discriminator one
(with adversarial losses) to properly sample realistic images from the learned dis-
tribution. Methods conditioned on noise vectors [77, 78], labels [77, 79, 73] and/or
images [67, 7, 79, 6, 8, 66] soon appeared to add control over the generated data.
Given these additions, recognition pipelines started integrating conditional GANs.
Some works are for instance using a classifier network along their discriminator, to
help the generator grasp the conditioned image distribution by back-propagating
the classification results on generated data [80, 66]; while others are using GANs

30

2.4 Domain Adaptation

to estimate the target domain distribution, to sample training images for their
classifier [81, 82, 65, 6, 8, 66].

Despite the advantages of the GAN-based methods, they still require a set of real
relevant image samples to learn their mapping. Moreover, if the real set is not large
enough, these methods can overfit to the chosen target domain and exhibit a decline in
performance for unfamiliar out-of-distribution samples.

Learning Domain-Invariant Features Other approaches are focusing on adapt-
ing the recognition methods themselves to make them more robust to domain changes.
Therefore, instead of working in the image space, they aim to learn domain-invariant
features. For instance, DANN by Ganin et al. [82] adds a domain classifier head con-
nected to the feature extractor of the task network. The extended task network is then
trained using a presented gradient reversal layer that maximizes the domain classifier
error ensuring that the feature distributions over the two domains are made similar.
Tzeng et al. [83] utilize a domain discriminator network with adversarial loss to force
a network to learn domain-invariant features. Rad et al. [84] aim to predict synthetic
features from real ones and use them for inference, but it requires target annotations.
In their follow-up work [85], Rad et al. propose a method to map color images to depth
domain, which also supports training from synthetic depth data. However, unlabeled
real images from the target domain are still required to learn such a mapping.

Domain Randomization Considering real-world and industrial use cases when only
texture-less CAD models are provided, Sadeghi and Levine [86] and Tobin et al. [87]
are compensating the lack of target domain information by training their recognition
algorithms using heavy image augmentations or a randomized rendering engine. The
claim is that with enough variability in the simulator, real data may appear just as
another variation to the model. While being completely independent of real data, domain
adaptation methods still heavily underperform when compared to solutions using data
from the target domain.
Considering similar applications (when no real samples or even texture information are

available), in Chapter 7 we present a pipeline that tackles the problem of synthetic-to-real
domain adaptation from a di↵erent angle, i.e. by mapping real data to synthetic domains.
We demonstrate how this di↵erent approach not only improves the end accuracy, but
also makes the overall solution more modular. Subsequently, in Chapter 8 we introduce
a novel adversarial domain randomization pipeline driven by the task network.

31

Part I

Pose Estimation

33

OutputPose EstimatorInput

Poses

[R1, t1] [R2,t2]

3D Models

Figure 2.14: 3D Object Pose Estimation. Given an input image, the aim is to recognize
object instances and estimate their poses. This allows to project them back onto
the image.

Object pose estimation is a widely researched topic in the field of computer vision
with many application possibilities in augmented reality, medicine, surveillance, and
robotics. Despite its popularity, there is still a large room for improvement. The current
methods often struggle from clutter and occlusions and are sensitive to background and
illumination changes. The most common pose estimation methods use a single classifier
per object, making their complexity grow linearly with the number of objects for which
the pose has to be estimated. Moreover, the majority of them is trained using real
annotated data, which is expensive to acquire and annotate. In the following chapters
we propose deep network-based solutions to tackle the mentioned challenges.

The first chapter aims to tackle the problems of 3D pose estimation and object instance
recognition using manifold learning. The descriptor neural network maps images to
a lower-dimensional highly-discriminative space, which makes it simple to distinguish
between the di↵erent classes and poses of the objects. The output descriptor is then
compared to the template descriptors and the closest neighbor is used evaluate the
recognition results. First we aim to improve the intermediate manifold representation
for better scalability and interpretability. Moreover, we analyze the performance of
di↵erent input modalities using the predefined metrics. Then, we extend this approach
further with a goal to make it end-to-end. For this we combine the popular regression
approach with manifold learning, which results in a mutual improvement of both.

The second chapter deals with an extended problem of 6D pose estimation and object
detection. Based on dense correspondences it maps each RGB pixel of the input image
to the corresponding model surface points. These correspondences are then fed to a
fast PnP solver along with the camera parameters to estimate a precise 6D pose. We
also introduce a deep network-based refiner to further improve the pose estimates. The
entire solution can be trained either on real or on fully synthetic data, while achieving
state-of-the-art results on the real test data.

The third chapter provides a solution to the more ambitious 9D pose estimation prob-
lem. It consists of a more advanced correspondence network and a di↵erentiable SDF

35

shape database. Here, we not only estimate the rotation and translation of the object,
but also its shape and scale. Moreover, we further refine the estimates by utilizing a
newly introduced di↵erentiable SDF renderer. While being trained entirely on synthetic
data, the method is used to estimate reliable labels from real unlabeled images, which
can be further used to train other downstream tasks.

The last chapter presents a new dataset for 6D pose estimation. It features 33 objects
and 13 scenes of various di�culty. The main goal of the dataset is to test the current
state-of-the-art detectors with respect to the properties desired in the industry, i.e.,
scalability, robustness to illumination changes, occlusions and clutter. Moreover, we
propose a simple pipeline to extend or create new datasets.

36

3 3D Pose Estimation Based on
Manifold Learning

In this chapter, we address the problem of 3D pose estimation and object instance
recognition of localized objects in cluttered environments using manifold learning and
direct pose regression. Inspired by the approach of Wohlhart et al. [29], we propose a
method that introduces the dynamic margin in the manifold learning triplet loss function.
Such a loss function is designed to map images of di↵erent objects under di↵erent poses
to a lower-dimensional similarity-preserving descriptor space on which e�cient nearest
neighbor (NN) search algorithms can be applied. Introducing the dynamic margin allows
for faster training times and better accuracy of the resulting low-dimensional manifolds.
We further improve this solution by introducing an e�cient multi-task learning frame-

work combining the strengths of manifold descriptor learning and pose regression. By
doing so, we can either estimate the pose directly reducing the complexity compared to
NN search, or use learned descriptors for the NN descriptor matching. By in-depth ex-
perimental evaluation of the multi-task loss function we observe that the view descriptors
learned by the network are much more discriminative resulting in almost 30% increase
regarding relative pose accuracy. On the other hand, regarding directly regressed poses
we also obtain a significant improvement compared to a simple pose regression.
Furthermore, we contribute by the following: adding in-plane rotations (ignored by the

baseline method) to the training, treating symmetric objects, proposing new background
noise types that help to better mimic realistic scenarios and improve accuracy with
respect to clutter, and evaluating new combinations of input image modalities including
surface normals. We perform an exhaustive evaluation to demonstrate the e↵ects of our
contributions.

3.1 Introduction

We propose an e�cient view-based solution inspired by the work of Paul Wohlhart and
Vincent Lepetit [29]. The authors of [29] tackle both pose estimation and object instance
recognition of already-detected objects simultaneously by learning a discriminative fea-
ture space using CNNs. Particularly, given a single RGB-D image patch containing an
already-detected object in the center surrounded with the cluttered background, the de-
scriptor CNN is used to map this patch to a lower-dimensional manifold of the computed
descriptors. This manifold preserves two important properties: the large Euclidean dis-
tance between the descriptors of dissimilar objects, and the distance between the de-
scriptors of the objects from the same class is relative to their poses. Once the mapping
is learned, e�cient and scalable nearest neighbor search methods can be applied on the

37

3 3D Pose Estimation Based on Manifold Learning

descriptor space to retrieve the closest neighbors for which the poses and identities are
known. This allows us to e�ciently handle a large number of objects together with their
view poses, resolving the scalability issue.

The manifold learning in [29] is performed using the triplet loss function, where the
triplet is a group of samples (si, sj , sk) selected such that si and sj represent similar views
of the same object and sk comes either from the same object with a slightly di↵erent
pose or from a completely di↵erent object. The fixed margin term in the triplet loss
sets the minimum ratio for the Euclidean distance between descriptors of similar and
dissimilar sample pairs. Using a fixed margin throughout the training results in a slow
separation of the manifolds for di↵erent objects and similar objects with di↵erent poses,
causing long training times and limited accuracy in case of short-sized descriptors. To
overcome this problem, we introduce a dynamic margin in the loss function by explicitly
setting the margin term as a function of an angular di↵erence between the poses for the
same object and to a constant value that is larger than the maximal possible angular
di↵erence in case of di↵erent objects. This allows faster training and better quality of the
resulting lower-dimensional manifolds, which, in turn, enables the use of smaller-sized
descriptors with no loss of accuracy.

Building up on the proposed solution, we also introduce an end-to-end multi-task
learning pipeline, which combines the strengths of manifold learning and regression,
to learn robust features from which the object’s pose can be inferred. Thus, we are
able to combine the generalization capabilities shown in manifold learning tasks and the
variability of regression into a deep learning framework for object pose estimation. For
this purpose, we introduce a multi-task loss function, which leverages both manifold
learning and regression terms. We analyze how the two tasks influence each other and
show that each task can be beneficial to one another in the context of estimating object
poses. To summarize, our contributions described in this chapter include the following:

• The triplet loss with dynamic margin resulting in faster training times and
better accuracy;

• The multi-task loss function using a combination of regression and man-
ifold learning to create an end-to-end framework for object recognition and 3D
pose estimation;

• Significant improvement in accuracy and feature robustness compared to
the baseline method;

• Adding in-plane rotations existing in real-world scenarios and ignored by the
initial method;

• Introducing new background noise types for synthetic patches that help to
better mimic realistic scenarios and allow for better performance when no real data
is used in training.

In the next sections, a detailed description of the proposed pipeline is given. Then, we
validate the method to demonstrate the importance of the newly introduced improve-
ments. Most importantly, we compare the standard triplet loss with our dynamic margin

38

3.2 Methodology

Training

k-NN
DB of template

descriptors

D
es

cr
ip

to
r

Testing

CNN
Cat

[x, y, z, w]

Regression

𝐿

𝐿[x, y, z, w]

Testing

Figure 3.1: Pipeline description. Given an input image patch xi, we create corresponding
triplets (xi,xj ,xk) and pairs (xi,xj) to train our model on manifold embedding
creating robust feature descriptors. Additionally, the pose can be regressed directly
by introducing the regression head as demonstrated in our multi-task pipeline ex-
tension. The pose q can then be obtained either by a direct pose regression or
using the resulting feature descriptor for nearest neighbor search in the descriptor
database.

implementation demonstrating superior performance for both training times and final
accuracy. Then, we validate our extended multi-task pipeline. By using a combination
of manifold learning and regression, we are able to significantly improve the regression
performance as well as to create more robust feature descriptors compared to the base-
line method. Thus, we improve both aspects: nearest neighbor pose retrieval and direct
pose regression with our framework and obtain a large accuracy boost.

3.2 Methodology

Our methodology (shown in Fig. 3.1) starts with training a CNN model for a given train-
ing set Strain = {s1, . . . , sN} = {(x1, c1,q1), . . . , (xN , cN ,qN)} consisting of N samples.
Each sample s comprises an image patch x 2 Rn⇥n of an object, identified by its class
c 2 N, together with the corresponding pose vector, q 2 R4, which gives the orientation
represented by quaternions. Given input x, our objective is to learn a mapping to a
highly discriminative descriptor space, from which object class ĉ and 3D pose q̂ can be
easily extracted. The extraction is executed using the k-nearest neighbor (k-NN) search
in the precomputed template database Sdb defined similarly to Strain. This intermediate
representation brings practical benefits: scalability and the ability to add and remove
objects and poses. To achieve a robust mapping, we train a CNN subject to a triplet-
based objective enforcing the Euclidean distance between descriptors from similar image
views to be close and from di↵erent objects to be far away.

39

3 3D Pose Estimation Based on Manifold Learning

3.2.1 Loss Function

Similarly to [29], the basic objective for training a discriminative descriptor mapping is
the loss function is defined as a sum of two separate loss terms Ltriplets and Lpairs:

Lnn = Ltriplets + Lpairs. (3.1)

The first addend Ltriplets is a loss defined over a set T of triplets, where a triplet is
a group of samples (si, sj , sk) selected such that si and sj always come from the same
object under a similar pose, and sk comes from either a di↵erent object or the same
object under a less similar pose (Fig. 3.2a). In other words, a single triplet consists of
a pair of similar samples, si and sj , and a pair of dissimilar ones, si and sk. In our
terminology, we call si an anchor, sj a positive sample or a puller, and sk a negative
sample or a pusher. The triplet loss component has the following form:

Ltriplets =
X

(si,sj ,sk)2T

max

✓
0, 1� ||f(xi)� f(xk)||22

||f(xi)� f(xj)||22 +m

◆
, (3.2)

where x is the input image of a certain sample, f(x) is the output of the neural network
given the input image, andm is the margin, which introduces the margin for classification
and sets the minimum ratio for the Euclidean distance of the similar and dissimilar pairs
of samples.

(a) Triplet-wise term (b) Pair-wise term

Figure 3.2: CNN input format. Triplets are used to learn a well-separated manifold, whereas
pairs make the mapping invariant to various imaging conditions.

By minimizing Ltriplets, one enforces two important properties that we are trying
to achieve, namely: maximizing the Euclidean distance between descriptors from two
di↵erent objects and setting the Euclidean distance between descriptors from the same
object so that it is representative of the similarity between their poses.

The second addend Lpairs is a pair-wise term. It is defined over a set P of sample
pairs (si, sj). Samples within a single pair come from the same object under either a very
similar pose or the same pose but with di↵erent imaging conditions. Di↵erent imaging
conditions may include illumination changes, di↵erent backgrounds, or clutter. It is also
possible that one sample comes from the real data and the other from synthetic data.
The goal of this term is to map two samples as close as possible to each other:

40

3.2 Methodology

Lpairs =
X

(si,sj)2P

||f(xi)� f(xj)||22. (3.3)

By minimizing the Lpairs, or the Euclidean distance between the descriptors, the net-
work learns to treat the same object under di↵erent imaging conditions in the same way
by mapping them onto the same point. Moreover, it ensures that samples with similar
poses are set close together in the descriptor space, which is an important requirement
for the triplet term.

3.2.1.1 Triplet Loss with Dynamic Margin

The triplet loss function, in the way it is used in [29], has one significant drawback. The
margin term is a constant and is the same for all the di↵erent types of negative samples.
This means that we are trying to push apart the objects of same and di↵erent classes
with exactly the same margin term, whereas the desired goal is to map the objects of
di↵erent classes farther away from each other. This slows down the training in terms of
classification and results in a worse separation of the manifold. The logical solution to
this is to set the margin term to be a variable and change it depending on the type of
the negative sample.

Figure 3.3: Triplet loss with dynamic margin. A better separation achieved by setting
di↵erent inter- and intra-class margins.

We propose the following solution. If the negative sample belongs to the same class
as the anchor, the margin term is set to be the angular distance between the samples.
If, however, the negative sample belongs to a di↵erent class, the distance is set to a
constant value � that is larger than the maximal possible angular di↵erence. The e↵ect
of the dynamic margin is illustrated in Fig 3.3. The updated loss function is defined as
follows:

Ltripletsdm
=

X

(si,sj ,sk)2T

max

✓
0, 1� ||f(xi)� f(xk)||22

||f(xi)� f(xj)||22 +m

◆
,

where m =

(
2 arccos(|qi · qj |) if ci = cj ,

� else.
(3.4)

41

3 3D Pose Estimation Based on Manifold Learning

3.2.1.2 Multitask Loss

While k-nearest neighbor search has e�cient KD-tree-based implementations having
a sublinear complexity, it cannot beat regression having a constant complexity. On
the other hand, direct pose regression does not provide the same level of pose quality
template-based methods are capable of. To combine the strengths of two approaches, we
model the problem as a multi-task learning by combining manifold learning with direct
pose regression. Thus the overall objective function can be written as

Lmtl = (1� �)Lreg + �Lnn, (3.5)

where � is a regularization parameter. Lreg and Lnn are the objective functions for the
pose regression task and the manifold learning task respectively.

Regression To make the direct regression possible, we extend our CNN by adding a
regression head (see Fig. 3.1) that takes the lower dimensional feature vector f(x) 2 Rd

and outputs the pose prediction q̂. To train the regression head, the following loss
function is used:

Lreg =

����q�
q̂

kq̂k

����
2

2

, (3.6)

where k · k2 is the l2-norm and q is the corresponding ground truth pose.

3.2.2 Dataset Generation

The datasets we use contain the following data: 3D mesh models of the objects and
RGB-D images of the objects in real environments with their camera poses. Using these
data, we generate three sets: the training set Strain, the template set Sdb and the test
set Stest. The training set is used exclusively for the purpose of training the network.
The test set Stest, as its name suggests, is used only in the test phase for evaluation. The
template set Sdb is used in both training and test phases. Each set consists of samples,

(a) Template set sampling (b) Training set sampling

Figure 3.4: Di↵erent sampling types. each vertex represents a camera position from which
the object is rendered.

42

3.2 Methodology

where each sample s = (x, c,q) is made of an image x, the identity of the object c, and
the pose q.
The first step in preparing the data is the generation of samples for the sets. Our sets

are constructed from two types of imaging data: real and synthetic. The real images
represent the objects in real-world environments and are generated using a commodity
RGB-D sensor, e.g., Kinect or Primesense. They have to be provided together with the
dataset. The synthetic images, however, are not initially available and must be generated
by rendering provided textured 3D mesh models.
Given 3D models of the objects, we render them from di↵erent view points covering

the upper part of the object in order to generate synthetic images. In order to define
the rendering views, an imaginary icosahedron is placed on top of the object, where
each vertex defines a camera position. To make the sampling finer, each triangle is
recursively subdivided into four triangles. The method defines two di↵erent sampling
types: a coarse one (Fig. 3.4a), achieved by two subdivisions of the icosahedron, and a
fine one (Fig. 3.4b), achieved by three consecutive subdivisions. The coarse sampling is
used to generate the template set Sdb, whereas the fine sampling is used for the training
set Strain. For each camera pose (vertex) an object is rendered on an empty (black)
background and both RGB and depth channels are stored.

Figure 3.5: Patch extraction. the object of interest (shown in yellow) is covered by the cube
of 40 cm3 in dimension; only RGB and depth data covered by the cube is taken to
generate a single patch.

When all the synthetic images are generated and we have both real and synthetic data
at hand, samples can be generated. For each of the images, we extract small patches
covering and centered on the object. This is done by virtually setting a cube, of 40
cm3 in dimension, centered at the object’s center of mass as shown in Fig. 3.5. When
all the patches are extracted, we normalize them. RGB channels are normalized to the
zero mean and unit variance. The depth values within the defined bounding cube are

43

3 3D Pose Estimation Based on Manifold Learning

(a) Training set Strain (b) Test set Stest

Figure 3.6: Datasets. The training set Strain consists of both real and synthetic (fine sam-
pling); the test set Stest consists of the real data not used for the training set
Strain.

normalized and mapped to the range [0, 1] and the rest of the values are clipped. Finally,
each patch x is stored within a sample in addition to the object’s identity c and its pose
q. The next step is to divide the samples between the sample sets Strain, Sdb and Stest,
accordingly.

The template set Sdb contains only synthetic samples with the renderings coming from
the coarse sampling (Fig. 3.4a). It is used in both training (to form triplets) and test (as
a database for the nearest neighbor search) phases. The samples of Sdb define a search
database on which the nearest neighbor search is later performed. This is the main
reason for the coarse sampling: We want to minimize the size of the search database for
faster retrieval. However, the sampling defined for the template set also directly limits
the accuracy of the pose estimation.

The training set Strain (Fig. 3.6a) consists of a mix of synthetic and real data. The
synthetic data represent samples coming from the renderings defined by the fine sampling
(Fig. 3.4b). Approximately 50% of the real data are added to the training set. This 50%
is selected by taking the real images that are close to the template samples in terms of
the pose. The rest of the real samples are stored in the test set Stest (Fig. 3.6b), which
is used to estimate the performance of the algorithm.

3.2.2.1 In-plane Rotations

The initial method proposed in [29] has a major limitation of not considering in-plane
rotations or, in other words, omitting one additional degree of freedom. However, in real-
world scenarios, it is hardly possible to avoid in-plane rotations. In order to introduce
them to the algorithm, one needs to generate additional samples with in-plane rotations
and define a metric to compare the similarity between the samples to be able to build
triplets.

Generating synthetic in-plane rotated samples is relatively simple. What we need
is to rotate the view camera at each sampling point (vertex) around its shooting axis
and record a sample with a certain frequency as shown in Fig. 3.7. Currently, for the

44

3.2 Methodology

Figure 3.7: In-plane rotations. At each vertex extra views are rendered by rotating the
camera around the axis pointing at the object center.

LineMOD dataset, we generate seven samples per vertex, going from -45 to 45 degrees
with a stride of 15 degrees.
As for the similarity metric, we cannot use the dot product of the sampling point

vectors anymore, as was proposed in the initial method, since we cannot incorporate an
additional degree of freedom this way. Instead it was decided to use the quaternions to
represent rotations of the models and the angle between the samples’ quaternions as a
pose comparison metric ✓(qi,qj) = 2 arccos(|qi · qj |).

3.2.2.2 Treating Rotation-Invariant Objects

Four out of fifteen objects of the LineMOD dataset have a property of rotation-invariance
and introduce an ambiguity to the generation of triplets needed for the triplet loss. For
instance, the bowl object is symmetric around an axis, whereas the cup, eggbox and glue
object are symmetric around a plane. These four objects need to be treated di↵erently
from the rest. This comes from the fact that, in the case of rotation-invariant objects,
samples representing di↵erent poses might look exactly the same, which can result in
faulty triplets required for the triplet loss function.

(a) Regular (b) Plane symmetric (c) Axis symmetric

Figure 3.8: Sampling points for di↵erent objects types. Vertices represent camera posi-
tions from which the object is rendered.

To solve this problem, we render only a limited amount of poses for those objects,
such that every image patch is unique. Sample vertices for di↵erent object types are
demonstrated in Fig. 3.8b and 3.8c. Since both training set Strain, and test set Stest

45

3 3D Pose Estimation Based on Manifold Learning

also include real samples we also omit ambiguous poses in them and only consider those
that are close to the ones coming from the renderer.

3.2.2.3 Surface Normals

Surface normals are considered an extra modality representing an object image, in ad-
dition to existing RGB and depth channels, to improve the algorithm accuracy. By
definition, a surface normal defined at point p 2 R3 is a 3D vector that is perpendicular
to the tangent plane to the model surface at point p. Applied to many points on the
model, surface normals result in a powerful modality describing its curvature.

In our pipeline, surface normals are calculated based on the depth map images (no
additional sensor data required) using the method for the fast and robust estimation in
dense range images proposed in work [21] and resulting in a 3-channel modality. This
approach smooths the surface noise and, therefore, allows for better surface normal
estimates around depth discontinuities.

3.2.2.4 Background Noise Generator

One of the most di�cult problems for computer vision methods is the treatment of clutter
and di↵erent backgrounds in images. Since our samples do not have any background by
default, it is di�cult or sometimes impossible for the network to adapt to the real data
full of noise and clutter in the background and foreground.

One of the easiest approaches for solving this problem is to use real images for training.
Then, the network might adapt to the realistic data, but the major problem comes when
no or very limited real data are available. In these cases, we have to teach the network
to ignore the background or simulate backgrounds to cover possible variations.

(a) White noise (b) Random shapes

(c) Fractal noise (d) Real backgrounds

Figure 3.9: Background noise types for synthetic data shown for di↵erent channels, i.e.,
RGB, depth, and normals.

In our implementation, we have a separate class generating di↵erent kinds of noise:
white noise, random shapes, gradient noise, and real backgrounds.

46

3.3 Evaluation

Table 3.1: Test setups. Each underlined entry represents the tested parameter for a given
test.

Dataset
Training

data
Testing
data

In-plane
rotations

Background
augmentation

Data
channels

Descriptor
dimension

Triplet
margin type

Test A
LineMOD,
15 objects

synthetic+real real
with and
without

fractal noise RGB-D 32 static

Test B
LineMOD,
6 objects

synthetic+real real with fractal noise RGB-D 3, 32 static, dynamic

Test C
LineMOD,
15 objects

synthetic real with
white noise, fractal noise,
random shapes, real bg.

RGB-D 32 dynamic

Test D
LineMOD,
15 objects

synthetic+real real with fractal noise
depth, normals,
normals+depth

32 dynamic

Test E
BigBIRD,
50 objects

synthetic+real real without fractal noise RGB-D 32 static, dynamic

The first and the simplest type of noise is white noise (Fig. 3.9a). To generate it, we
simply sample a float value from 0 to 1 from a uniform distribution for each pixel. In
the case of RGB, we do that three times for each pixel in order to fill all the channels.
The second type of noise is the random shape noise (Fig. 3.9b). The idea is to represent

the background objects such that they have similar depth and color values. The color of
the objects is again sampled from the uniform distribution, from 0 to 1, and the position
is sampled from the uniform distribution, from 0 to the width of the sample image. This
approach can also be used to represent foreground clutter by placing random shapes on
top of the actual model.
The third type of noise we used is fractal noise (Fig. 3.9c), which is often used in com-

puter graphics for texture or landscape generation and is the most advanced synthetic
noise presented here. The fractal noise implementation we use is based on summing to-
gether multiple octaves of simplex noise first introduced by Ken Perlin in [88]. It results
in a smooth sequence of pseudo-random numbers avoiding rapid intensity changes, as in
the case of white noise, which is much closer in spirit to the real-world scenarios.
The fourth and last type of noise is real backgrounds (Fig. 3.9d). Instead of generating

the noise, we use RGB-D images of real backgrounds in a similar way to [89]. Given a
real image, we randomly sample a patch of a needed size and use it as a background for
a synthetically generated model. This modality makes it simpler to bridge the domain
gap and is especially useful when we know beforehand in what kinds of environments
the objects are going to be located.
One of the drawbacks of the baseline method [29] is that the batches are generated

and stored prior to execution. This means that at each epoch we use the same filled
backgrounds over and over again, limiting the variability. To overcome this problem, in
our implementation we generate batches online. At each iteration we fill the background
of the chosen positive sample with one of the available noise modalities.

3.3 Evaluation

This section is devoted to the validation and evaluation of the implemented pipeline. We
first perform a series of tests to evaluate the e↵ect of the triplet loss with dynamic margin
as well as the newly introduced modifications, e.g., in-plane rotations, background noise

47

3 3D Pose Estimation Based on Manifold Learning

Table 3.2: Comparison of the network trained without in-plane rotations (baseline) with
the one trained using in-plane rotations (baseline+).

Angular error
Classification

10� 20� 40�

Baseline 34.6% 63.8% 73.7% 81.9%
Baseline+ 60% 93.2% 97% 99.3%

types. Next, we perform a series of tests to validate our multi-task extension combining
manifold learning and regression.

3.3.1 Tests on In-plane Rotations

As we already know, the authors of the initially proposed method [29] do not take in-
plane rotations into account and do not include them in training, which is, however,
needed for working in real-world scenarios. This test compares the performances of two
networks: the one that is trained with in-plane rotations and the other that is trained
without them. The goal is to see how avoiding in-plane rotations in training a↵ects the
performance on the test data with in-plane rotations and also to demonstrate the ability
of the network to perform well with an additional degree of freedom introduced.

Given the setup, we compare the two above mentioned networks, labeled as baseline
(without in-plane rotations) and baseline+ (with in-plane rotations), and obtain the
results shown in Table 3.2.

The evaluation is performed only for a single nearest neighbor. As can be seen from
Table 3.2, one gets a radical improvement over the results shown by the first modality,
which is not trained to account for in-plane rotations. The results also demonstrate a
successful adaptation to an additional degree of freedom.

(a) Static margin (b) Dynamic margin

Figure 3.10: Test set samples mapped to a 3D descriptor space. Each color represents
a separate object.

48

3.3 Evaluation

(a) Classification rate (b) Mean angular error

Figure 3.11: Comparison of triplet loss with (DM) and without (SM) dynamic margin for
the 3D output descriptor.

3.3.2 Tests on the Dynamic Margin Triplet Loss

To evaluate the new loss function with dynamic margin, a set of tests comparing it
with the old loss function was performed. Particularly, two tests were executed on six
LineMOD objects (the lower amount is chosen for visualization purposes) using the
best-performing training configurations for 3- and 32-dimensional output descriptors.

Figure 3.11 compares the classification rates (Fig. 3.11a) and mean angular errors for
correctly classified samples (Fig. 3.11b) over the set of training epochs (one run through
the training set) for two modalities, i.e., the networks trained using the loss function with
static and dynamic margins. It is clearly seen from the results that the new loss function
makes a huge di↵erence to the output result. It enables the network to learn a better
classification much faster in comparison to the original. While the dynamic margin
modality reaches 100% classification accuracy very quickly, the old baseline fluctuates
around 70%. Moreover, Fig. 3.11b shows that we get a lower angular error for around
30% more correctly classified samples.

(a) Classification rate (b) Mean angular error

Figure 3.12: Comparison of triplet loss with (DM) and without (SM) dynamic margin for
32D output descriptor.

49

3 3D Pose Estimation Based on Manifold Learning

(a) Classification rate (b) Mean angular error

Figure 3.13: Comparison of four di↵erent background noise modalities without any
real data used for training.

Figure 3.10 shows the test samples mapped to the 3D descriptor space using the
descriptor network trained with the old (Fig. 3.10a) and new (Fig. 3.10b) loss functions.
The di↵erence in the degree the objects are separated is explicit: in the right figure, the
objects are well-separated preserving the minimal margin distance, resulting in a perfect
classification score; the left figure still shows well-distinguishable object structures, but
they are placed very close together and overlap, causing the classification confusion that
is quantitatively estimated in Fig. 3.11a.

In practice, however, we use dimensionally higher descriptor spaces, which improves
both classification and angular accuracies. Fig. 3.12 shows the same charts as Fig. 3.11
but for a descriptor of a higher dimension, i.e. 32D. This results in a significant quality
jump for both modalities, but the tendency stays the same: the new modality learns the
classification much faster and provides a better angular accuracy for a larger number of
correctly classified test samples.

3.3.3 Tests on Background Noise Types

Since we often do not have real RGB-D sequences on hand in real-world applications,
but only 3D models provided, it would be beneficial to avoid using real data in training.
The purpose of the following test is to show how well the network can adapt to the
real data by only using the synthetic samples with artificially filled backgrounds in
training. Specifically, we compare four di↵erent background noise modalities introduced
in Section 3.2.2.4: white noise, random shapes, fractal noise, and real backgrounds.

Figure 3.13 shows the classification and pose accuracies for the four mentioned back-
ground noise modalities. The white noise modality shows the overall worst results,
achieving around 21% of classification accuracy (Fig. 3.13a), a marginal improvement
over randomly sampling objects from a uniform distribution.

By switching to the random shapes modality, we get better results and fluctuate
around 30% of classification accuracy. The fractal noise modality shows the best results
among the synthetic noise types and reaches up to 40% of recognition rate. However,
the real backgrounds modality outperforms fractal noise in classification terms and,

50

3.3 Evaluation

moreover, shows better pose accuracy for a larger quantity of correctly classified samples
(Fig. 3.13b). As a result, if we can collect images from environments similar to the test
set, the best option is to fill the backgrounds with real images.

3.3.4 Tests on Input Image Channels

In this test, we demonstrate the influence of di↵erent input image modalities, i.e., depth,
normals, and their combination, on the output accuracy. To do that, we train the
network using the patches exclusively represented by the aforementioned channels.

(a) Classification rate (b) Mean angular error

Figure 3.14: Comparison of three modalities representing di↵erent input image channels
used in training.

Figure 3.14 demonstrates the classification rate and pose error charts for three dif-
ferent networks trained on three di↵erent combinations of input patch channels: depth,
normals, and normals+depth. It can be observed that the network trained on surface
normals performs better than the one trained on the depth maps only. This is ben-
eficial since surface normals are generated entirely based on the depth maps and no
additional sensor data is needed. Additionally, by combining the surface normals and
depth channels into a single modality, we get even better results compared to using them
separately. More importantly, the same e↵ect holds true when RGB channels are added
to the presented modalities.

3.3.5 Tests on Larger Datasets

The goal of this experiment is to see how well the algorithm generalizes to a larger
number of models. In particular, we want to evaluate how the increased amount of
models in training a↵ects the overall performance. Since the LineMOD dataset has only
15 models available, the adapted BigBIRD dataset, which o↵ers many more models, is
used for this test.
Given one of the most powerful pipeline configurations, we have trained the network

on 50 models of the BigBIRD dataset. After finishing the training, we achieved the
results shown in Table 3.3. Table 3.3 shows the histogram of classified test samples
for several tolerated angle errors. The results are encouraging: for 50 models each

51

3 3D Pose Estimation Based on Manifold Learning

represented by approximately 300 test samples, we get a classification of 98.7% and a
very good angular accuracy, the significant improvement over the old loss function. As a
result, this approach proves to scale well with respect to the number of models, making
it suitable for industrial applications.

Table 3.3: Angular error histogram computed using the samples of the BigBIRD test set
for a single nearest neighbor.

Angular error
Classification

10� 20� 40�

SM 67.4% 79.6% 83.5% 85.4%
DM 67.7% 91.2% 95.6% 98.7%

3.3.6 Combining Manifold Learning and Regression

In this section, we evaluate the proposed multi-task extension that combines the strengths
of the manifold learning and regression, and further improves the results of the proposed
solution. For that purpose, we use a constrained setup. For all the following experiments
we only consider the depth data as input modality and set the feature descriptor size to
64. As it is mentioned in [29], at some point increasing the feature descriptor size does
not improve the methods performance anymore. As for regression, we found a similar
e↵ect during our experiments, in which we experienced d = 64 to be a good trade-o↵
between the nearest neighbor and regression performance.

3.3.6.1 Multi-Task Learning vs Single-Task Learning

We first evaluate our multi-task extension on models trained on a di↵erent number
of objects, for which the mean angular error is reported in Table 3.4. Overall, we

(a) Direct pose regression (b) Multi-task learning

Figure 3.15: Feature space comparison. By using a multi-task learning framework, we are
able to improve feature descriptors learned for object pose estimation. Depicted
here is the feature visualization using left: PCA and right: t-SNE [2] for five
objects of the LineMOD [3] dataset.

52

3.3 Evaluation

Table 3.4: Angular error of the baseline method (NN), regression (R) and our approach (Rmt,
NNmt).

15 Objects 10 Objects 5 Objects

Mean (Median) ± Std Class Mean (Median) ± Std Class Mean (Median) ± Std Class

NN 25.29� (11.76�) ± 40.75� 92.46% 19.98� (10.58�) ± 34.78� 92.56% 24.19� (10.72�) ± 43.34� 99.31%
NNmt 17.70� (11.59�) ± 25.78� 97.07% 14.74� (11.53�) ± 15.04� 97.50% 13.05� (10.29�) ± 15.19� 99.90%

R 38.23� (26.16�) ± 34.65� - 29.17� (20.69�) ± 28.03� - 22.07� (15.56�) ± 24.40� -
Rmt 27.28� (19.25�) ± 27.26� - 23.08� (17.56�) ± 21.25� - 19.16� (13.80�) ± 21.54� -

experience a significant improvement in performance for both regression and nearest
neighbor search accuracy. During training, the usually more di�cult regression task,
seems to be optimized by additionally focusing on learning a meaningful embedding,
improving the mean angular error by 28.8%. Since poses as well as objects are already
well-distinguished and the feature descriptors separated by the triplets and pair loss
functions, regression can more easily be learned.
As for the performance of nearest neighbor search, we observe an improvement in

robustness and accuracy of our multi-task learning framework compared to the single-
task baseline NN. The standard deviation as well as the mean angular error of the
multi-task model NNmt decreases significantly, making the method more robust. Here
we can report a relative improvement of 30% for the mean angular error while training
on the full LineMOD dataset, meaning fifteen objects.
Both regression and nearest neighbor method benefit from jointly learning robust

features and poses. Which model to choose now becomes a trade-o↵ between time
complexity and accuracy, which we will address further in Section 3.3.6.4.

3.3.6.2 Influence of Network Architecture

Additionally, to explore the multi-task pipeline performance using network architectures
with varying depths, we run our model using the network architecture described in [90].
This architecture is two layers deeper and removes max pooling layers by including
convolutional layers with stride two. Stated by the authors of [29], a deeper network
architecture did not seem to improve the accuracy of the method further, which we
experienced in our test as well, however by using our multi-task learning framework
and testing on a deeper network architecture we find that we can improve the pose
estimation accuracy even further. Here we are able to achieve the results seen in Table
3.5, abbreviated as NNmtdeeper. We report a relative improvement of 7.2% using nearest
neighbor search and 9.0% in the mean angular error of our regression results by using
a deeper network architecture, while training on the full LineMOD dataset. We believe
that by optimizing the network further, we can achieve even better regression accuracy.

3.3.6.3 Feature Visualization

As we have shown in Table 3.5, apart from the improvement in accuracy for pose regres-
sion, we also experienced an increase in the performance of the nearest neighbor pose

53

3 3D Pose Estimation Based on Manifold Learning

Table 3.5: Comparison between the classification and angular accuracy of the baseline
method, NN, and our results on 15 objects of the LineMOD dataset.

Angular error
Classification

10� 20� 40�

NN 35.98% 71.56% 82.72% 92.46%
NNmt 37.89% 79.61% 92.27% 97.07%
NNmtdeeper 41.32% 82.52% 93.51% 97.26%

retrieval. Our results demonstrate that the feature descriptors provided by the model
trained on both tasks seem to be more discriminative. To analyze the resulting feature
descriptors, we visualize the descriptors in the lower dimensional 3D-space using PCA
and t-SNE.

For t-SNE, we use a perplexity of 100, learning rate of 10 until convergence. Using
PCA, the variance including the best three components resulted in 53.2%. The resulting
clusters for five objects can be seen in Fig. 3.15. We observe that in both cases the
object classes are nicely distinguished using feature descriptors obtained by the multi-
task approach.

Figure 3.16: Average time and median angular error of nearest neighbor pose retrieval,
regression and our approach.

54

3.3 Evaluation

Figure 3.17: Sensitivity of � in our loss function Lmtl = (1 � �)Lreg + �Lnn. Depicted
is the influence of di↵erent weighting parameters on the mean angular error for
regression as well as nearest neighbor pose retrieval.

3.3.6.4 Scalability

Here, we analyze the time complexity and accuracy of our models at di↵erent number of
objects. Figure 3.16 shows the mean time of our models and the corresponding angular
error. The mean time for regression is calculated as one forward pass of the neural
network. For nearest neighbor methods only the matching time is tracked. To obtain
the total time needed, the time of one forward pass should be added to the shown results
for matching. One can see nicely that regression has a constant time, regardless of how
many objects are used, whereas for the nearest neighbor search the time increases with
additional objects. Depending on the application, this and the drop in accuracy for
additional objects should be taken into account.

3.3.6.5 Sensitivity to Regularization Parameter �

Since our multi-task loss function includes a regularization parameter � balancing the
two components of regression and manifold learning, we conducted experiments on the
sensitivity of this parameter using the LineMOD dataset. By choosing di↵erent values
for � and thus weighting either the Lnn loss or the pose loss Lreg more, we find that
the results improve for nearest neighbor pose retrieval, if the two terms are equally
weighted, and decreases when focusing more on the regression loss. Regarding regres-
sion, we observe similar results: improvement when additionally focusing on the Lnn

loss, enhancing the feature representation and decrease, if the model is only trained on
regression. Nevertheless, it can be seen that regression has a much stronger influence on
the nearest neighbor pose retrieval in terms of performance than the other way around.

The results, depicted in Fig. 3.17, emphasize our assumption that the two terms are
beneficial to one another, i.e., both features and pose regression are mutually optimized.

55

3 3D Pose Estimation Based on Manifold Learning

Note that we omit the regression result when the model was only trained on the feature
representation since in this case the regression layer was excluded from training.

3.4 Conclusion

In this chapter, the method first introduced in [29] was improved in terms of its learning
speed, robustness to clutter, and usability in real-world scenarios. We have implemented
a new loss function with dynamic margin that allows for a faster training and better
accuracy. Moreover, we introduced in-plane rotations (present in real-world scenarios)
and new background noise types (to better mimic the real environments), and evaluated
the performance of di↵erent image modalities including surface normals.

Next, we have presented a multi-task learning extension that combines manifold learn-
ing with direct pose regression. As a result, we were able to improve both the nearest
neighbor pose retrieval as well as the direct pose regression by a large margin when
compared to the single-task methods. Subsequently, we conducted a detailed analysis of
the feature descriptor learning, regression and the e↵ect that both tasks have on each
other in the context of object pose estimation.

56

4 6D Pose Estimation Based on Dense
Correspondences

In this chapter, we present a deep learning method for 3D object detection and 6D
pose estimation from RGB images. Our method, named DPOD (Dense Pose Object
Detector), estimates dense multi-class 2D-3D correspondence maps between an input
image and available 3D models. Given the correspondences, a 6DoF pose is computed
using PnP and RANSAC. An additional RGB pose refinement of the initial pose esti-
mates is performed using a custom deep learning-based refinement scheme. Our results
and comparison to a vast number of related works demonstrate that a large number of
correspondences is beneficial for obtaining high-quality 6D poses both before and after
refinement. Unlike other methods that mainly use real data for training and do not train
on synthetic renderings, we perform evaluation on both synthetic and real training data
demonstrating superior results before and after refinement when compared to all recent
6D detectors. While being precise, the presented approach is also real-time capable.

4.1 Introduction

Inspired by the DensePose method of Gueler et al. [91], which estimates dense corre-
spondences between a human body model and humans in the image, we propose a novel
3D object detector and pose estimator based on dense 2D-3D correspondences. Unlike
DensePose for humans, which requires a sophisticated annotation tool and enormous
annotation e↵orts, our method is annotation-free and only requires creation of arbitrary
UV texture maps of the objects, that we do automatically – mainly by spherical pro-
jections. The two key elements of our approach are: the pixel-wise prediction of the
multi-class object ID masks and classification of correspondence maps that directly pro-
vide a relation between image pixels and 3D model vertices. In this way, we end up
with a large number of pixel-wise correspondences, which allow for a much better pose
estimation than, for example, 9 regressed virtual points of the object’s bounding box as
in YOLO6D [40].
In addition to this, we introduce a deep learning-based pose refinement network that

takes initial poses estimated with our DPOD detector and enhances them. The proposed
refinement approach builds on the successes of [9, 56], but is shown to be faster, simpler
to train, able to be trained both on synthetic and real data, and it outperforms the
former solutions in terms of pose quality. We demonstrate that even our poses, which
are already of high quality, can be further improved with our refiner.
We experimented by training our detector with only synthetic and only real images.

In both cases, our unified method, named DPOD, composed of the dense pose detector

57

4 6D Pose Estimation Based on Dense Correspondences

Figure 4.1: Example output of the DPOD method. Given a single RGB image, we regress
its ID mask and its 2D-3D correspondences. PnP+RANSAC is then applied to
estimate the final pose. The green bounding box shows the ground truth pose,
while the blue one corresponds to the estimated pose. The almost perfect overlap
of the bounding boxes indicates that estimations are very accurate.

and the refiner outperforms other related works. Dense correspondences not only allow
for standard PnP and RANSAC to estimate accurate poses, but also pave the way
for a successful pose refinement. For the models trained on real data, one iteration of
refinement is enough to even outperform the related works using the depth-based ICP
refinement.

In the remainder of this chapter, we first introduce our approach explaining data
preparation, training, architectures and pose refinement, and then present an exhaustive
experimental validation and comparison with related works, where we demonstrate the
superiority of our approach.

4.2 Methodology

In this section, we first discuss the training data preparation steps, followed by the neural
network architecture and loss functions used, as well as the pose estimation step from
dense correspondences. Finally, we describe our deep learning model-based pose refiner.

4.2.1 Data Preparation

Most recent RGB-based detectors can be divided in two groups based on the type of data
they use for training: synthetic-based and real-based. The first group of methods, e.g.,
SSD6D [50] and AAE [92], makes use of textured 3D models, usually provided with the
public 6D pose detection datasets. The objects are rendered from di↵erent viewpoints,
producing a synthetic training set. The methods of the second group on the other hand,
e.g., BB8 [38], YOLO6D [40], PVNet [93], use the training split of the real dataset. They
utilize ground truth poses provided with the dataset and compute object masks to crop
the objects from real images producing a training set.

58

4.2 Methodology

Pose Block OutputCorrespondence block OutputInput

Cat

𝑅 𝑅 𝑅
𝑅 𝑅 𝑅
𝑅 𝑅 𝑅

𝑇
𝑇
𝑇

Camera

𝑅 𝑅 𝑅
𝑅 𝑅 𝑅
𝑅 𝑅 𝑅

𝑇
𝑇
𝑇

Eggbox

𝑅 𝑅 𝑅
𝑅 𝑅 𝑅
𝑅 𝑅 𝑅

𝑇
𝑇
𝑇

Correspondences

ID Mask

RGB

3D Models

PnP + RANSAC

Figure 4.2: Pipeline description. Given an input RGB image, the correspondence block,
featuring an encoder-decoder neural network, regresses the object ID mask and the
correspondence map. The latter one provides us with explicit 2D-3D correspon-
dences, whereas the ID mask estimates which correspondences should be taken for
each detected object. The respective 6D poses are then e�ciently computed by the
pose block based on PnP+RANSAC.

Both types of data generation have their pros and cons. When real images su�ciently
covering the object are available, it is more advantageous to use them for training. The
reason is that their close resemblance to the actual objects allows for faster convergence
and better results. However, training on real images biases the detector to light con-
ditions, poses, scales and occlusions present in the training set, which might lead to
problems with generalization in new environments. When, however, no pose annota-
tions are available, which can often be the case since acquiring pose annotations is an
expensive process, we are left with 3D models of the objects. With synthetic renderings,
one can produce a virtually infinite number of images from di↵erent viewpoints. Despite
being advantageous in terms of the pose coverage, one has to deal with the domain
gap problem severely hindering the performance if no additional data augmentation is
applied. Potentially, one can benefit from the advantages of both data types by mixing
real and synthetic data in the training set. Therefore, approaches which can be trained
on both types of data are desirable. Since our pipeline is not data-specific, we show how
to generate the training data for both scenarios.

Synthetic Training Data Generation. Given 3D models of the objects of interest,
the first step is to render them from di↵erent poses su�ciently covering the object. The
poses are sampled from the half-sphere above the object. Additionally, in-plane rotations
of the camera around its viewing direction from -30 to 30 degrees are added. Then, for
each of the camera poses, an object is rendered on a black background and both RGB
and depth channels are stored.

59

4 6D Pose Estimation Based on Dense Correspondences

Having the renderings at hand, we use a generated depth map as a mask to define a
tight bounding box for each generated rendering. Cropping the image with this bounding
box position, we store RGB patches, masks separating them from the background, and
the camera poses. At this point, we have everything ready for the online augmentation
stage, which is described in the later subsection. This step of data preparation is identical
for the detector and for the refinement pipelines.

Real Training Data Generation. In this case, an available dataset with pose an-
notations is divided into non-overlapping train and test subsets. Here, we follow the
protocol defined by BB8 [38] and YOLO6D [40] and use 15% of data for training and
the rest 85% for evaluation. Poses are selected such that the relative orientation be-
tween them is larger than a certain threshold. This approach guarantees that selected
poses cover the object from all sides. For training the detector, objects are cut out from
the original image using the provided mask and then stored as patches for the online
augmentation stage. Additional in-plane rotations are added to artificially simulate new
poses. For training the refinement, objects are left as they are.

4.2.1.1 Correspondence Mapping

To be able to learn dense 2D-3D correspondences, each model of the dataset is textured
with a correspondence map (see Fig. 4.3). A correspondence map is a 2-channel image
with values ranging from 0 to 255. Objects are textured using either simple spherical or
cylindrical projections. Once textured, we get a bijective mapping between the model’s
vertices and pixels on the correspondence map. This provides us with easy-to-read
2D-3D correspondences since given the pixel color, we can instantaneously estimate its
position on the model surface by selecting the vertex with the same color value. For con-
venience, we call the copies of the original models textured with the correspondence map
correspondence models. Given the predicted correspondence map, we estimate the ob-
ject pose with respect to the camera using the pose estimation block, which is described
later. Similar to the synthetic or real data generation steps, we render correspondence

Figure 4.3: Correspondence model. Given a 3D model of interest (1), we apply a 2 channel
correspondence texture (2) to it. The resulting correspondence model (3) is then
used to generate GT maps and estimate poses.

60

4.3 Dense Object Detection Pipeline

models under the same poses as for training data and store correspondence patches for
each RGB patch.

4.2.1.2 Online Data Generation and Augmentation

Detection and Pose Estimation. The final stage of data preparation is the online
data generation pipeline, which is responsible for providing full-sized RGB images ready
for training. Generated patches (real or synthetic) are rendered on top of images from
MS COCO dataset [94] producing training images containing multiple objects. It is an
important step, which ensures that the detector generalizes to di↵erent backgrounds and
prevents it from overfitting to backgrounds seen during training. Moreover, it forces the
network to learn the model’s features needed for pose estimation rather than to learn
contextual features which might not be present in images when the scene changes. This
step is performed no matter whether the training is being done with synthetic or real
patches. We additionally augment the RGB image by random changes in brightness,
saturation, and contrast, and by adding Gaussian noise. Moreover, object ID masks
and correspondence patches are also rendered on top of the black background in order
to generate ground truth correspondence maps. An object ID mask is constructed by
assigning a class ID number to each pixel that belongs to the object.

Pose Refinement. In the case of pose refinement, pairs of images containing the
object in the current (searched) pose and in the predicted pose are provided to the
network. The final stage of data preparation di↵ers considerably depending on the type
of data used. In case of synthetic data, images are generated by in-painting objects on
random backgrounds in a current pose. A crucial part of the augmentation is to add
random light sources for every image. If real images are used for training, no in-painting
is performed. In any case, produced images are further augmented as discussed above.
Then a random pose is sampled around the current pose simulating the predicted pose
from the detector, which will be used as an original guess of the poses to be refined. It is
crucial to choose the proper prior distribution from which distorted poses are sampled.

4.3 Dense Object Detection Pipeline

Our inference pipeline is divided into two blocks: the correspondence block and the pose
block (see Fig. 4.2). In this section, we provide their detailed description.

Correspondence Block. The correspondence block consists of an encoder-decoder
convolutional neural network with three decoder heads which regress the ID mask and
dense 2D-3D correspondence map from an RGB image of size 320⇥240⇥3. The encoder
part is based on a 12-layer ResNet-like [95] architecture featuring residual layers that
allow for faster convergence. The decoders upsample the feature up to its original size
using a stack of bilinear interpolations followed by convolutional layers. However, in
principle the proposed method is agnostic to a particular choice of encoder-decoder ar-
chitecture. Any other backbone architectures can be used without any need to change

61

4 6D Pose Estimation Based on Dense Correspondences

the conceptual principles of the method. For the ID mask head the output is a H⇥W⇥O
tensor, where H and W are the height and width of the original input image and O is the
number of objects in the dataset plus one additional class for background. Similar to the
ID mask head, the two correspondence heads regress tensors with the following dimen-
sions H⇥W⇥C, where C stands for the number of unique colors of the correspondence
map, i.e., 256. Each channel of the output tensors stores the probability values for the
class corresponding to the channel number. Once tensors are regressed, we store them
as single channel images where each pixel stores the class with the maximal estimated
probability, forming the ID mask, U and V channels of the correspondence image.

Formulating color regression problem as discrete color class classification problem
proved to be useful for much faster convergence and for the superior quality of 2D-3D
matches. Initial experiments on direct coordinate regression showed very poor results in
terms of correspondence quality. The main reason for the problem was the infinite con-
tinuous solution space, i.e., [�1; 1]3, where 3 is the number of dimensions and [�1, 1] is
the normalized coordinate range of a 3D model. Classification of the discretized 2D cor-
respondences allowed for a huge boost of the output quality by dramatically decreasing
the output space (now 2562, where 256 is the size of a single UV map dimension). More-
over, this parametrization also ensures that 3D points of the predicted correspondences
always lie on the object surface.

The network parameters are optimized subject to the composite loss function:

L = ↵Lm + �Lu + �Lv, (4.1)

where Lm is the mask loss, and Lu and Lv are the losses responsible for the quality of
the U and V channels of the correspondence image. ↵,�, and � are weight factors set to
1 in our case. Both Lu and Lv losses are defined as multi-class cross-entropy functions,
whereas Lm uses the weighted version of it.

Pose Block. The pose block is responsible for the pose prediction. Given the estimated
ID mask, we can observe which objects were detected in the image and their 2D locations,
whereas the correspondence map maps each 2D point to a coordinate on an actual 3D
model. The 6D pose is then estimated using the Perspective-n-Point (PnP) [96] pose
estimation method that estimates the camera pose given correspondences and intrinsic
parameters of the camera. Since we get a large set of correspondences for each model,
RANSAC is used in conjunction with PnP to make camera pose prediction more robust
to possible outliers. For the results presented in the evaluation section, for each pose we
run 150 RANSAC iterations with the reprojection error threshold set to 1.

4.4 Deep Model-Based Pose Refinement

The proposed pose refiner is a natural extension of refiners presented in [56, 9] and relies
on the strengths of both approaches. Similar to [56, 50, 97] we exploit an idea of using a
network already pre-trained on ImageNet as a backbone architecture. Analogous to the

62

4.4 Deep Model-Based Pose Refinement

Refinement headsFeature extractionInput

RGB

Rendered

Pose:

x
y
z’

R
R x y z

x’
y’

z’

R’

Figure 4.4: Refinement architecture. The network predicts a refined pose given an initial
pose proposal. Crops of the real image and the rendering are fed into two parallel
branches. The di↵erence of the computed feature tensors is used to estimate the
refined pose.

detector, we used a ResNet-based architecture. Similar to [9], our loss function for pose
estimation is the ADD measure with a more robust L1 norm:

m = avg
x2Ms

���(Rx+ t)� (R̂x+ t̂)
���
1
, (4.2)

representing the vertex to vertex distance between the object in a ground truth pose and
predicted pose. R, t denote the ground truth pose rotation and translation, whereas
R̂ and t̂ denote the predicted transformation; Ms is a set of points sampled from the
CAD model. Points are resampled at every iteration. The number of sampled points
was limited to ten thousand in order to ensure the e�ciency of training iterations and
reasonable memory consumption.
In Fig. 4.4 we show a schematic representation of the refiner. In order to be able to

benefit from the network weights pretrained on ImageNet, the network has two parallel
input branches, each composed of the first five ResNet layers. These layers are initialized
from the pre-trained network. One branch receives an input image patch (E11), while
the other (E12) one extracts features from the rendering of the object in the predicted
pose. Then features fr and fs from these two networks are subtracted and fed into the
next ResNet block (E2) producing the feature vector f . If the refinement is trained on
synthetic data, it is essential to keep the first five layers unchanged and use them as the
feature extractor as was shown in [98, 97, 56]. Freezing the branch that extracts features
from object renderings is unnecessary as it always operates on synthetic data. The
network ends with three separate output heads: one for regressing the rotation, one for
regressing the translation in X and Y directions, and one for regressing the translation in

63

4 6D Pose Estimation Based on Dense Correspondences

Z direction. We opted for three separate heads as the scale of their outputs is di↵erent.
Each head is implemented as two fully connected layers.

Rotation is always represented in the object coordinate system, which ensures that
identically looking objects have the same rotation and that the network does not have to
learn a more complicated transformation which arises if the world coordinate system is
used. The first layer of the rotation regression head takes the feature vector f produced
by ResNet and adds four values, which are the quaternion representing an initial rotation.
The second layer takes the output of the previous one, stacks with the initial quaternion
and outputs the final rotation.

The head responsible for the regression of X and Y translations operates in the coor-
dinate system of the image rather than in the full 3D space, which significantly restricts
the space of possible solutions. Similar to the rotation head, the XY regression head
takes the initial 2D location of the object as input and refines it. Additionally, it takes
the refined prediction of Z translation.

Weights of the fully connected layers are initialized in such a way that for the 0th
iteration the network just outputs the input pose, and then during training learns how
to refine those values. That significantly increases stability and speed of the training
procedure as the network produces meaningful results from the very start.

4.5 Training Details

Our pipeline is implemented using the Pytorch deep learning framework. All the experi-
ments were conducted on an Intel Core i7-6900K CPU 3.20GHz with NVIDIA TITAN X
(Pascal) GPU. To train our method, we used the ADAM solver with a constant learning
rate of 3⇥ 10�4 and weight decay of 3⇥ 10�5.

When training on synthetic data, the problem of domain adaptation becomes one of
the main challenges. Training the network without any prior parameter initialization
makes it impossible to generalize to the real data. The easy solution to this problem
was proposed in several works, including [97, 56], where they freeze the first layers of the
network trained on a large dataset of real images, e.g., ImageNet [99] or MS COCO [94],
for the object classification task. The common observation that the authors conclude is
that these layers, learning low-level features, very quickly overfit to the perfect object
renderings. We follow this setup, and freeze the first five layers of our encoder initialized
with the weights of the same network pretrained on ImageNet. Last but not least, we
found it crucial for the performance of the detector to use various light sources during
the rendering of synthetic views to account for changing light conditions and shadows
in the real data.

4.6 Evaluation

In this section we evaluate our algorithm in terms of its pose and detection performance,
as well as its runtime, and compare it with the state of the art RGB detector solutions.

64

4.6 Evaluation

Figure 4.5: Qualitative results. Poses predicted with the proposed approach on (a) the
LineMOD dataset and (b) the OCCLUSION dataset. Green bounding boxes cor-
respond to ground truth poses, bounding boxes of other colors to predicted poses.
For both datasets predicted poses are very close to correct poses.

4.6.1 Datasets

All experiments were conducted on LineMOD [58] and OCCLUSION [100] datasets, as
they are the standard datasets for evaluation of object detection and pose estimation
methods. The LineMOD dataset consists of 13 sequences, each containing ground truth
poses for a single object of interest in a cluttered environment. CAD models for all the
objects are provided as well. The OCCLUSION dataset is an extension of LineMOD,
suitable for testing how well detectors can deal with occlusions. Although it comprises
only one sequence, all visible objects from the LineMOD dataset are supplied with their
poses.

4.6.2 Evaluation Metrics

We evaluate the quality of 6DoF pose estimation following the procedure suggested at
SSD6D [50] also used in other papers. Analogously to other related papers [40, 50, 93,
101], we measure the accuracy of pose estimation using the ADD score [58]. ADD is
defined as an average Euclidean distance between model vertices transformed with the
predicted and the ground truth pose. More formally it is defined as follows:

m = avg
x2M

���(Rx+ t)� (R̂x+ t̂)
���
2
, (4.3)

where M is a set of vertices of a particular model, R and t are the rotation and trans-
lation of a ground truth transformation whereas R̂ and t̂ correspond to those of an

65

4 6D Pose Estimation Based on Dense Correspondences

Table 4.1: Pose estimation performance. Comparison of our approach to the other RGB
detectors on the LineMOD dataset. The table reports the percentages of correctly
estimated poses w.r.t. the ADD score. Among the methods trained on synthetic
data, our method shows the best results significantly surpassing the former state-
of-the-art. The variant of our method trained on real data again demonstrates
outstanding performance outperforming most of the competitors. Moreover, our
new refinement pipeline improves the estimated poses even further and shows the
best overall results.

Train data Synthetic + Refinement Real + Refinement

Object SSD6D [50] AAE [92] Ours SSD6D [56] Ours YOLO6D [40] PoseCNN [101] PVNet [93] Ours DeepIM [9] Ours

Ape 2.6 3.96 37.22 - 55.23 21.62 - 43.62 53.28 77.0 87.73
Bvise 15.1 20.92 66.76 - 72.69 81.80 - 99.90 95.34 97.5 98.45
Cam 6.1 30.47 24.22 - 34.76 36.57 - 86.86 90.36 93.5 96.07
Can 27.3 35.87 52.57 - 83.59 68.80 - 95.47 94.10 96.5 99.71
Cat 9.3 17.90 32.36 - 65.10 41.82 - 79.34 60.38 82.1 94.71

Driller 12.0 23.99 66.60 - 73.32 63.51 - 96.43 97.72 95.0 98.80
Duck 1.3 4.86 26.12 - 50.04 27.23 - 52.58 66.01 77.7 86.29

Eggbox 2.8 81.01 73.35 - 89.05 69.58 - 99.15 99.72 97.1 99.91
Glue 3.4 45.49 74.96 - 84.37 80.02 - 95.66 93.83 99.4 96.82

Holep. 3.1 17.60 24.50 - 35.35 42.63 - 81.92 65.83 52.8 86.87
Iron 14.6 32.03 85.02 - 98.78 74.97 - 98.88 99.80 98.3 100

Lamp 11.4 60.47 57.26 - 74.27 71.11 - 99.33 88.11 97.5 96.84
Phone 9.7 33.79 29.08 - 46.98 47.74 - 92.41 74.24 87.7 94.69

Mean 9.1 28.65 50 34.1 66.43 55.95 62.7 86.27 82.98 88.6 95.15

estimated transformation. The ADD metric can be extended in order to handle sym-
metric objects as in [58]:

m = avg
x22M

min
x12M

���(Rx1 + t)� (R̂x2 + t̂)
���
2

(4.4)

Instead of measuring distance from a predicted location of each particular model’s ver-
tex to its ground truth location, it suggests to take the closest vertex of the model
transformed with the ground truth transformation.

Conventionally, a pose is considered correct if ADD is smaller than the 10% of the
model’s diameter. The accuracy of pose estimation is reported as the percentage of
correctly estimated poses.

4.6.3 Single Object Pose Estimation

Results of the pose estimation experiments on the LineMOD dataset are reported in
Table 4.1. We separately compared our method trained either on real data or on synthetic
data. The table provides the comparison of deep learning-based refinement pipelines
as well. The left-hand side of the table reports the accuracy of pose estimation as
percentages of poses which are correct according to the ADD measure for the training
done on synthetic data. If no refinement is used, our approach outperforms all other
approaches by a significant margin on the majority of the objects. Moreover, the average
percentage of correctly estimated poses (50%) is significantly higher than 28.65% of the
second best approach. The accuracy gap is more prominent on small objects such as the

66

4.6 Evaluation

Table 4.2: Pose estimation for multiple objects. Comparison of our approach on real
data to the other RGB detectors on the OCCLUSSION dataset. The table reports
percentages of correctly estimated poses w.r.t. the ADD score.

Method YOLO6D [40] PoseCNN [101] SSD6D+Ref [56] HMap [102] PVNet [93] Ours Ours+Ref

Mean 6.42 24.9 27.5 30.4 40.77 32.79 47.25

ape and duck. The availability of a large number of 2D-3D correspondences ensures that
the performance of our method is 5 times better than SSD6D’s and almost 2 times better
than AAE’s. If deep learning-based refinement is used, we significantly outperform [56]
with 66.43% of correct poses against 34.1%.

If trained on real data, our method is the second best after [93]. The right-hand side
of Table 4.1 compares the proposed approach to the previous deep learning-based ones.
If no refinement is used, the proposed approach outperforms PoseCNN and YOLO6D
by a significant margin, while performing on par with PVNet on most of the objects.
On average, we are better than PoseCNN by 31%, YOLO6D by 23.57%. Again, our
approach uses RGB data exclusively and does not rely on depth data. Fig. 4.5 provides
a visual comparison of ground truth poses versus predicted poses. Poses are visualized
as projections of 3D bounding boxes of models in given poses on top of a test image.
In comparison to deep learning-based refinement of [9], we perform on average better
by 6.55% reaching 95.15% of correct poses. When DeepIM was applied to the poses
predicted by the proposed approach, ADD improved to 91.8% which is better than the
original 88.6% reported in their paper, but still worse than the result of our refiner.

In conclusion, the proposed detector achieves state-of-the-art results surpassing other
detectors by a large margin on synthetic data and performs either much better or compa-
rable to the other detectors on real data. The proposed refinement clearly outperforms
all the competitors both on real and synthetic data. Pose quality varies from object
to object, but in general poses are significantly better for larger objects since there are
more 2D-3D correspondences available. On the other hand, simplicity of the proposed
approach also makes it quick. On average our detector performs at 33 FPS. The runtime
can be adjusted by changing the number of RANSAC iterations, as it is the bottleneck
of the pipeline. One iteration of the refinement takes 5ms, excluding the rendering
time, which heavily depends on the renderer used. Two refinement iterations su�ce for
synthetic data, one iteration – for real data.

Table 4.3: Detection performance for multiple objects. Comparison of the state-of-the-
art mean average precision (mAP) scores on the OCCLUSION dataset.

Method SSD6D [50] YOLO6D [40] Brachmann [103] Ours

mAP 0.38 0.48 0.51 0.48

67

4 6D Pose Estimation Based on Dense Correspondences

Table 4.4: RANSAC iterations test. The e↵ect of the number of RANSAC iterations on
the overall ADD score.

RANSAC # 5 25 50 100 150 200 250 350 500

ADD w/o ref 59.15 76.95 80.15 82.12 82.98 83.44 83.79 84.33 84.66
ADD w/ ref 80.45 92.59 93.88 94.79 95.15 95.31 95.39 95.38 95.39

RANSAC ms 2 6 10 17 23 28 33 42 54

4.6.4 Multiple Object Pose Estimation

Performance evaluation of the proposed detector in cases when the number of objects
to detect increases and when severe occlusions are present was conducted on the OC-
CLUSION dataset [100]. Accuracy of object detection on the OCCLUSION dataset is
conventionally reported in terms of mean average precision (mAP). The confidence score
is computed based on the RANSAC inlier proportion as confidence, rendering the final
score of 0.48, which is comparable the best result on this dataset (see Table 4.3). Table
4.2 demonstrates ADD scores for various detectors on the OCCLUSION dataset. Before
the refinement, the proposed detector shows very competitive results in comparison to
other detectors. After the refinement, the proposed approach performs substantially
better and achieves the best results.

4.6.5 Ablation Study

In this section, we provide an ablation study of the method’s components. In particular,
we report the runtimes, study the e↵ect of RANSAC iterations, evaluate the correspon-
dence quality, and compare our refiner with the state of the art.

4.6.5.1 RANSAC Iterations

The number of RANSAC iterations crucially influences the quality of predicted poses.
We ended up using 150 iterations as it yielded the best trade o↵ between quality and
runtime. The larger amount of iterations generally did not improve the results signif-
icantly, but resulted in longer execution times (see Table 4.4). Additionally, the ADD

Table 4.5: Runtime comparison. Time-e�ciency of our approach with respect to the other
state-of-the-art approaches.

Method Frames per second Refinement

AAE [92] 4 200 ms/object
SSD6D [50] 10 24 ms/object
PVNet [93] 25 -

Ours 33 5 ms/object
YOLO6D [40] 50 -

68

4.6 Evaluation

Table 4.6: Runtime analysis. Runtime of the proposed approach for all models of the
LineMOD dataset.

Model PnP + RANSAC (ms) Total (ms) FPS

Ape 7 20 50
Benchvise 40 51 20

Cam 35 49 20
Can 30 44 23
Cat 20 33 30

Driller 26 40 25
Duck 4 16 63

Eggbox 9 23 43
Glue 5 17 59

Holepuncher 20 31 32
Iron 34 48 21

Lamp 40 54 19
Phone 31 45 22

Average 23 36 33

scores after one iteration of the proposed refinement are provided. They show that even
25 iterations of RANSAC are enough to beat the state-of-the-art results if the refinement
is used. More iterations of RANSAC do not result in the considerable increase of pose
quality.

4.6.5.2 Runtime Analysis

In Table 4.6, we provide the runtimes of the proposed approach for all models of the
LineMOD dataset. The total runtime consists of the time needed for PnP and approxi-
mately 13 ms for all the auxiliary tasks: the network’s forward pass, post-processing of
predicted segmentation, and computation of 2D-3D correspondences. Table 4.5 provides
comparison of the runtime of our detector with all the main competitors mentioned in
the paper. All the experiments were conducted on an Intel Core i7-6900K CPU 3.20GHz
with NVIDIA TITAN X (Pascal) GPU.

4.6.5.3 Correspondence Quality

Here, we demonstrate the quality of the output correspondences. Namely, each classified
correspondence point is mapped to 3D and compared to the ground truth 3D point. The
ground truth 3D points are obtained in exactly the same way as predicted points, i.e.,
by matching a UV map rendered in the ground truth pose to model’s vertices.
The results per object are shown in Table 4.7. The table reports the quality of cor-

respondences separately for real and synthetic data. For each model, mean absolute
error, median absolute error, and standard deviation of absolute errors are reported in
millimeters. Relatively large mean error is explained by outliers, some of which can be
quite significant. Therefore, median is a better measure due to its robustness to outliers.
The table shows that the median error is consistent across all the models. Additionally,

69

4 6D Pose Estimation Based on Dense Correspondences

Table 4.7: Quantative correspondence quality. Correspondence quality for real and syn-
thetic data estimated in terms of mean and median absolute errors, and standard
deviation.

Real Data Synt Data

Model Mean Median Std Mean Median Std

Ape 10.05 4.58 14.60 11.46 5.74 15.26
Bvise 10.36 4.70 19.29 15.92 6.99 25.71
Cam 6.57 4.58 10.11 13.31 7.23 20.23
Can 8.19 4.03 13.46 11.97 5.10 18.72
Cat 8.60 4.77 12.22 9.87 5.42 13.99

Driller 8.52 4.78 17.78 18.14 6.80 36.06
Duck 5.93 3.98 8.72 7.63 4.99 10.41

Eggbox 6.00 4.26 10.23 42.39 9.40 48.07
Glue 7.82 4.26 13.73 17.12 8.11 23.19

Holep. 8.25 4.87 13.30 11.28 6.81 16.04
Iron 7.18 4.51 12.31 11.06 6.89 17.34

Lamp 11.64 4.31 24.80 18.60 8.58 30.85
Phone 6.09 2.84 12.94 9.52 4.38 18.31

it demonstrates that the median error for the detector trained on real data is notice-
ably lower than for the detector trained on synthetic data. This explains the superior
performance of training on real data.

Figure 4.6 provides a visual comparison of predicted and ground truth UV maps and
heat maps, which demonstrate where imprecisions take place. One can see that most
imprecisions are concentrated on the outer boundaries of the object and, for objects with
more complex geometry, on the edges of their structural elements, i.e. in places where
rapid correspondence value changes occur.

4.6.5.4 Refinement

A per-model evaluation is provided (see Table 4.8) to compare our proposed refiner
with the former state of the art DeepIM [9]. It compares the following ADD scores: 1)

G
ro

un
d

Tr
ut

h

DP
O

D
O

ut
pu

t

Ab
so

lu
te

 E
rr

or
s

Figure 4.6: Qualitative correspondence quality. Comparison of ground truth (left), pre-
dicted (center) UV maps and heat maps (right) of absolute errors.

70

4.7 Conclusion

Table 4.8: Comparison of deep learning-based refinement methods: Our refinement
approach shows the overall best ADD score with respect to the latest state-of-the
art method DeepIM [9].

Method/Object Ape Bench. Cam Can Cat Dril. DuckEggb. Gl. Hol. Iron Lamp Ph. Avg.

PoseCNN [101] + DeepIM [9] 77.0 97.5 93.5 96.5 82.1 95.0 77.7 97.1 99.4 52.8 98.3 97.5 87.7 88.6
Ours + DeepIM [9] 78.70 98.43 97.75 97.57 85.16 91.55 80.24 99.68 99.48 75.66 99.74 98.20 91.38 91.81

Ours + Our ref. 87.73 98.45 96.07 99.71 94.71 98.8 86.29 99.91 96.82 86.87 100 96.84 94.69 95.15

ADD reported in the original DeepIM paper [9], which used PoseCNN [101] to predict
initial poses, 2) ADD if DeepIM is applied to poses predicted by our detector, 3) ADD
if poses predicted by the proposed detector are refined with the proposed refinement.
It is important to mention that two iterations of DeepIM were made, as was suggested
in the original paper. On the other hand, our refiner was run only for one iteration.
The table clearly shows that better initial pose hypotheses allow for better results after
refinement. It is also clear that our refinement clearly outperforms DeepIM on most of
the objects, while performing only insignificantly worse on others.

4.7 Conclusion

In this chapter, we proposed the Dense Pose Object Detector (DPOD) method that
regresses multi-class object masks and dense 2D-3D correspondences between image
pixels and corresponding 3D models. Unlike the best performing methods that regress
projections of the object’s bounding boxes [38, 40] or formulate pose estimation as a
discrete pose classification problem [50], dense correspondences computed by our method
allow for more robust and accurate 6D pose estimation. We demonstrated that for both,
real and synthetic training data, our detector outperforms other related works, such as
[40, 101], by a large margin and performs similarly to [93]. The proposed pose refinement
approach also performs very well and allows for achieving a pose accuracy that surpasses
all other related deep learning-based pose refinement approaches, while having a simpler
and more lightweight backbone architecture.

71

5 9D Pose Estimation for Autolabeling

In this chapter, we present an automatic annotation pipeline to recover 9D cuboids and
3D shapes from pre-trained o↵-the-shelf 2D detectors and sparse LIDAR data. Our
autolabeling method solves an ill-posed inverse problem by considering learned shape
priors and optimizing geometric and physical parameters. To address this challenging
problem, we apply a novel di↵erentiable shape renderer to signed distance fields (SDF),
leveraged together with normalized object coordinate spaces (NOCS). Initially trained
on synthetic data to predict shape and dense normalized coordinates, our method uses
these predictions for projective and geometric alignment over real samples. Moreover, we
also propose a curriculum learning strategy, iteratively retraining on samples of increas-
ing di�culty in subsequent self-improving annotation rounds. Our experiments on the
KITTI3D dataset show that we can recover a substantial amount of accurate cuboids,
and that these autolabels can be used to train 3D detectors with state-of-the-art results.

5.1 Introduction

Deep learning methods require large labeled datasets to achieve state-of-the-art perfor-
mance. Concerning object detection for automated driving, 3D cuboids are preferred
among other annotation types as they allow appropriately reasoning over all nine de-
grees of freedom (instance location, orientation, and metric extent). However, obtaining
a su�cient amount of labels to train 3D object detectors is laborious and costly, as it
mostly relies on involving a large number of human annotators. Existing approaches for
scaling up annotation pipelines include the usage of better tooling, active learning, or a
combination thereof [104, 105, 106, 107, 108]. Such approaches often rely on heuristics
and require human e↵ort to correct the outcomes of semi-automatic labeling, specifically
for di�cult edge cases.
Alternatively, we propose a novel approach relying on dense correspondence estimation

and di↵erentiable rendering of shape priors to recover metric scale, pose, and shape of
vehicles in the wild. Our 3D autolabeling pipeline requires only 2D detections (bounding
boxes or instance masks) and sparse point clouds (ubiquitous in 3D robotic contexts).
Detections themselves are produced using o↵-the-shelf 2D detectors. We demonstrate
that di↵erentiable visual alignment, also referred to as “analysis-by-synthesis” [109] or
“render-and-compare” [110], is a powerful approach towards autolabeling for the purpose
of autonomous driving.
This chapter introduces three novel contributions. First, we formulate the notion

of a Coordinate Shape Space (CSS), which combines Normalized Object Coordinates
(NOCS) [111] with the DeepSDF framework [112]. This allows to reliably set object
shapes into correspondence to facilitate deformable shape matching. Second, we present

73

5 9D Pose Estimation for Autolabeling

+

CSS Net

2D detection
NOCS SDF

3D-3D
RANSAC

𝒇(𝒙; 𝒛)

O
ptim

ization

Figure 5.1: Our pipeline for 3D object autolabeling. Left: o↵-the-shelf 2D detections are
fed into our Coordinate Shape Space (CSS) network to predict surface coordinates
and a shape vector. We backproject the coordinates to LIDAR in the camera frus-
tum and decode the shape vector into an object model. Then, we establish 3D-3D
correspondences between the scene and model to estimate an initial a�ne transfor-
mation. Right: We iteratively refine the estimate via di↵erentiable geometric and
visual alignment.

a way to di↵erentiate DeepSDF with respect to its surface, thereby introducing a novel
di↵erentiable SDF renderer for comparative scene analysis over a defined shape space.
The third contribution is a curriculum learning-based autolabeling pipeline of driving
scenes. Fig. 5.1 presents an example optimization on the KITTI3D dataset [113].

Our pipeline starts with a CSS network largely based on the DPOD detector from
Chapter 4, which is trained to predict 2D NOCS maps (as opposed to UV maps in
DPOD) as well as shape vectors from image patches. To bootstrap an initial version, we
train the network on synthetic data, for which we can easily obtain ground truth NOCS
and shape vector targets, and apply augmentations to minimize the sim2real domain
gap. Our autolabeling loop includes the following steps: 1) leveraging 2D detections to
localize instances; 2) running the CSS network on an extracted patch; 3) reprojecting
NOCS into the scene using LIDAR, 4) decoding an object model from the shape space; 5)
computing an approximate pose using 3D-3D correspondences; and 6) running projective
and geometric alignment for refinement. After processing all images, we collect the
recovered autolabels and retrain our CSS prediction network to gradually expand it into
the new domain. Then, we repeat this process to achieve better CSS predictions and,
consequently, better autolabels. To avoid drifting due to noisy autolabels, we employ a
curriculum that is focused on easy samples first and increases the di�culty in each loop.

In summary, our main contributions are as follows: (i) a novel, fully-di↵erentiable
renderer for signed distance fields that can traverse smooth shape spaces; (ii) a mixed
synthetic/real curriculum framework that learns to predict shape and object coordi-
nates on image patches; and (iii) a multi-modal optimization pipeline combining di↵er-
entiable alignment over vision and geometry. We evaluate our approach on the KITTI3D

74

5.2 Methodology

Figure 5.2: CSS representation. Top: Car models from the PD dataset [4]. Bottom: The
same cars in the CSS representation: decoded shape vector z colored with NOCS.

dataset [113] and show that our method can be used to accurately recover metric cuboids
with structural, di↵erentiable priors. Furthermore, we demonstrate that such cuboids
can be leveraged to train e�cient 3D object detectors.

5.2 Methodology

We first discuss our shape space construction and the coupling into the CSS represen-
tation. Afterwards, we introduce our di↵erentiable rendering approach tailored towards
implicit surface representations. Eventually, our autolabeling pipeline is described in
more detail.

5.2.1 Coordinate Shape Space

We employ DeepSDF [112] to embed watertight car models into a joint and compact
shape space representation within a single neural network. The idea is to transform
input models into signed distance fields in which each value corresponds to a distance to
the closest surface, with positive and negative values representing exterior/interior area.
Eventually, DeepSDF forms a shape space of implicit surfaces with a decoder f that
can be queried at spatially-continuous 3D locations x = {x1, ..., xN} using the provided
latent code z to retrieve SDF values s = {s1, ..., sN} as follows:

f(x; z) = s. (5.1)

To facilitate approximate deformable shape matching, we combine the shape space
with NOCS [111] to form the Coordinate Shape Space (CSS). To this end, we resize
our models to unit diameter and interpret the 3D coordinates of the 0-level set as dense
surface descriptions.
To train f , we use a synthetic dataset provided by Parallel Domain [4], which comprises

car CAD models, as well as rendered tra�c scenes with ground truth labels (see Fig. 5.6).
Other synthetic datasets (e.g., CARLA [114] & VKITTI [115]) could be used here as
well. We trained on a subset of 11 models and with a latent code dimensionality of
3. We follow the original DeepSDF training, but project the latent vector onto the
unit sphere after each iteration. In Fig. 5.2, we depict example models with their CSS
representations.

75

5 9D Pose Estimation for Autolabeling

Figure 5.3: Surface projection. DeepSDF outputs the signed values s for query locations
x. Normals n can be computed analytically by a single backward pass. Given the
signed values and normals, we project the query locations onto the object surface
points p. Only exterior points are visualized.

5.2.2 Di↵erentiable SDF Rendering

An essential component of our autolabeling pipeline is the possibility to optimize objects
with respect to the pose, scale, and shape. To this end, we propose, to the best of our
knowledge, the first di↵erentiable renderer for signed distance fields. Our renderer avoids
mesh-related problems such as connectivity or intersection, but necessitates implement-
ing a di↵erent approach for sampling the representation. Rendering implicit surfaces is
done either with raytracing [116] or variants of Marching Cubes [117]. Here, we present
an alternative that lends itself to backpropagation.

Projection of 0-Isosurface Given query points xi and associated signed distance
values si, we need a di↵erentiable way to access the implicit surface encoded by z.
Simply selecting query points based on their distance values do not form a derivative
with respect to the latent vector z. Moreover, the regularly-sampled locations can be
estimated only approximately on the surface. However, we utilize that deriving SDFs
with respect to their location yields a normal at this point, practically computed in a
backward pass:

ni =
@f(xi; z)

@xi
. (5.2)

As normals outline the direction to the closest surface and signed distance values
provide the exact distance, we project the query location onto a 3D surface position pi:

pi = xi �
@f(xi; z)

@xi
f(xi; z). (5.3)

To obtain clean surface projections we disregard all points xi outside a narrow band
(|si| > 0.03) of the surface. A schematic explanation can be found in Fig. 5.3. With

76

5.2 Methodology

Figure 5.4: Oriented tangent discs (right) represent the surface geometry more accurately
than billboard ones. We reduced spatial sampling and diameters for better empha-
sis.

this formulation, we can define derivatives at pi with respect to the scale, pose, or latent
code.

Surface Tangent Discs In the computer graphics domain, the concept of surface ele-
ments (surfels) [118] is a well-established alternative to connected triangular primitives.
Our di↵erentiable SDF representation yields oriented points and can be immediately
used to render surface discs. To obtain a water-tight surface, we determine disk diame-
ters large enough to close holes. In Fig. 5.4 we outline the di↵erence between (oriented)
surface tangent discs and billboard ones pointing straight at the camera.
We construct the surface discs with the following steps:

1. Given the normal of a projected point ni =
@f(pi;z)

@pi
, we estimate the 3D coordinates

of the resulting tangent plane visible in the screen. The distance d of the plane to
each 2D pixel (u, v) can be computed by solving a system of linear equations for
the plane and camera projection:

8
><

>:

u0 = (u� ou)
d

fu

v0 = (v � ov)
d

fv

Au0 +Bv0 + Cd�Au0
i
�Bv0

i
� Cdi = 0

(5.4)

The first two equations are the perspective projection equations and the third one
is a plane equation. If we solve the above system by a simple substitution, we get
the following:

d(
A(u� ou)

fu
+

B(v � ov)

fv
+ C)

�Au00 �Bv00 � Cd0 = 0 �!

d =
Au0

i
+Bv0

i
+ Cdi

(A(u0�ou)
fu

+ B(v0�ov)
fv

+ C)

=
ni · pi

ni ·K�1(u, v, 1)T

(5.5)

77

5 9D Pose Estimation for Autolabeling

where K�1 is the inverse camera matrix, followed by backprojection to get the
final 3D plane coordinate:

P = K�1 · (u · d, v · d, d)T . (5.6)

2. Estimate the distance between the plane vertex and surface point and clamp if it
is larger than a disc diameter:

M = max(diam� ||pi � P ||2, 0) (5.7)

To ensure water-tightness we compute the diameter from the query location density:
diam = mini 6=j ||xi � xj ||2

p
3. Executing the above steps for each pixel yields a depth

map Di and a tangential distance mask Mi at point pi.

Rendering Function To generate a final rendering we need a function to compose
layers of 2D-projected discs onto the image plane. Similarly to [61], we combine colors
from di↵erent point primitives based on their depth values. The closer the primitive is
to the camera, the stronger its contribution. We use softmax to ensure that all primitive
contributions sum up to 1 at each pixel. More specifically, the rendering function is:

I =
X

i

NOCS(pi) ⇤ wi, (5.8)

where I is the resulting image, NOCS returns coordinate coloring, and wi are the
weighting masks that define the contribution of each disc:

wi =
exp(�D̃i�)MiP
j
exp(�D̃j�)Mj

, (5.9)

where D̃ is the normalized depth, and � is a transparency constant with � �!1 being
completely opaque as only the closest primitive is rendered. This formulation enables
gradient flow from pixels to surface points and allows image-based optimization.

5.2.3 3D Autolabeling Pipeline

The general idea of our autolabeling approach is to exploit weak labels and strong
di↵erentiable priors to recover labels of higher complexity. While this idea is generic, we
focus specifically on cuboid autolabeling of driving scenes.

We present a schematic overview in Fig. 5.5 where we run multiple loops of the anno-
tation pipeline. In the first loop, the CSS label pool solely consists of synthetic labels
and the trained CSS network is therefore not well-adapted to real imagery. The results
are noisy NOCS predictions which are reliable only for well-behaved object instances in
the scene. Therefore, we define a curriculum in which we first focus on easy annota-
tions and increase the di�culty over more loops. We define the di�culty of a label by
measuring the pixel sizes, the amount of intersection with other 2D labels, and whether
the label touches the border of an image (often indicating object truncation). We also
establish thresholds for these criteria to define a curriculum of increasing di�culty.

78

5.2 Methodology

CSS Net
CSS Label Pool

9
Autolabel

Verification

Automatic Looping

Dataset

Optimization

Retraining

Figure 5.5: Automatic annotation pipeline. We fetch frames from the dataset and sep-
arately process each 2D detection using our CSS network and di↵erentiable op-
timization procedure. Afterwards, we perform a verification to discard incorrect
autolabels before saving them into our CSS label pool. Once all frames are pro-
cessed, we retrain our CSS network and begin the next loop over the dataset.

CSS Network The network is largely based on DPOD from Chapter 4. It is de-
rived from ResNet18 and adopts an encoder-decoder structure, processing 128⇥128 in-
put patches to output a NOCS map (similar to UV maps) of the same size and a 3D
shape vector. Before executing the first annotation loop, our CSS network must learn to
infer 2D NOCS maps and shape vectors from patches. As mentioned, we bootstrap such
a mapping from a synthetic dataset. In total, we extract around 8k patches and, having
access to CAD models, also create the necessary regression targets. We demonstrate
some frames and training data in Fig. 5.6b.

5.2.3.1 Initialization and Optimization

Here, we describe the process represented in Fig. 5.1 in more detail. For a given patch we
infer the 2D NOCS map M and shape vector z. We decode z into an SDF and retrieve
the 3D surface points p = {p1, ..., pn} of the object model (as described in Section 3.2) in
its local frame, for which we compute the NOCS coordinates pc = {pc1, ..., pcn}. We also
project the 3D LIDAR points l = {l1, ..., lk} contained inside the camera frustum onto
the patch and collect the corresponding NOCS coordinates lc. To estimate an initial
pose and scale, we establish 3D-3D correspondences between p and l. For each pi, we
find its nearest neighbor based on NOCS distances:

j⇤ = argmin
j

||pci � lcj ||2 (5.10)

and keep it if ||pc
i
� lc

j⇤ || < 0.2. Finally, we run Procrustes [119] with RANSAC to
estimate pose (R, t) and scale s.

79

5 9D Pose Estimation for Autolabeling

(a) 3D models (b) RGB frame and NOCS patches

Figure 5.6: Synthetic PD dataset. (a) Cars from the PD dataset that were used to train
our DeepSDF shape space. (b) Top: Random RGB frame. Bottom: Patches used
for CSS training.

On this basis, we apply our di↵erentiable optimization over complimentary 2D and 3D
evidence. While the projective 2D information provides strong cues about the orientation
and shape, 3D points allow reasoning over the scale and translation. At every iteration
we decode the current shape vector estimate ẑ, extract surface points pi, and transform
them based on the current estimates of the pose and scale:

p̂i = (R̂ · ŝ) · pi + t̂. (5.11)

Given these surface model points in the scene frame, we compute the individual losses
as follows.

2D loss: We employ our di↵erentiable SDF renderer to produce a rendering R for
which we seek maximum alignment with NOCS map M. Since our predicted M can
be noisy (especially in the first loop), minimizing dissimilarity min||M �R|| can yield
suboptimal solutions. Instead, for each rendered spatial pixel ri in R we determine the
closest NOCS space neighbor in M, named mj within a small radius ✓, and set them in
correspondence if their NOCS distance is below a predefined threshold. The loss is then
defined as the mean distance over all such correspondences C2D in the NOCS space:

loss2D =
1

|C2D|
X

(i,j)2C2D

||R(ri)�M(mi)||2. (5.12)

3D loss: For each p̂i, we determine the nearest neighbor from l and keep it if it is closer
than 0.25m. As the initializations are usually good, we avoid outliers in the optimization
with such a tight threshold. The loss is then calculated as the mean distance over all
correspondences C3D:

loss3D =
1

|C3D|
X

(i,j)2C3D

||p̂i � lj ||2. (5.13)

80

5.2 Methodology

Figure 5.7: Qualitative results of our labeling pipeline. We mark the ground truth
cuboids in red and our predictions in blue. We can achieve rather tight fits that
lead to cuboids of slightly di↵erent sizes compared with the ground truth.

Altogether, the final criterion is the sum of both losses:

loss = loss2D + loss3D. (5.14)

As the loss terms have similar magnitudes we did not consider a need for any additional
balancing.

5.2.3.2 Verification and CSS Retraining

Our optimization framework will inevitably output incorrect results at times, so we need
to ensure that the influence of badly-inferred autolabels is minimized. To this end, we
enforce geometric and projective verification aiming to remove incorrect autolabels with
the largest impact. To achieve this, we measure the amount of LIDAR points that are in
a narrow band (0.2m) around the surface of an autolabel and reject it if less than 60%
are outside this band. Furthermore, we define a projective constraint where autolabels
should be rejected if the rendered mask’s IoU with the provided 2D label is below 70%.
All autolabels that remain after the verification stage are gathered and added to the

CSS label pool. After the first loop, we obtain a mixture of synthetic and real samples
that are then used to retrain and improve the robustness of our CSS network. Over
multiple self-improving loops, we keep growing and retraining, which results in better
CSS predictions, better initializations, and more accurate autolabels.

81

5 9D Pose Estimation for Autolabeling

5.3 Experimental Evaluation

We evaluate our approach on the well-established KITTI3D dataset [113], including 7481
frames with accompanied cuboid labels for the “Car” category, which we focus on. We
consider the most-widely used 3D metrics for driving datasets: BEV IoU and 3D IoU
from KITTI3D as well as the distance-thresholded metric (NS) from NuScenes [120],
which decouples location from scale and orientation. All three metrics are utilized to
evaluate Average Precision for matches at certain cuto↵s, and we threshold BEV and
3D IoUs at 0.5 whereas NS is computed at distance cuto↵s of 0.5m and 1m.

The KITTI3D metrics are often evaluated at a strict threshold of 0.7. After thorough
inspection, we observed that it is di�cult to infer the correct cuboid size from tight
surface fits. The KITTI3D cuboids have a varying amount of spatial padding and 3D
detection methods learn these o↵sets. Therefore, we opted to relax the threshold aiming
to facilitate a fairer comparison with respect to the estimated tight cuboids. Figure 5.7
represents several examples of appropriate autolabel estimates among which some do
not pass the 0.7 3D IoU criterion.

Implementation Details We use PyTorch [121] to implement the whole pipeline.
For each 2D-labeled instance we run 50 iterations and use the ADAM optimizer for
the pose variables with a learning rate of 0.03 whereas SGD is applied to the scale and
shape with smaller learning rates (0.01 and 0.0005) and no momentum to avoid observed
overshooting behavior. It takes approximately 6 seconds to autolabel a single instance
on a Titan V GPU, and one autolabeling loop takes 1-2 hours to complete for all frames
when parallelizing on 2 GPUs.

Data Augmentation Our synthetic bootstrapping requires many kinds of augmenta-
tion to allow for initial domain transfer. Given a set of ground truth poses with associated
CAD models that we extract from our synthetic PD dataset (see Figure 5.6b), we use
our DeepSDF network and our di↵erentiable renderer to project the models onto the
screen. Instead of rendering the colors, we render the models’ normalized coordinates
(NOCS) represented as RGB channels (Figure 5.8c). Additionally, we render object
normals (Figure 5.8b), which are subsequently used for 0-isosurface projection. Our
augmentation module takes RGB crops (Figure 5.8a) and normal maps and applies 2D
and 3D augmentations. 2D augmentations are based on the torchvision.transforms

module operations and include random 10� rotations, horizontal flips, cropping, changes

(a) RGB (b) Normals (c) NOCS (d) Light 1 (e) Light 2 (f) Light 3

Figure 5.8: Data input modalities: (a) input RGB image, (b) rendered normal map, (c) ren-
dered NOCS. Light module outputs: (d, e, f).

82

5.3 Experimental Evaluation

Table 5.1: Cuboid autolabel quality when inputting into the CSS network (a) 2D ground
truth boxes, (b) RCNN detections, and (c) Mask-RCNN detections. We run two
self-improving loops to slowly incorporate more labels into the pool.

Loop Di↵.
KITTI GT RCNN MASK-RCNN

BEV@0.5 3D@0.5 NS@0.5 NS@1.0 BEV@0.5 3D@0.5 NS@0.5 NS@1.0 BEV@0.5 3D@0.5 NS@0.5 NS@1.0

1 E 78.09 63.53 85.59 95.58 78.45 63.71 85.85 95.62 78.46 63.69 86.27 95.76

2
E 77.84 62.25 82.40 90.84 80.57 60.11 86.05 94.62 80.70 63.96 86.52 94.31
M 59.75 42.23 60.27 77.91 61.17 42.37 64.11 85.85 63.36 44.79 64.44 85.24

in brightness, contrast, and saturation. Moreover, normal maps provide us with local
surface information that we use in conjunction with simple Phong shading. Thus, we
can generate lighting based on di↵erent illumination types (namely ambient, di↵usive,
and specular) during training. Examples are shown in Figures 5.8d, 5.8e, 5.8f. Note how
the bottom and top sides of the car change illumination between frames (d) and (f).

5.3.1 Correctness of Autolabels

The most important quantitative criterion is the actual correctness of the estimated
cuboids. Although our method is fully automatic, we have access to KITTI3D 2D ground
truth boxes and therefore evaluate two scenarios. Firstly, we obtain 2D boxes from
KITTI3D for autolabeling and then, utilize their predefined criteria to determine whether
an annotation is considered easy or moderate. Secondly, we employ the detectron2
implementation [122] of Mask-RCNN [123] using a ResNeXt101 backbone trained on
COCO to evaluate the applicability of o↵-the-shelf object detectors for full automation.
In the detection scenario, we run separate experiments for boxes and masks and apply
following di�culty criteria similar to KITTI3D: easy if label height > 40px and not

In
pu

t
Lo

op
 1

Lo
op

 2
Lo

op
 3

Figure 5.9: NOCS prediction quality of our network over consecutive loops for the same
patch. Initially, the predictions are rather noisy because of the synthetic domain
gap. Within each subsequent autolabeling loop the predictions become more accu-
rate overall.

83

5 9D Pose Estimation for Autolabeling

Table 5.2: The performance comparison of the 3D object detectors trained on the true
KITTI labels vs. our autolabels. Concerning the BEV metric, the detectors trained
on autolabels alone achieve the results equal to the current state of the art. In the
case of the 3D AP metric, the competitive results are achieved in both considered
variants at the IoU 0.5 threshold.

2D AP @ 0.5/0.7 3D AP @ 0.5/0.7 BEV AP @ 0.5/0.7
Method Easy Moderate Easy Moderate Easy Moderate

PointPillars [124] (GT Labels) - / - - / - 94.8 / 81.1 92.4 / 68.2 95.1 / 92.1 95.1 / 84.7
PointPillars [124] (Autolabels) - / - - / - 90.7 / 22.4 71.1 / 13.3 94.9 / 81.0 88.5 / 59.8

MonoDIS [125] (GT Labels) 96.1 / 95.5 92.6 / 86.5 45.7 / 11.0 32.9 / 7.1 52.4 / 17.7 37.2 / 11.9
MonoDIS [125] (Autolabels) 96.7 / 85.8 86.2 / 67.6 32.9 / 1.23 22.1 / 0.54 51.1 / 15.7 34.5 / 10.52

touching other labels or image borders; moderate if height > 25px and not having an
IoU > 0.30 with any other label.

We present the obtained results in Table 5.1. As expected, the first loop with a
purely synthetically-trained inference on easy real samples does not yield a considerable
di↵erence between the three scenarios. All of them are impacted by noisy CSS predictions
and start from the same RANSAC initialization, although the detection-derived labels
are tighter and slightly less influenced by CSS background noise. Overall, each scenario
achieves a BEV AP close to 80% and a 3D AP of approximately 60% over all easy
samples. We execute a second loop over the dataset using the retrained CSS network
and observe that the results for the easy samples stabilized. Additionally, we note
that we can recover approximately 60% BEV AP over all considered moderate samples.
Noteworthy, the estimated NS scores are quite high, indicating that most autolabels
(more than 90%) are within one meter of the real location.

However, we observe a drop of around 20 points across all metrics for the harder
samples. As our method is reliant on 3D-3D RANSAC, it requires a minimum set of
inliers to achieve proper solutions. We often observe that this made correspondence
finding di�cult for occasional samples due to occlusion and distance, thus impacting
recall.

Fig. 5.9 shows the increasing quality of the estimated NOCS predictions over multi-
ple loops. Overall, we observe a rather fast di↵usion into the target domain and that
executing two loops is su�cient to stabilize the results.

5.3.2 Ablation

We aim to investigate how much the initial estimates from 3D-3D RANSAC benefit from
our optimization. To this end, we consider the easy ground truth boxes from KITTI3D
and utilize the synthetic CSS network to analyze the first annotation loop with the worst
initialization. As represented in Table 5.3, the RANSAC baseline provides rather good
localization which is best captured by the NS metrics (81.36% and 95.45%). Nonetheless,
the pose-optimized autolabels yield a significant jump in 3D IoU (41.85% vs. 63.42%),
suggesting that we recover substantially better rotations, given that the NS scores are

84

5.3 Experimental Evaluation

similar. When ablating over the other variables we observe rather mixed results in which
certain metrics increase or decrease.
When ablating over the losses, we note a drastic drop in the 3D metrics when optimiz-

ing only in 2D. Intuitively, our di↵erentiable renderer aligns the data rather appropriately
in the image space; however, both scale and translation are freely drifting. Therefore,
optimizing the 3D loss results in strong spatial alignment. Nonetheless, optimizing the
sum of both losses trades BEV AP (80.61 to 78.09) for 3D AP (60.92 to 63.53).

5.3.3 Autolabeling for 3D Object Detection

Since autolabels are usually not the final goal but rather a means to an end, we investigate
the applicability of our labels to the task of 3D object detection. We evaluate the quality
of our labels concerning both a traditional LIDAR-based detection setting and a purely
monocular setting, based on several recent works that achieved high quality results on
the KITTI dataset [126, 125, 124].
We implemented a version of the current state-of-the-art monocular detector MonoDIS

[125] and ensured that we can reproduce the reported results. Additionally, we utilize
the o�cial implementation of PointPillars [124], a state-of-the-art LIDAR-only detec-
tor. To train MonoDIS, we follow the training schedule proposed in [125]. Concerning
PointPillars training, we accelerate the training by means of 8 V100 GPUs and a batch
size of 16. Accordingly, we scale the learning rate by a factor of 8. We evaluate the
obtained results on the MV3D train/val split [127]. While training on autolabels, we do
not change any hyperparameters defined in the baseline protocols.
We present the comparison results in Table 5.2 and depict several qualitative detections

obtained from autolabel-trained detectors in Fig. 5.10.
Remarkably, concerning the BEV metric, both detectors trained on autolabels alone

achieve competitive performance compared with detectors trained on true KITTI labels
at both the 0.5 and 0.7 IoU thresholds. This indicates that our autolabeling pipeline is
capable of highly accurate localization of cuboids.

Figure 5.10: Detections from the autolabel-trained detectors. We draw local 3D frames
to identify correct orientation.

85

5 9D Pose Estimation for Autolabeling

Table 5.3: Ablation study over each optimization variable and each separate loss.

Config BEV@0.5 3D@0.5 NS@0.5 NS@1.0

RANSAC 77.00 41.85 81.36 95.45

(R, t) 77.19 63.42 86.20 95.53
(R, t), s 77.23 62.92 86.01 95.32

(R, t), s, z 78.09 63.53 85.59 95.58

2D loss 18.08 11.09 18.35 46.19
3D loss 80.61 60.92 85.63 95.49

Considering the 3D AP metric, the obtained results are in line with the conclusions
represented in Table 5.1. At the more tolerant IoU 0.5 threshold, our autolabel trained
detectors performed within 70� 90% of the true labels. Occasionally missing detections
and poor shape estimates do not deteriorate the overall performance.

At the IoU 0.7 threshold, the detector performance worsens. We observe that this
is not caused by poor predictions, but by the fact that KITTI labels are often inflated
with respect to the estimated cuboids. Therefore, at the strictest thresholded 3D IoU, we
observe a corresponding drop in precision for detectors trained on our “tight” autolabels.

5.4 Conclusion

In this chapter, we presented a novel view on parametric 3D instance recovery in the
wild based on a self-improving autolabeling pipeline, purely bootstrapped from synthetic
data and o↵-the-shelf detectors. Fundamental to our approach is the combination of
dense surface coordinates with a shape space, and our contribution towards di↵erentiable
rendering of SDFs. We show that our approach can recover a substantial amount of
cuboid labels with high precision, and that these labels can be used to train 3D object
detectors with results close to the state of the art.

86

6 RGB-D 6D Pose Estimation Dataset

Among the most important prerequisites for creating and evaluating 6D pose detectors
are the datasets with labeled 6D poses. With the advent of deep learning, demand
for such datasets is growing continuously. However, existing datasets are scarce and
typically have restricted setups, such as a single object per sequence, or they focus
on specific object types, such as textureless industrial parts. Besides, two significant
components are often ignored: training using only available 3D models instead of real
data and scalability, i.e., training one method to detect all objects rather than training
one detector per object. Other challenges, such as occlusions, changing light conditions
and changes in object appearance, as well as precisely defined benchmarks are either not
present or are scattered among di↵erent datasets. In this chapter, we present a dataset
for 6D pose estimation mainly targeting the mentioned challenges. It features 33 objects
(17 toy, 8 household and 8 industry-relevant objects) over 13 scenes of various di�culty.
We also present a set of explicit benchmarks aiming to test various desired detector
properties. For each of the benchmarks we set a baseline using the state-of-the-art
DPOD 6D object detector from Chapter 4.

6.1 Introduction

It is remarkable that most deep learning-based 6D pose detectors use a single neural
network per object, in contrast to 2D object detectors, e.g., YOLO [39], SSD [98] or
R-CNNs [128, 129, 130, 131], which use one network for all object classes. One of the
reasons for this issue is the unavailability of a proper dataset with a variety of sequences
and objects and well-defined benchmarks. This is natural since producing large number
of 3D models and scenes with annotated poses is an expensive and time-consuming
task. Nevertheless, training one network per object defeats the scalability aspect that
is a natural characteristic of deep neural networks. One of the central aspects of our
proposed dataset is the ability to test methods’ scalability by introducing corresponding
benchmarks and to encourage training of detectors on renderings of 3D models instead
of using real data.
Another problem that stems from the unavailability of large-scale 6D pose estimation

datasets is overfitting. It is not a secret that when it comes to deep learning-based
6D object detectors, training them on real data yields the best results. However, since
existing datasets are rather small, 6D pose estimators trained on real data from existing
datasets often overfit. Unfortunately, since training images are inevitably very similar to
the test ones, the results do not reveal this problem still providing very good estimates.
This makes it very di�cult to properly evaluate the actual power of the method and
undermines fair comparison of various approaches. What is even more disappointing, is

87

6 RGB-D 6D Pose Estimation Dataset

Figure 6.1: HomebrewedDB scene examples. Our dataset features 13 RGB-D annotated
scenes of various di�culty. The reconstructed 3D models of the objects are rendered
on top of RGB images with obtained ground truth poses.

that when overfitted deep learning-based 6D object detectors are applied to real data
containing the training objects placed in a di↵erent environment, they often fail to
generalize providing completely unreliable estimates and making their possible industrial
usage rather improbable. A sound alternative to using real annotated sequences for
training are synthetic data. Textured synthetic CAD models can be easily rendered to
compile a dataset of needed complexity and variability. However, this fact was only used
in few studies, most notably SSD6D [50] and DPOD (Chapter 4). As we will show in
this chapter, despite of showing worse results on the test set when compared to methods
trained on real data due to the domain gap, training from synthetic data results in
network with better generalization properties.

Our dataset contains 13 full-circle scenes filmed with both PrimeSense Carmine 1.09
(structured light) and Microsoft Kinect 2 (time-of-light) RGB-D cameras resulting in
a total of 34,830 fully annotated frames with poses for all objects in all frames. The
complexity of the scenes varies from simple (several separated objects per scene) to
heavily-cluttered and occluded (objects close together or on top of each other and also
mixed with other objects not present as 3D models). Another aspect that is not ad-
dressed in the other datasets is strong variation of the illumination, including not only
changes in light intensity, but also in light color. Driven by the fact that in industry ob-
jects can undergo severe appearance changes, we created a benchmark where the object
appearance is altered compared to the one in available 3D models.

To summarize, the contributions of this chapter are as follows:

1. 33 highly accurately reconstructed 3D models of toys, household objects and
low-textured industrial objects of sizes varying from 10.1 to 47.7 cm in diameter.

2. 13 sequences, each containing 1340 frames filmed using 2 di↵erent RGB-D sen-
sors. Scenes span a range of complexity from simple (3 objects on a plain back-
ground) to complex (highly occluded with 8 objects and extensive clutter) (Fig. 6.3).
Also, two sequences feature drastic light changes or contain objects with altered
textures (Fig. 6.4).

88

6.2 Related Datasets

3. Precise 6D pose annotations for dataset objects in the scenes, which were
obtained using an automated pipeline (see Section 6.3.5).

4. A set of benchmarks to facilitate comprehensive evaluation of object detection
and 6D pose estimation methods.

6.2 Related Datasets

In this section, we discuss the most popular datasets for 6D pose estimation. Given the
fact that determining ground truth 6D poses from RGB images is an ambiguous task
requiring manual interventions, it is not surprising that the majority of 6D pose datasets
are made with the use of RGB-D cameras. Because these cameras provide depth images
aligned with color images, the task of 6D pose estimation becomes simpler and more
automated.

LineMOD Dataset. One of the most widely used 6D pose datasets is LineMOD by
Hinterstoisser et al. [58] containing objects embedded in cluttered scenes. It was acquired
with PrimeSense Carmine RGB-D sensor and comprises 15 objects in total. For each
sequence, poses of only one object are annotated. The target objects with the existing
ground truth poses are either not occluded, or are subject to very slight occlusions. The
original template matching method [58], which was published alongside the dataset,
performed poorly on RGB and depth images separately, while the results obtained on
RGB-D images were extremely good and still remain hard to achieve by many modern
deep-learning-based methods. However, this method scales poorly and cannot handle
occlusions well. LineMOD dataset also has an extention called OCCLUSION dataset
created by Brachmann et al. [100] to address the lack of occluded test data. In this
extension of the original LineMOD additional manual annotations of 6D poses for all
the objects in each frame were included. Due to the necessity of intensive manual labor,
it was done for only a limited number of frames. Availability of RGB and depth images
as well as 3D CAD models with original object colors resulted in probably the widest
use of the LineMOD dataset of all those targeting 6D pose estimation. Deep learning
methods use RGB images from this dataset for object detection and 6D pose estimation.

T-LESS Dataset. T-LESS [132] is a more recent dataset that is gaining popular-
ity. It contains 30 textureless industrial objects and 20 RGB-D scenes captured with
three synchronized cameras (PrimeSense Carmine 1.09 and Kinect 2 RGB-D cameras
and Canon RGB camera). The objects in this dataset have strong inter-object similar-
ity. The acquired scenes vary from simple (less clutter and several objects per scene) to
complex (heavily cluttered, with piles of objects, mimicking a typical robotic bin-picking
scenario). Both hand-designed CAD models and reconstructed 3D models are included
in T-LESS. Training images contain isolated objects on black backgrounds, while test
images capture entire scenes with labeled 6D poses for each object in each frame. The
structure of this dataset is exceptional, but due to symmetry, low texture and the in-
dustrial nature of the objects it is very challenging, which might be the reason why it

89

6 RGB-D 6D Pose Estimation Dataset

has not gained in popularity at the pace it deserves. Truly inspired by T-LESS [132], we
prepared our dataset similar to this one in terms of structure. However, our dataset cov-
ers a wider range of object types, spanning toys, household objects as well as industrial
objects. Also, we aimed to build a dataset with occlusion challenges, and that goes well
beyond OCCLUSION, thereby providing many more frames and scenes for this task.

Other Relevant Datasets. The following datasets have been sporadically used in
some publications, but their systematic use has not been achieved. Tejani et al. [133]
contains 2 textureless and 4 textured objects with 700 frames of test images. A charac-
teristic of this dataset is that it includes multiple instances of the same object. Clutter
and occlusions are moderate, which makes it not particularly challenging. Doumanoglou
et al. [134] presented a bin-picking dataset with 183 test images and only two objects
from the Tejani dataset, but multiple instances of them. The Challenge and Willow
datasets [135] contain a larger number of objects (176), but a relatively small number of
test images (353). The TUW dataset [136] is similar with 17 objects in 224 test images.
Datasets that are suited for robotic tasks are the Rutgers [137], the Amazon Picking
Challenge [138], and the BIGBird [139] datasets. Datasets addressing the light change
challenge are TUD-Light and Toyota Light, both used and referenced in the benchmark
paper by Hodan et al. [140]. Another recent dataset that came out with the PoseCNN
detector [101] is YCB-Video. Unlike T-LESS, which contains images of the scenes from
all viewpoints, this dataset resembles LineMOD, containing short videos depicting sev-
eral household objects in the scene. The large number of video sequences (92) as well as
the presence of occlusions in the test scenes make this dataset quite attractive.

Our dataset could be considered to be between OCCLUSION and T-LESS. It contains
high-quality annotations, a multitude of objects and a large number of scenes and test
images. In contrast to the recent work of Hodan et al. [140], where the authors tried to
unify 8 di↵erent datasets and have concentrated on evaluation of RGB-D methods, we
are more interested in RGB methods, even though full RGB-D images are available in
our dataset. With scalability at its core, we design benchmarks in which one network is
trained either for all the available objects or only for the objects present in a particular
scene. Additionally, we introduce scenes with severe environment changes, including
changes in light color and intensity as well as changes in object appearance. We believe
that this dataset will push forward research on scalable 6D object detection and domain
adaptation.

6.3 HomebrewedDB Dataset Creation

The following sections cover the dataset creation, including calibration of RGB-D sen-
sors, reconstruction of 3D models, depth correction, acquisition of image sequences and
creation of ground truth annotations.

90

6.3 HomebrewedDB Dataset Creation

Figure 6.2: Rendered reconstructed 3D models of HomebrewedDB.

6.3.1 Calibration of RGB-D Sensors

For the footage of validation and test sequences we used two RGB-D sensors: the
structured-light PrimeSense Carmine 1.09 and the time-of-flight Microsoft Kinect 2. In-
trinsic and distortion parameters of both sensors were estimated during the calibration
procedure. We used ArUco board [141], which yielded better calibration results in com-
parison to the classical checkerboard pattern, and the corresponding intrinsic calibration
module from OpenCV [142]. As a result of calibration, the root-mean squared repro-
jection error calculated at the corners of the ArUco markers is 0.5 and 0.3 px for
Carmine and Kinect 2 respectively. Intrinsic and distortion parameters for both sensors
are provided with the dataset. Because depth and color images were obtained from two
di↵erent cameras, depth-to-color registration was performed using OpenNI 2.2 Driver
for Carmine and Windows SDK 2.0 for Kinect 2. Given that the scenes were recorded
independently with each of the sensors, there was no need in extrinsic calibration of the
cameras.

6.3.2 Sequence Acquisition

In total, we acquired 1 handheld and 2 turntable sequences for each of the scenes with
each RGB-D sensor. Turntable sequences capture a full 360� rotation of a markerboard
with objects on it using a camera mounted on a tripod. Each turntable sequence has
170 RGB and depth images filmed with elevation angles of 30� and 45�. Together
with the ground truth 6D pose labels they form a validation dataset. In contrast, the
test sequences were recorded in handheld mode. There were two major reasons for the
handheld recording instead of using a controlled setup similar to those in T-LESS [132]
or BigBIRD [139]. The first clear advantage is the close resemblance to regular camera
use, while the second one is the ability to introduce more variation to camera poses in
terms of considerable scale changes as well as in-plane rotation. For the test sequences,
a total of 1000 RGB and corresponding depth images of each scene were captured with
each sensor.

91

6 RGB-D 6D Pose Estimation Dataset

Figure 6.3: Sample RGB images from the sequences presented in the Home-
brewedDB dataset. Complexity of the scenes varies in terms of number and
size of objects, levels of occlusion and clutter.

While shooting the sequence, a full pass around the markerboard was made. Within
the test sequences, the distance from the camera to an object was varied from 0.42
to 1.43 m, while the elevations were within 11�-87�. Both color and depth images in
the sequences that were recorded with the Carmine sensor have a default resolution of
640⇥480 px, while Kinect 2 RGB images are of size 1920⇥1080 px and depth images
of 512⇥424 px. The depth images were resized to the dimension of RGB images during
registration.

For each of the scenes (Figs. 6.3 and 6.4) target objects were placed on the markerboard
with ArUco markers facilitating camera pose estimation. For the simpler scenarios, we
placed the objects on a monochrome (white or dark-blue) Lambertian surface, and for
the more complicated ones the objects resided on a multicolor reflective surface, being
in some cases on top of each other. Also, more complicated sequences featured severe
occlusions as well as objects not present in the dataset to make the scene more cluttered.

One new feature introduced in HomebrewedDB is a domain adaptation sequence aim-
ing to test the robustness of detection and pose estimation methods with respect to
significant changes in lighting conditions. To create it, we used a spotlight to repeatedly
project series of light patterns with di↵erent colors and intensities onto the scene. We
also created a sequence to evaluate robustness to considerable texture changes. For that
we altered the textures of the objects by selectively painting some part of them with
chalks of various colors.

6.3.3 3D Model Reconstruction

To obtain the 3D models presented in HomebrewedDB (Fig. 6.2), we first scanned each
object from multiple viewpoints using Artec Eva [143], a structured light 3D scanner.
We opted for Artec Eva since it provides precise depth measurements and high resolution
texture maps, which are crucial for reconstructing high-quality 3D models. The following
pipeline for converting the scans to completely reconstructed 3D models proceeded using
Artec Studio software. First, raw meshes were reconstructed for each of the scanned
viewpoints. Secondly, we manually removed unnecessary parts of the meshes and then

92

6.3 HomebrewedDB Dataset Creation

Figure 6.4: Sample RGB images from sequences belonging to the domain adapta-
tion benchmark. From left to right: original sequence, illumination benchmark
sequence, texture change benchmark sequence.

aligned them. Then we removed outliers and minor artifacts from the models. After that
we proceeded with global optimization of the mesh structure, including inpainting minor
holes in the model and as inducing smoothness of the mesh. Next, we back-projected
high-resolution textures onto the resulting 3D model. Finally, we used MeshLab [144]
to center and and axis-align the models and computed surface normals as weighted sum
of normals of the incident facets [145].

6.3.4 Depth Correction

Similar to works [146, 132], we observed that depth measurements by both Carmine
and Kinect 2 have systematic errors: the measured depth values were always slightly
di↵erent from those calculated from the markers in images captured with calibrated
RGB cameras. Although it has been reported [146] that a single correction multiplier is
su�cient to address the depth measurement error, we confirmed in our setup what Hodan
et al. [132] had found – that first degree polynomial works better as a correction factor
for the depth measurements in our setup. Using regularized least squares to account
for noise in the measurements we derived the following linear depth-correction models:
dc = 1.0391 · d� 15.8 for Carmine and dc = 1.0186 · d� 13.1 for Kinect 2 (measured in
millimeters). After applying the corrections, we found that the mean absolute di↵erence
from expected depth had been reduced from 14.7 mm to 2.03 mm and from 5.81 mm to
2.66 mm for Carmine and Kinect 2 respectively. We applied the corrections models to
the entire dataset, so that no further user action is required.

6.3.5 Creation of Ground Truth Annotations

The estimation of 6D ground truth objects poses for each frame in the sequence proceeded
as follows. First, the markerboard pose was estimated, providing us with the camera
trajectory around the scene. Then we obtained a dense 3D reconstruction by signed
distance field fusion of depth maps of a scene with a method of Curless and Levoy [147],
using all the images in a sequence.
The next step was to estimate a rigid body transformation of a 3D model from its

own coordinate system to the coordinate system of the scene (i.e. markerboard). Given

93

6 RGB-D 6D Pose Estimation Dataset

Table 6.1: Di↵erences between the depth of object rendered models at the ground
truth poses and the captured depth (in mm). µ� and �� is the mean and the
standard deviation of the di↵erences, µ|�| and med|�| is the mean and the median of
the absolute di↵erences.

Sensor µ�µ�µ� ������ µ|�|µ|�|µ|�| med|�|med|�|med|�|

Carmine 0.11 6.25 1.71 2.56
Kinect 2 0.22 7.38 0.87 9.12

that the locations of the objects with respect to the markerboard did not change when
imaged with di↵erent sensors, it was su�cient to get the object pose in the markerboard
coordinate system and then transfer it to a new sensor or camera coordinate system,
thereby avoiding performing reconstruction for each new sensor. For the purpose of
estimating 3D model poses in the reconstructed scene we used a method by Drost et
al. [148], which is based on the point-pair feature representation of a target model used
for local matching via an e�cient voting scheme on a reduced 2D search space. Having
a camera pose in each image estimated from the markerboard as well as having object
poses in the markerboard coordinate system, 6D object poses for each of the frames can
easily be computed. However, rendering the 3D models on top of RGB images revealed
that even though the method by Drost et al. [148] gives a good initial estimate of a pose,
in many cases there remain visible discrepancies, which must be mitigated in the process
of further refinement.

To improve the poses, we opted for 2D edge-based ICP [54] refinement. For each
object in the sequence we automatically selected RGB images where the object was not
occluded. This was done by rendering all the objects in the scene with the estimated
initial poses and calculating the fraction of visible pixels for the target object. Multiview
consistency was enforced such that all the camera poses stayed fixed, and optimization
was only done for the object pose in the scene coordinate system. Edge-based refinement
was performed on RGB images because depth measurements were relatively noisy and
we observed minor misregistrations between depth and RGB images, particularly for
those captured with Kinect 2.

6.3.6 Accuracy of Ground Truth Poses

To evaluate the accuracy of the computed ground truth poses, we followed the same
procedure as introduced by Hodan et al. [132]. We rendered the 3D objects using com-
puted ground truth poses and for each pixel pair with valid depths in both rendered and
captured images we computed the di↵erence � = dc � dr, where dc and dr are captured
and rendered depth values, respectively. The statistics obtained over the whole test set
are presented in Tab. 6.1. As in T-LESS [132], di↵erences exceeding 5 cm were omit-
ted from the statistics as outliers. In HomebrewedDB, such measurements amounted
to 3.7%, mostly caused by the clutter objects occluding the target objects, sensor mea-

94

6.4 Benchmarks and Experiments

surement noise, or minor discrepancies between reconstructed 3D models and real-world
objects.
From the presented results it can be seen that rendered depth maps align well with

the depth maps obtained with Carmine, resulting in mean depth di↵erence close to zero
and absolute mean of di↵erences 2 mm. For Kinect 2 depth di↵erences mean and
absolute mean values also stay very close to zero: the absolute median value is notably
higher than the absolute mean, signifying that the distribution of the depth di↵erences
is left-skewed. As noted in T-LESS [132], this might be caused by slight misregistration
of RGB and depth images captured by Kinect 2, as well as higher magnitude of noise in
the measurements of this depth sensor based on the time-of-flight principle.

6.4 Benchmarks and Experiments

In this section, we present a set of benchmarks assessing the performance of a 6D object
detector with respect to a variety of di↵erent conditions. In particular, such aspects as
scalability and resistance to occlusions, di↵erent illumination conditions and changes in
object texture are tested.

6.4.1 Evaluation Metrics

We use standard metrics for evaluating performance in 2D object detection: precision,
recall and mean average precision (mAP). Conventionally, we consider an object to be
correctly detected if the intersection over union (IoU) between the ground-truth and
predicted bounding boxes is � 0.5. To evaluate the correctness of the estimated 6D
poses, as others have done [20, 50], we use the ADD score, which is defined as the
average Euclidean distance between the model vertices transformed with ground truth
and predicted poses:

m = avg
x2M

���(Rx+ t)� (R̂x+ t̂)
���
2
, (6.1)

where M is a set of vertices of a 3D model, (R, t) and (R̂, t̂) are ground truth and
predicted rotation and translation, respectively. As mentioned in [20], a predicted pose
is considered to be correct if ADD calculated with this pose is less than 10% of a model
diameter. However, in case of more complicated scenes, there is only a small fraction
of poses falling into this category. Therefore, we also report ADD for the thresholds of
30% and 50% to give a broader overview of pose quality as well as to give an estimate
of proportion of the poses which could be still a subject for further refinement.

6.4.2 Scalability Benchmark

The first benchmark was introduced with a goal to evaluate the method’s scalability with
respect to the number of objects. The main requirement is to train a single network for
all the objects available in the dataset and test it on a set of sequences containing all
the objects. For this purpose we jointly evaluate a method on the sequences from 1 to 8,

95

6 RGB-D 6D Pose Estimation Dataset

Table 6.2: Scalability benchmark. Results of object detection and pose estimation.

Obj. ID ADD 10% ADD 30% ADD 50% Precision Recall mAP

1 23.04 68.30 81.04 0.86 0.98 0.85
2 17.85 58.02 75.87 0.62 0.89 0.56
3 14.18 55.41 72.40 0.93 0.92 0.88
4 9.09 36.74 55.43 0.66 0.79 0.53
5 11.70 43.23 58.60 0.93 0.98 0.91
6 0.00 3.51 12.13 0.67 0.68 0.46
7 15.15 44.12 60.74 0.66 0.68 0.45
8 18.67 42.74 52.28 0.33 0.24 0.08
9 2.26 13.71 27.58 0.60 0.62 0.37
10 3.15 19.63 30.96 0.89 0.86 0.76
11 0.71 4.07 9.87 0.82 0.98 0.80
12 0.50 3.74 7.48 0.47 0.40 0.19
13 2.25 20.22 35.63 0.58 0.62 0.36
14 2.88 24.04 40.19 0.41 0.52 0.21
15 0.00 1.88 5.52 0.33 0.40 0.14
16 0.00 4.70 9.94 0.48 0.36 0.17
17 0.72 3.37 17.35 0.63 0.42 0.26
18 0.16 2.24 4.32 0.49 0.63 0.32
19 7.70 28.63 45.88 0.94 0.92 0.89
20 23.22 63.60 75.73 0.92 0.96 0.91
21 8.37 36.12 50.66 0.39 0.23 0.09
22 10.04 35.97 55.02 0.76 0.78 0.59
23 16.18 62.49 82.20 0.95 0.99 0.95
24 4.08 29.25 55.78 0.19 0.15 0.03
25 9.76 39.50 50.62 0.75 0.88 0.66
26 15.01 51.83 68.98 0.78 0.79 0.63
27 13.47 51.78 71.47 0.68 0.76 0.52
28 26.17 63.30 78.07 0.80 0.92 0.73
29 13.97 38.59 57.68 0.93 0.94 0.89
30 48.63 88.71 96.34 0.80 0.98 0.79
31 6.43 21.85 36.68 0.83 0.86 0.74
32 0.00 5.95 10.71 0.23 0.17 0.04
33 11.40 45.69 64.99 0.93 0.97 0.91

which form a minimal subset of sequences with all 33 objects present. Object detection
and pose estimation results for this benchmark are reported separately for each object.

From the results presented in Table 6.2, it can be seen that the best detection and
pose estimation performance is achieved for bigger objects with distinct textures and
geometric features (e.g., 28, 30), while detection of smaller low-textured or glossy in-
dustrial objects (e.g., 12, 13, 14) is a considerable challenge for DPOD. Besides, pose
estimation results demonstrate that the DPOD detector does not scale particularly well
for this task: for 17 out of 33 objects, ADD with 10% threshold is under 10%, and there
are no instances for which the achieved score was higher than 50%.

6.4.3 Scene Benchmarks

Our dataset presents a collection of 13 scenes with a varying degree of di�culty, and each
of these scenes represents a separate benchmark, where all the objects it contains are
used for training. Except for the scenes with altered illumination conditions or texture
changes (i.e., 10 and 11), we include all the scenes in the per-scene benchmarks. All the

96

6.4 Benchmarks and Experiments

Table 6.3: Result of object detection and pose estimation presented on two bench-
marks: (1) per scene benchmark spanning over 11 scenes of the dataset and the (2)
domain adaptation benchmark evaluating the detector’s generalization capabilities.

Per Scene Texture / Illumination

Scene ID 1 2 3 4 5 6 7 8 9 12 13 5 10 11

P
o
se

ADD 10% 50.85 45.08 33.88 27.25 25.40 19.19 25.85 11.08 7.60 8.68 13.36 25.40 16.73 16.77
ADD 30% 81.34 78.46 64.53 53.10 54.00 45.39 39.99 29.78 20.12 25.68 33.41 54.00 40.32 40.83
ADD 50% 88.71 85.69 75.46 66.98 61.95 55.26 46.76 39.64 29.24 34.49 45.33 61.95 51.66 49.72

D
et
ec

t. Precision 0.79 0.62 0.76 0.76 0.65 0.46 0.68 0.51 0.26 0.33 0.13 0.65 0.57 0.43
Recall 0.95 0.64 0.82 0.92 0.80 0.68 0.84 0.62 0.33 0.40 0.20 0.80 0.63 0.53
mAP 0.82 0.48 0.72 0.78 0.64 0.36 0.64 0.41 0.14 0.20 0.04 0.64 0.42 0.32

object detection and pose estimation scores are averaged over all the objects present in
the scene. In Table 6.3 the objects detection and pose estimation performance per scene
is presented. As expected, DPOD demonstrates significantly better performance if both
tasks in the sequences with the smaller number of objects, as well as less significant
occlusions and no clutter. Also, low scores in both detection and pose estimation are
reported for scene 8, which is composed exclusively of industrial objects.

6.4.4 Domain Adaptation Benchmark

The main goal of introducing the domain adaptation benchmark is to test the robustness
of a method to significant changes in lighting conditions and objects textures. It is
composed of three scenes (5, 10 and 11) with the same set of objects, but di↵ering in
terms of illumination and the color of object surfaces. Scene 5 was captured in ambient
lighting conditions with no alteration of the objects’ appearance. In contrast, in scene
10 we used a spotlight to project light of di↵erent colors and intensity onto the imaged
objects to introduce considerable variations in illumination, whereas in scene 11, we
applied paint on the objects’ surfaces to alter their texture. For this benchmark, object
detection and 6D pose estimation scores are presented per scene.
As can be seen from results in Table 6.3, performance in both detection and pose

estimation is notably better in the cases of no added illumination or texture changes.
Under normal conditions the resulting poses are 37% more accurate based on ADD
with a 10% threshold when compared to those under altered conditions. Also, object
detection performance falls far behind under altered conditions compared to normal
conditions, resulting in 46% and 59% lower mAP scores for the scenes with variations
in light and texture, respectively. These results suggest that there is a lot of room for
further adaptation of the DPOD detector to changing environments.

6.4.5 Drawbacks of Training on Real Data

The main reason we exclusively use synthetic data for training in our benchmarks comes
from the inability of the detectors trained on a small-scale set of real data to generalize
to di↵erent environments, which may di↵er in background, illumination, texture and
other scene characteristics.

97

6 RGB-D 6D Pose Estimation Dataset

Table 6.4: Pose estimation results in terms of ADD 10% metric on LineMOD sequences
(LM) and HomebrewedDB (HB) sequence with the same objects.

Dataset Method Benchvise Phone Driller
R
ea

l LM
YOLO6D [40] 81.80 47.74 63.51

DPOD 95.34 74.24 97.72

HB
YOLO6D [40] 15.30 6.50 0.10

DPOD 57.24 33.09 62.82

S
y
n
th

et
ic LM

SSD6D + Ref. [56] 44.30 26.20 26.90
DPOD 66.76 29.08 66.60

HB
SSD6D + Ref. [56] 59.40 29.30 25.10

DPOD 70.89 35.56 66.42

To support our claim, we selected two state-of-the-art detectors, YOLO6D [40] and our
DPOD, trained on real LineMOD data and tested them on our new sequence containing
three LineMOD objects – benchvise, drill and phone (Scene 2 in Fig. 6.3). This sequence
contains a minimal number of occlusions and no clutter and may be regarded as one of
the simplest in the dataset. Besides, it was captured with the same camera as LineMOD
sequences (PrimeSense Carmine 1.09), making it similar in terms of color scheme and
noise. Performance comparison of both detectors on the LineMOD sequence and our
sequence can be seen in the ”Real” section of Table 6.4. Despite demonstrating very
good performance when tested on sequences from LineMOD, when run on our sequence
with LineMOD objects, both detectors experience a significant drop in pose estimation
accuracy in terms of the ADD 10% metric for all the objects. Specifically, the pose
estimation accuracy of DPOD dropped more than 2 times for the phone, while for
YOLO6D [40] there were nearly no correctly predicted poses for the drill.

As the second part of the experiment, we evaluated two detectors designed for training
on synthetic data, DPOD and SSD6D with model-based refinement [56], on the same
new sequence with LineMOD objects. From the results presented in the ”Synthetic”
section of Table 6.4 one can see that there is no significant di↵erence between the results
obtained on LineMOD and HomebrewedDB sequences, meaning that there is little to no
overfitting to a particular dataset. In 5 out of 6 cases, the detectors demonstrated bet-
ter performance on a simpler HomebrewedDB sequence, thus showing more predictable
behavior than in the case of training on real data. Moreover, when trained on synthetic
data, DPOD can boast higher ADD 10% scores for all the three objects in the Home-
brewedDB test sequence. This fact once again supports the claim that training detectors
on synthetic data leads to better generalization, in contrast to training on limited real
data, when even seemingly insignificant changes in the environment turn out to be a
decisive factor leading to a significant decrease in pose estimation accuracy.

98

6.5 Conclusion

6.5 Conclusion

In this chapter, we presented a new challenging dataset for 6D object detection targeting
training from synthetic data and covering the most important properties a solid object
detector should have, namely scalability with respect to the number of objects and ro-
bustness to occlusions, illumination and appearance changes. This new dataset contains
33 objects spanning 13 scenes of various di�culty. To be able to compare the detec-
tors to each other, we defined a set of benchmarks that test all of the above mentioned
properties. Finally, we developed and presented a comparably simple, yet robust and
fully automated pipeline that we used to build our dataset. We hope it will allow other
researchers to be able to create their own datasets and thus promote research in 6D pose
estimation.

99

Part II

Domain Adaptation in Depth and
RGB

101

Re
al

T-
Le
ss

Te
xt
ur
ed

Figure 6.5: Realism gap. Top: synthetic textureless models. Middle: synthetic textured
models. Bottom: real images. Networks trained on one type of data significantly
underperform when tested on another domain due to a large visual discrepancy.

Recent progress in computer vision has been dominated by deep neural networks
trained over large datasets of annotated data. Collecting those is however a tedious if
not impossible task. In practice, and especially in the industry, 3D CAD models are
widely available, but access to real physical objects is limited and often impossible (e.g.,
one cannot capture new image datasets for every new client, product, part, environment,
etc.). It thus became common to leverage such data to train recognition methods e.g.,
by rendering huge datasets of relevant synthetic images and their annotations.
However, the development of exhaustive, precise models behaving like their real coun-

terparts is often as costly as gathering annotated data (e.g., acquiring precise texture
information to render proper images from CAD data actually imply capturing and pro-
cessing images of target objects). As a result, the salient discrepancies between model-
based samples and target real ones (known as realism gap) still heavily impair the appli-
cation of synthetically-trained algorithms to real data (cf. Fig. 6.5). Research in domain
adaptation thus gained impetus the last years. Various solutions have been proposed,
but most of them require access to real relevant data (even if unlabeled) or access to
synthetic models too precise for scalable real-world use-cases (e.g., access to realistic
textures for 3D models).
In this part, we introduce two methods tackling the problem of domain gap. The first

method is based on an idea of the reverse domain adaptation. Instead of the common
pipeline of training networks to map synthetic images into the real domain, we train
networks to map real images back to the synthetic domain. This not only allows to
improve the overall performance of the system, but also introduces some long-standing
benefits: the downstream network can be trained purely on synthetic data and never
has to be retrained, as opposed to the standard pipelines.
The second method utilizes an adversarial domain randomization procedure to make

the task network robust to the possible appearance changes defined by specifically de-
signed di↵erentiable modules. The procedure uses a newly introduced deception network
that modifies input images while still preserving their geometrical meaning. The task
network is trained together with the deception network utilizing a min-max procedure.
As a result, the final task network becomes much more robust to possible image changes.

103

7 Reverse Domain Adaptation

While convolutional neural networks are dominating the field of computer vision, one
usually does not have access to the large amount of domain-relevant data needed for
their training. Therefore, it has become a common practice to use available synthetic
samples along domain adaptation schemes to prepare algorithms for the target domain.
In this chapter, we introduce a reverse domain adaptation pipeline tackling this prob-
lem from a di↵erent angle: we map unseen target samples into the synthetic domain
used to train task-specific methods. Denoising the data and retaining only the features
these recognition algorithms are familiar with, our solution greatly improves their per-
formance. As this mapping is easier to learn than the opposite one (i.e., to generate
realistic features to augment the source samples), we demonstrate how our whole solu-
tion can be trained purely on synthetic depth or RGB data and still perform better than
methods trained with domain-relevant information (e.g., real images or realistic textures
for the 3D models). Applying our approach to object recognition from texture-less CAD
data, we present the depth and RGB generative networks which fully utilize the purely
geometrical information to learn robust features and to achieve a more refined mapping
for unseen images.

7.1 Introduction

In this chapter, we introduce an approach tackling domain adaptation and realism gap
from a di↵erent angle. It is composed of a generative network to map unseen real samples
toward a relevant, easily-available synthetic domain with a goal to improve recognition

Legend
real
image xR

output
data xG

estimated
labels T s(xG)

cat

G

ben

tel

T s

real
domain

synthetic
domain

task-specific
estimation

Figure 7.1: Real ! synthetic mapping. Trained on augmented data from 3D models, our
network G can map real scans (either depth or RGB) to the synthetic domain
(either depth or surface normals). The pre-processed data can then be handed to
various recognition methods (TS) to improve their performance.

105

7 Reverse Domain Adaptation

for methods themselves trained on this noiseless synthetic modality (see Fig. 7.1). We
demonstrate that it is sensible to train task-specific networks on noiseless information
so they learn clean discriminative features, and then develop a pre-processing mapping
function from real to synthetic data; rather than to focus on developing or learning
pseudo-realistic noise models to train against.

Applied to CAD-based recognition in both depth and color pictures, our approach is
based on the assumptions that real-world images can be mapped to the synthetic domain;
and that, in absence of any real training data, this mapping can be learned by recovering
the synthetic samples altered by a stochastic noise source. Since our method only needs
to eliminate noise and retain features, it performs better than usual generative solutions
for domain adaptation, which learn the more di�cult task of generating complex features
to mimic the target data. As long as the synthetic domains contain all relevant features
and as long as those features are contained in real images, our approach successfully
enhances recognition, as demonstrated through our empirical evaluation. In summary,
we are making the following contributions:

• Synthetic modality regression for domain adaptation – We propose a novel
framework to learn a mapping from unseen real depth and RGB data to relevant
synthetic domains, denoising and recovering the information needed for further
recognition. Our solution not only covers the real-synthetic gap, but also takes
care of cross-modality mapping. More specifically, we present how color images can
be mapped to normal maps, to help pose-regression and classification in absence
of reliable texture information for training.

• Decoupling domain adaptation from recognition – Most domain adapta-
tion schemes constrain the methods training by adding pseudo-realistic or noisy
features to the training set, editing the architecture or losses, etc. In our frame-
work, task-specific algorithms simply learn on available, relevant synthetic data,
while separately our network G is trained on noisy data to map them into the
selected synthetic domain. This decoupling makes training more straightforward,
and allows G to be used along any number of recognition methods. We further-
more observe better results compared to recognition methods directly trained on
augmented data and even to solutions using real information for training.

• Performance in complete absence of real training data – Domain adapta-
tion approaches usually assume the realism gap to be already partially bridged,
requiring access to some target domain images or realistic textured synthetic mod-
els. Opting for recognition tasks with texture-less CAD data for only prior, we
demonstrate how our pipeline can be trained on purely synthetic data and still
generalize well to real situations. For that we leverage an extensive augmentation
pipeline, used as a noise source applied to training samples so our solution learns
to denoise and retain the relevant features.

• Multi-task network with self-attentive distillation for RGB – To tackle
a more challenging RGB domain mapping we develop a custom generator with

106

7.2 Methodology

multiple convolutional decoders for each relevant synthetic modality (e.g., normal
maps, semantic masks, etc.), and a distillation module on top making use of self-
attention maps to refine the final outputs.

7.2 Methodology

Formalizing our problem, let XS
c = {xS

c,i
| 8i 2 NS

c } be a dataset made of a number NS
c

of uncluttered, noiseless training samples xS
c of class c. Let XS = {XS

c | 8c 2 C } be the
complete clean training dataset. We similarly define XR, the set of target C-related real
data, completely unavailable for training. Note that samples xR can also be of a di↵erent
modality than xS (e.g., xR being color images while xS being normal maps, when no
textures were available to render synthetic color images). Finally, let T (x ; ✓T)! ey be
any recognition algorithm which given a sample x returns an estimate ey of a task-specific
label or feature y (e.g., class, pose, mask image, hash vector, etc.). We define as TS the
method trained on noiseless XS .
Given this setup, our pipeline trains a function G purely on synthetic data to learn

a mapping from complex C-related instances to their corresponding clean signal. To
achieve this when no domain-relevant data is available for training, we describe in this
section how G is trained against a data augmentation pipeline A(xS , z)! xA

z , with noise
vector z, randomly defined at every training iteration, and the resulting noisy data xA

z .
Our training approach assumes that G removes the artificially introduced noise z such
that only the original synthetic signals xS are retained. Thus, G can be seen as a noise
filter that removes unneeded elements in input data, and can be also applied over the
domain XR of real samples as long as synthetic information can be extracted from them.
We demonstrate that, in the case of CAD-based visual recognition, we can indeed define
a new generative method G fully utilizing the synthetic modalities, and a complex and
stochastic augmentation pipeline A to train G against, such that G maps real images
into the learned synthetic domain with high accuracy. We even demonstrate how this

process TS(G(xR)) = fyG is more accurate compared to TA(xR) = fyA, with the task-
specific algorithm TA directly trained on data augmented by A. Though we focus the
rest of the chapter on CAD-based visual recognition for clarity, the principles behind
our solution can be directly applied to other use-cases.

7.2.1 GAN-Based Architecture for Depth

We start with describing the architectural details of our pipeline for depth data GDEP

shown in Fig. 7.2. Working in the depth domain is beneficial since it automatically
solves the problem with texture-less data by only considering the geometry of the mod-
els. Following recent works in domain adaptation [80, 67, 65, 6, 66], we adopt a genera-
tive adversarial architecture. We first define a generator function GDEP (x ; ✓G)! xG,
parametrized by a set of hyper-parameters ✓G and conditioned by image x to generate the
output version xG. During training, the task of GDEP is to restore the noiseless depth
data from its augmented version, i.e., to obtain xG ' xS . Then, during testing, provided

107

7 Reverse Domain Adaptation

black-box, fixed network

lrelu + conv 3x3

relu + convT 3x3 + batchnorm

lrelu + conv 3x3 + batchnorm

skip layer for U-Net

“pair-fakeness” d from D and ground-truth

synthetic image xs

augmented image xa

G-output image xg

 T s-estimated labels T s (xg) and T s (xs)

Figure 7.2: Training of the depth-processing network GDEP . Following the conditional
GAN architecture, a generator GDEP is trained against a discriminatorD to recover
the original noiseless image from a randomly augmented, synthetic one. Its loss
combines similarity losses Lg and Lf , the conditional discriminator loss Ld, and
optionally a feature-similarity loss Lt if a task-specific method T s is provided at
training time.

a real image xR, GDEP generates an image xG which can be passed to TS for better
recognition results. We oppose to GDEP a discriminator network D(xA

z ,x ; ✓D)! d,
which estimates the probability d that x is the original noiseless sample xS and not the
recovered image xG = G(xA

z) [67]. The typical objective for such a solution is:

LDEP = argmin
G

max
D

↵Ld(GDEP , D) + �Lg(GDEP) (7.1)

with Ld(GDEP , D) = ExS ,z

⇥
logD(xA

z ,x
S ; ✓D)

⇤
+ (7.2)

ExS

h
log

⇣
1�D

�
xA

z , G(xA

z ; ✓G) ; ✓D
�⌘i

Lg(GDEP) = ExS ,z

h��xS �G(xA

z ; ✓G)
��
1

i
(7.3)

As explained in [67, 6, 66], the conditional loss function Ld, weighted by a coe�cient
↵ represents the cross-entropy error for a classification problem where D(xA

z ,x ; ✓D)
estimates if (xA

z ,x) is a “fake” or “real” pair (i.e., x generated by GDEP from xA
z , or x

original sample from XS).
This is complemented by a simple similarity loss Lg, an L1 distance weighted by a

parameter �, to force the generator to stay close to the ground-truth. However, since
the images we are comparing are supposed to be noiseless with no background, this
loss can be augmented with another one focusing on the foreground similarity. We thus
introduce a complementary foreground loss Lf weighted by a factor �, inspired by the

108

7.2 Methodology

content-similarity loss of Bousmalis et al. [66]. Given mS the binary foreground mask
obtained from xS (mS

ij
= 1 if xS

ij
6= 0 else mS

ij
= 0) and � the Hadamard product:

Lf (GDEP) = ExS ,z

h��(xS �GDEP (x
A

z ; ✓G))�mS
��
1

i
(7.4)

In the case that the target recognition method TS(x) ! ey is provided ready-to-use for
the GAN training, a third task-specific loss can be applied (similarly to [66, 80], but
with a fixed pre-trained network). Weighted by another parameter �, Lt can be used to
guide GDEP , to make it more aware of the information this specific TS tries to uncover:

Lt(GDEP) = ExS ,z

h��TS(xS)� TS
�
GDEP (x

A

z ; ✓G)
���

2

i
(7.5)

This formulation has two advantages: no assumptions are made regarding the nature
of ey = TS(x), and no ground-truth y is needed since Lt only depends on the di↵erence
between the two estimations made by TS . Unlike PixelDA [66], our training is thus both
uncoupled from the real domain (no real image xR used) and completely unsupervised
(no prior on the nature of the labels/features, and neither ground-truth yR of xR nor yS

of xS used). Taking into account the newly introduced Lf and optional Lt, the expanded
loss guiding our method toward its objective is thus finally:

LDEP = ↵Ld(GDEP , D) + �Lg(GDEP) + �Lf (GDEP) + �Lt(GDEP) (7.6)

Following the standard procedure [68], the minmax optimization is achieved by alter-
nating at each training iteration between (1) fixing ✓G to train D over a batch of (xA

z ,x
S)

and
�
xA
z , GDEP (xS ; ✓G)

�
pairs, updating through gradient descent ✓D to maximize Ld;

(2) fixing ✓D to train GDEP , updating through gradient descent ✓G to minimize the
combined loss.

7.2.2 Multi-Modal U-Net Architecture for RGB

While working in depth domain automatically solves a problem with texture-less data
and has a smaller realism gap, mainly defined by the sensor’s imperfections, algorithms
working in RGB data are more desirable due to the widespread availability of RGB sen-
sors. Since the domain gap is larger in the RGB domain, it requires a more advanced
network architecture (GRGB) to achieve competitive results (see Fig. 7.3). As demon-
strated by previous works in multi-task learning [149, 150, 151, 152, 153, 154], it is often
advantageous to train a network on several tasks (even when considering only one), as
the synergy between the tasks can make each of them perform better, and make the com-
mon layers for feature extraction more robust and focused on abstract, cross-modality
information.
We thus adopt such a scheme to guide our generator GRGB in its main task of ex-

tracting the chosen synthetic features from noisy samples. Not limited to the scarce,
sometimes imprecise, annotations of real training datasets, we can rely on a multitude
of di↵erent synthetically-rendered modalities. For industrial CAD-based recognition,
GRGB would learn to map real images into a geometrical domain (normal and/or depth

109

7 Reverse Domain Adaptation

intermediary
data xd, xn, xl, …

Legend

synthetic
data xs

output
data xg

augmented
data xa

z

Figure 7.3: Training of the RGB multi-modal network GRGB . Taking full advantage
of available synthetic data e.g., texture-less CAD models, G consists of a custom
multi-modal pipeline with self-attentive distillation, trained to recover noiseless
geometrical and semantic modalities from randomly augmented synthetic samples.

maps), using for sub-tasks the regression of depth and normal maps, semantic or contour
mask, etc. (cf. Section 7.2.3).

Inspired by previous multi-modal generative pipelines [152, 153, 154], our network is
composed of a single convolutional encoder E and m decoders Dmod, with m number
of sub-tasks. For our implementation, we only consider up to 4 sub-tasks – normal
and depth regression, semantic segmentation, foreground lightness evaluation – though
it would be straightforward to add more (e.g., contour extraction as in [154]). Each
intermediary modality is fully decoded in order to be compared to its synthetic ground-
truth. Each generative loss Lmod

g (L1 distance for images, cross-entropy for binary masks)
is back-propagated through its decoder, then jointly through the common encoder (cf.
Fig. 7.3).

A triplet loss with dynamic margin Lt from Chapter 3 can be optionally added at the
network bottleneck to improve the feature distribution in the embedding space, using
task-specific metrics to push apart encoded features of images from semantically-di↵erent
images, while bringing together features of similar elements.

Lt(E) =
X

(xb,xp,xn)2X

max

✓
0, 1� ||E(xb)� E(xn)||22

||E(xb)� E(xp)||22 +m

◆
(7.7)

with xb the input image used as binding anchor, xp a positive or similar sample, xn a
negative or dissimilar one, and m the task-specific margin setting the minimum ratio for
the distance between similar and dissimilar pairs of samples. For the task of instance
classification and pose estimation (ICPE), we set m = 2arccos(|qb ·qp|) if xb and xp are
images of the same class, else m = n (with qb and qp the pose quaternions corresponding

110

7.2 Methodology
BG

FG

O

C

in
pu

t
au

gm
.

ou
tp

ut

GT

in
pu

t
ou

tp
ut

(A) Online Augmentation (B) Training on Synthetic Data (C) Testing on Real Data

Ø x 4, 0.05Hz x 4, 0.2Hz x 8, 0.05Hz x 8, 0.2Hz

Ø cell 0.01Hz cell 0.1Hz perlin 0.01Hz perlin 0.1Hz

Ø x 1 x 2 x 3 x 4

Figure 7.4: GDEP augmentation, training, and testing results: (A) Depth augmen-
tation examples (BG background noise; FG foreground distortion; OC occlu-
sions) for di↵erent noise amplitudes or types; (B) Validation results, showing
how our solution learns during training to recover the clean images (input) from
their augmented versions (augm.); (C) Test results on real data (compared to
ground-truth GT).

to xb and xp, and n > ⇡ a fixed margin), following the dynamic margin loss definition
from Chapter 3.

Further distinguishing our solution from usual multi-modal autoencoders, we add skip
connections from each encoding block to its reciprocal decoding block. As demonstrated
in previous works [152, 7], passing high-resolution features from the contracting layers
along the outputs of previous decoding blocks not only improves the training by avoiding
vanishing gradients, but also guides the decoding blocks in upsampling and localizing the
features. We observe a clear performance boost from this change, as shown in Table 7.6.

Distillation with Self-Attention

If training the target decoder along others already improves its performance by synergy,
several works [154, 151, 155] demonstrated how one can further take advantage of multi-
modal architectures by adding a distillation module on top of the decoders, merging
their outputs to distill a final result. In their work [154], Pad-Net authors present
several distillation strategies, with the most e�cient one making use of the attention
mechanism [156, 157, 158] to better weigh the cross-modality merging, bringing forward
the most relevant features for the final modality.

Using this insight, we built our own module R to refine the target results from the
partially re-encoded intermediary modalities by using self-attention computations [159].
This mechanism, adapted by Zhang et al. [160] for image generation and is used to
e�ciently model relationships between widely-separated spatial regions. Instantiating
and applying this process to each re-encoded modality, we sum the resulting feature
maps, before decoding them to obtain the final output. This new distillation process
not only allows to pass messages between the intermediary modalities, but also between
distant regions in each of them.

Our distillator is trained jointly with the rest of the generator, with a final generative
loss Lg (L1 distance here) applied to the distillation results. Not only our whole generator

111

7 Reverse Domain Adaptation

R E+D

input

input

shading texturing b-ground occlusion blur

A

A

aug. input mask normals depth lightness output

Figure 7.5: GRGB augmentation and training results. On the left, we demonstrate how
normal maps are step by step transformed into complex, random color images by
our online augmentation pipeline. On the right, we present how GRGB is trained on
these images, learning to map them back to the noiseless geometrical information.

can thus be e�ciently trained in a single pass, but no manual weighing of the sub-task
losses is needed, as the distillator implicitly covers it.

7.2.3 Learning from Purely Geometrical CAD Data

A key prior in this work is the unavailability of target real images (not only target
labels). Only synthetic depth images xS are used to train our solution, and presumably
the recognition method. The only requirement is thus the availability of the synthetic
data used to train TS , or at least the 3D models of the class objects C to generate XS

from them.

7.2.3.1 Synthetic Data Generation

Depth Domain To generate synthetic depth images we follow the procedure from
Chapter 3. In particular, we render objects from the viewpoints defined as vertices of
an icosahedron centered on the target object. By repeatedly subdividing each triangular
face of the icosahedron, additional viewpoints, and thus a denser representation, can
be created. Furthermore, in-plane rotations are added at each position by rotating the
camera around the axis pointing at the object center. Rotation invariance of the objects
is also taken into account (e.g., for pose estimation applications), as rotation-invariant
objects might look exactly the same from di↵erent poses, confusing recognition methods.
To deal with this, the pipeline is configured to trim the poses for those objects, such
that every image is unique.

RGB Domain Without any relevant texture information, usual dataset rendering and
training methods for the color domain cannot be directly applied. Since only geometrical
information is made available, we select the surface normal and/or depth domains as
target modality for the mapping performed by GRGB. For this reason we use a simple
renderer to generate noiseless normal and depth maps for each class c from a large set

112

7.2 Methodology

R E+D R E+D

mask normals depth lightness output input groud-truth mask normals depth lightness output input groud-truth

Figure 7.6: GRGB qualitative results. Intermediary and final mappings when applying
GRGB trained on purely synthetic data to real samples, on LineMOD [3] and T-
LESS [5] datasets.

of relevant viewpoints again following the procedure from Chapter 3. This dataset of
geometrical mappings is both used as ground-truth for the final outputs of GRGB and
some of its sub-tasks, and as inputs for the augmentation pipeline A deployed when no
color data is available to train GRGB.

7.2.3.2 Online Data Augmentation

A(xS , z) ! xA
z is an extensive online augmentation pipeline we designed, parametrized

by a noise vector z randomly sampled at every call from a k-dimensional finite set Zk,
with k the number of augmentation parameters. To make up for the complete lack of
appearance and clutter information, A follows the principle of domain randomization
[87], i.e., it is meant to add enough visual variability to the training inputs so that
the trained method can generalize to real unseen samples. This means conceiving an
augmentation pipeline with a large enough |Zk|. Depending on the type of the input
data, our augmentation pipeline A comprises the following components:

• Simple random shading (RGB): A first takes the provided normal maps and
convert them into color images by applying simple Blinn-Phong shading [161] as de-
scribed in Algorithm 1. Randomly sampling ambient and directional light sources,
as well as di↵usion and specular color factors for the objects, the provided surface
normals are used to compute the di↵use and specular lightness maps through direct
matrix products. Since distance information is lost in normal maps, this shading
model is simplified by supposing the light sources at an infinite distance, hence the
same light source vector for every surface point. This way, one can easily simulate
an infinity of lighting conditions, returning the resulting lightness map.

Lighting parameters, defined through the augmentation noise vector z, are sampled
using uniform distributions e.g., a ⇠ U(0.05, 0.3), d ⇠ U(0.1, 0.8), s ⇠ U(0, 0.1),
sp ⇠ U(0.9, 1.1), etc.

• Stochastic texturing (RGB): Given the lack of relevant texture information,
random texture maps are procedurally generated using noise functions. In partic-

113

7 Reverse Domain Adaptation

Algorithm 1: Approximate Blinn-Phong shading [161] from normal maps

Input: N 2 Rh⇥w⇥3 normal map, L 2 R3 directional light vector, a 2 R3

RGB ambient light coe�cient, d 2 R3 RGB di↵usion coe�cient, s 2 R3

RGB specularity coe�cient, sp 2 R specular hardness, fx 2 R2 pixel
focal range used to render N

Output: M 2 Rh⇥w⇥3 color lightness map
/* - Simplification #1: we recover an approximate viewer vector

V from N indices and fx. */

/* - Simplification #2: we suppose the light source at +1
distance, hence the same L for every surface point. */

/* - Note: we use Einstein notation for matrix-vector operations.

*/

/* */

/* View vector approximation: */

1 V
�
(j, i, 1)

h,w

j=0,i=0
;

2 Vj � (Vj�h/2)
fx,j

;Vi � (Vi�w/2)
fx,i

;

3 V V

kV k ;

/* Computation of half-way vector map: */

4 H V + L;
/* Diffuse shading: */

5 Dij N ij
kLk;

/* Specular shading: */

6 Sij (N ij
kHk

ij)sp ;
/* Adding all contributions (given eijc = ei ⌦ ej ⌦ ec) : */

7 M ijc min
�
max(a · eijc + d ·Dijec + s · Sijec , 0) , 1

�
;

8 return M

ular, Perlin noise [163], cellular noise [164], and white noise are used, sampled from
the uniform distribution U(0.0001, 0.1). Downsampled to 2D vector maps, the orig-
inal normals are used to index the generated textures; to achieve a more “organic”
appearance, with patterns sometimes following some of the shape features.

• Background noise / addition (Depth / RGB): To teach G to focus on the
representations of the captured objects and ignore the rest, A fills the background
of the training data with several noise types commonly used in procedural content
generation, e.g., fractal Perlin noise [163], cellular noise [164], and white noise.
Noise frequencies for all modalities are sampled from the uniform distribution
U(0.0001, 0.1). In case of the RGB scenario, backgrounds are added to the ren-
dered images using random patches from a publicly available image dataset (i.e.
MSCOCO [165]). Lightness maps from the shading step are furthermore used to
homogenize the background brightness.

114

7.2 Methodology

Algorithm 2: Random polygon generation [162]

Input: z 2 Zk noise vector
Output: p = {pi 2 R2}Nvert

i=0 polygon points
/* occlusion parameters sampling: */

1 cx, cy, rave, Nvert, ✏,� sampleFromVector(z);
/* angle steps generation: */

2 sum = 0 ;
3 for i 2 {1, . . . , Nvert} do
4 �✓i U(2⇡/Nvert � ✏, 2⇡/Nvert + ✏) ;
5 sum sum+ step ;

6 end
/* steps normalization: */

7 k sum/(2⇡) ;
8 for i 2 {1, . . . , Nvert} do
9 �✓i �✓i/k ;

10 end
/* polygon points generation: */

11 ✓1 U(0, 2⇡) ;
12 for i 2 {1, . . . , Nvert} do
13 r N (rave,�) ;
14 pi (cX + r cos(✓i), cY + r sin(✓i)) ;
15 ✓i ✓i + �✓i
16 end
17 return p

• Random occlusion (Depth / RGB): Occlusions are introduced to further sim-
ulate clutter, but also so that G can learn to recover hidden or lost geometrical
information. Based on [162], occluding polygons are generated by walking around
the image, taking random angular steps and random radii at each step; then by
painting it on top of the images with random noise or textures if provided.

The polygon’s complexity is defined by two parameters: � (”spikeyness”), which
controls how much point coordinates vary from the radius rave, and ✏ (”irregular-
ity”), which sets an error to the default uniform angular distribution. Variables cX
and cY define the polygon center; rave its average radius; �✓ and ✓ are a vector of
angle steps, and a vector of angles respectively; and h⇥w are the image dimensions
(equal to 64⇥ 64 px here). The pseudocode is listed in Algorithm 2.

Occlusion parameters are also set by the noise vector z. In our experiments, the
following sampling distributions are used (with B – Bernoulli, U – Uniform, and
N – Gaussian):

– B
�
U(0, h/4), U(h/4, l)

�
for cX , B

�
U(0, w/4), U(w/4, l)

�
for cY ;

– U(10, l/4) for rave, with l = min(h,w);

115

7 Reverse Domain Adaptation

Algorithm 3: Foreground distortion

Input: x 2 Rh⇥w depth image, z 2 Zk noise vector
Output: xa 2 Rh⇥w augmented depth image
/* sampling distortion parameters from the noise vector: */

1 fX , fY , fZ , wrXY , wrZ sampleFromVector(z);
/* generating 3D vector field: */

2 vd[0] fast2DNoise(fX);
3 vd[1] fast2DNoise(fY);
4 vd[2] fast2DNoise(fZ);
/* applying 3D distortion: */

5 for i 2 {1, . . . , h} do
6 for j 2 {1, . . . , w} do

7

xa(i, j) x(i+ wrXY ⇤ vd[0][i, j],

j + wrXY ⇤ vd[1](i, j))

+ wrZ ⇤ vd[2](i, j)

8 end

9 end
10 return xa

– U(3, 10) for Nvert;

– U(0, 0.5) for �.

• Foreground distortion (Depth): Similarly to Simard et al. [166], images un-
dergo random distortions (as an inexpensive way to simulate sensor noise, objects
wear-and-tear, etc.). The foreground distortion component warps the input image
using a random vector field. As a first step, three Perlin noise images are generated
to form a three-dimensional o↵set vector field vd. The first two dimensions are
used for depth value distortions in X and Y axes of the image space, whereas the
third dimension is applied to the Z image depth values directly. Since values of
vd vary between �1 and 1, warping factors wr 2 R3 that control the distortion
e↵ect are introduced. Once the 3D o↵set vector generated, it is applied to the
input image x to generate the output image xa. The pseudocode is presented in
Algorithm 3.

In our pipeline, the noise frequencies as well as the warping factors are defined
by the randomly sampled vector z. More precisely, for the presented experi-
ments, fX and fY are sampled at each iteration from the uniform distribution
U(0.0001, 0.1), fZ from U(0.01, 0.1) (higher frequencies), wrXY from U(0, 10), and
wrZ from U(0, 0.005).

• Blur (RGB): To reproduce possible motion blur or unfocused images, Gaussian,
uniform or median blur is applied with variable intensity.

116

7.3 Experimental Evaluation
re

al

(ta
rg

et
)

sy
nt

h.

(s
ou

rc
e)

Si

m
G

AN

Cy
cl

e-

G
AN

Pi

xe
lD

A

Figure 7.7: Qualitative results of depth domain adaptation GANs [6, 7, 8] on
LineMOD [3]. First row contains indicative real images from the target domain;
second row contains the synthetic depth images provided as sources; followed by
the corresponding GANs outputs below.

7.3 Experimental Evaluation

Pursuing the application to CAD-based recognition tasks, we evaluate our strategy on
the tasks of localized object classification and pose estimation. For both presented
implementations of our method, i.e., depth- and RGB-based, we quantitatively and
extensively evaluate them through a comparison of their performance to state-of-the-art
solutions depending on the available training modalities, and through an ablation study.

7.3.1 Experimental Setup

Instance Classification (IC) on T-LESS

As a first task, we consider localized classification on T-LESS [5], a dataset of industrial
objects with texture-less CAD models and RGB-D images from di↵erent complex scenes.
Strong textural and geometrical similarities between the objects and heavy occlusions
make it a challenging dataset for geometry-based classification. We select the first 3
scenes and their objects, building a set of 5,514 image patches of objects occluded up to
60%.

Instance Classification and Pose Estimation (ICPE) on LineMOD

LineMOD [3] contains 15 mesh models of distinctive textured objects, along their RGB-
D sequences and camera poses. We take advantage of this dataset to demonstrate how
texture information is too often taken for granted in CAD-based application, and how its
absence can heavily impact usual methods (e.g., in industrial settings). To demonstrate
that our method is tailored neither to a dataset nor to a recognition method, we perform
an evaluation utilizing the 3D pose estimation and instance classification method from
Chapter 3.

117

7 Reverse Domain Adaptation

Table 7.1: Quantitative results on di↵erent tasks and datasets: (A) Classification accu-
racy of di↵erent instances of the IC network over a subset of T-LESS (5 objects); (B)
Classification and angular accuracy of di↵erent instances of the ICPE method over
LineMOD (15 objects). Instances were trained on various data modalities (noiseless
synthetic for TS ; synthetic augmented for TA; or real for TR) and tested on the real
datasets XR

test with di↵erent pre-processing (none; pre-processing by GA
DEP trained

on synthetic augmented data; or by GR
DEP same method trained using real data).

Inference (A) IC on T-LESS (B) ICPE on LineMOD

Input Method Classification
accuracy

Angular error Classification
accuracyMedian Mean

XR
test TS 20.48% 93.48� 100.28� 7.71%

XR
test TA 83.35% 13.45� 30.07� 82.14%

GA

DEP
(XR

test) TS 93.01% 13.74� 31.14� 94.77%

XR
test TR 95.92% 12.13� 27.80� 95.49%

GR

DEP
(XR

test) TS 96.67% 11.64� 24.31� 98.44%

7.3.2 Real Depth ! Synthetic Depth

We first demonstrate the e↵ectiveness of our depth pipeline GDEP on a set of di↵erent
tasks, and show the benefits of decoupling this operation from recognition itself. As a
first experiment, we define an instance classification task on the T-LESS patch dataset.

One could argue that directly training T on augmented synthetic data could be more
straight-forward than training GDEP against A and plugging it in over TS afterwards.
To prove that our solution not only has the advantage of uncoupling the training of
recognition methods to the data augmentation but also improves the end accuracy, we
introduce TA the algorithm trained on augmented data from A. We additionally de-
fine method TR trained on 50% of the real data. During test time, real depth patches
are either directly handed to the classifiers, pre-processed by our generator GA

DEP
ex-

clusively trained on synthetic data, or pre-processed by a generator GR

DEP
trained on

real annotated data XR

train
. Thus, GR

DEP
here serves as a theoretical upper performance

bound. Evaluation is done for di↵erent combinations of pre-processing and recognition
modalities, computing the final classification accuracy for each. Results are shown in
Table 7.1-A.

To demonstrate how our method generalizes both to di↵erent datasets with diverse
classes and environments and to distinctive task-specific applications, we also reproduce
the same experimental protocol on a more complex ICPE task. The ICPE task uses
the feature-descriptor dataset XS

db
to classify instances from LineMOD and estimate

their 3D poses. Once again, the networks are either handed unprocessed test data, data
pre-processed by GA

DEP
, or data pre-processed by GR

DEP
. If the class of each returned

descriptor agrees with the ground-truth, we compute the angular error between their
poses. Once this procedure performed on the entire set XR

test, the classification and
angular accuracy are used for the comparison shown Table 7.1-B.

118

7.3 Experimental Evaluation

Table 7.2: Comparison to opposite domain-adaptation GANs. Given the two recogni-
tion tasks “(A) Instance Classification on T-LESS (5 objects)” and “(B) Instance
Classification and Pose Estimation on LineMOD (15 objects)” (defined for the ex-
periment in Table 7.1), we train several modalities of the networks T against diverse
domain-adaptation GANs trained on real data XR

train (50% of the datasets), and
compare their final accuracy with our results.

(A) IC on T-LESS (B) ICPE on LineMOD

TTT Modality Classification
accuracy

Angular error Classification
accuracyTrained on Applied to Median Mean

R
eq

u
ir
in
g

R
ea

l
D
a
ta CycleGAN XR

test 40.97% 71.10� 86.73� 14.72%
SimGAN XR

test 59.20% 20.44� 43.36� 73.20%
PixelDA XR

test 89.75% 18.15� 39.06� 90.31%
XS GR

DEP
(XR

test) 96.67% 11.64� 24.31� 98.44%

XS GA

DEP
(XR

test) 93.01% 13.74� 31.14� 94.77%

For both experiments, we consistently observe the positive impact the pre-processing
has on the recognition. The performance of the algorithms using our modality GA

DEP

(trained exclusively on synthetic data) matches the results of those plugged to GR

DEP
,

trained on real data. This demonstrates the e↵ectiveness of our advanced depth data
augmentation pipeline. Improvements could be done to match this higher-bound baseline
by tailoring the augmentation pipeline to a specific sensor or environment. Our current
augmentation pipeline has however the advantage of genericity. While GR

DEP
is only

trained for the sensor and background type(s) of the provided real dataset, our solution
GA

DEP
has been trained over A for domain invariance.

We extended this study by also performing ICPE on the real LineMOD scans with
their backgrounds perfectly removed. The accuracy using TS trained on pure synthetic
data was only 67.32% for classification, and 24.56� median / 51.58� mean for the pose
estimation. This is well below the results on images processed by our method; attesting
that our pipeline not only does background subtraction but also e↵ectively uses the CAD
prior to recover clean geometry from noisy scans, improving recognition.
Finally, Table 7.1 also reveals the accuracy improvements obtained by decoupling

data augmentation and recognition training. Recognition methods TS trained on “pure”
noise-free XS perform better when used on top of our solution, compared to their re-
spective architectures TA directly trained on augmented data. The results are even
comparable to the respective TR trained on real images. This confirms our initial intu-
ition regarding the advantages of teaching recognition methods in a noise-free controlled
environment, to then map the real data into this known domain. Besides, this decou-
pling allows once again for greater reusability. Augmentation needs to be done only once
to train GDEP , which can then be part of any number of recognition pipelines.

7.3.2.1 Comparison to Usual Domain Adaptation GANs

As previous GAN-based methods to bridge the realism gap are using a subset of real
data to learn a mapping from synthetic to realistic, it seems di�cult to present a fair

119

7 Reverse Domain Adaptation

Table 7.3: Quantitative ablation study. Given the two recognition tasks “(A) Instance
Classification on T-LESS (5 objects)” and “(B) Instance Classification and Pose
Estimation on LineMOD (15 objects)”, we train both networks on noiseless data
and evaluate them on the outputs of di↵erent modalities of GA

DEP . Each is either
trained (A) with di↵erent augmentation combinations (BG background noise; FG
foreground distortion; OC occlusions; SI sensor simulation); or (B) with di↵erent
loss combinations (Ld+Lg vanilla GAN loss; Lf foreground-similarity loss; Lt task-
specific loss).

(A) IC on T-LESS (B) ICPE on LineMOD

Modality Classification
accuracy

Angular error Classification
accuracyMedian Mean

(i
)

A
u
g
. BG 79.93% 17.64� 38.90� 83.78%

BG+FG 89.42% 15.25� 34.90� 92.33%
BG+FG+OC 93.01% 13.74� 31.14� 94.77%

(i
i)

L
o
ss
es Ld + Lg 91.09% 14.49� 33.91� 92.89%

Ld + Lg + Lf 92.17% 14.34� 32.21� 93.39%
Ld + Lg + Lf + Lt 93.01% 13.74� 31.14� 94.77%

comparison to our opposite solution, trained on synthetic data only. We opted for
a practical study on the aforementioned tasks, considering the end results given the
same recognition methods and test sets. Selecting prominent solutions, SimGAN [6],
CycleGAN [7] and PixelDA [66], we trained them on XS and XR

train
(50% of the real

datasets) so they learn to generate pseudo-realistic images to train the methods T on. For
each task, we measure the accuracy on XR

test, comparing with TS applied to GA

DEP
(XR

test)
and GR

DEP
(XR

test). The qualitative results are shown in Fig. 7.7.
As SimGAN is designed to refine the pre-existing content of images and not to generate

new elements like backgrounds and occlusions, we help this method by filling the images
with random background noise beforehand. Still, the refiner does not seem able to deal
with the lack of concrete information and fails to converge properly. Unlike the other
candidates, CycleGAN neither constrains the original foreground appearance nor tries
to regress semantic information to improve the adaptation. Even though the resulting
images are filled with some pseudo-realistic clutter, the target objects are often distorted
beyond recognition, impairing the task networks training. Finally, PixelDA results look
more realistic while preserving most of the semantic information, out of the box. This
is achieved by training TS along its GAN.

These observations are confirmed by the results presented in Table 7.2, which attest
of the e↵ectiveness of our reverse processing compared to state-of-the-art methods for
these challenging tasks.

7.3.2.2 Ablation of the Solution Components

Performing an ablation study for our depth-based pipeline, we first demonstrate the
importance of each component of the depth data augmentation pipeline on the final
results. Using the same two tasks (“IC on T-LESS” and “ICPE on LineMOD”), we train

120

7.3 Experimental Evaluation

Table 7.4: Quantitative comparison of recognition pipelines, depending on the available
training data, for the task of localized instance classification on T-LESS [5] (11
objects).

Training
data

Method Classification
accuracy

GT
ANNOTRGB

T
R 99.34%

RGB CAD
DANN 60.58%
PixelDA 63.12%

RGB2 CAD
Iro et al. 36.03%

CAD
T

A 53.81%
GRGB ! T

S 71.78%

three di↵erent instances of our method using various degrees of data augmentation. The
results are shown in Table 7.3-A, with a steady increase in recognition accuracy for each
augmentation component added to the training pipeline.
We set up another experiment to evaluate the influence of the supplementary losses on

the end results, as displayed in Table 7.3-B. It shows for instance that the classification
error rate on LineMOD drops from 7.11% with the vanilla losses to 5.23% with Lf and
Lt, i.e., a 26% relative drop which is rather significant, given the upper-bound error
rates, cf. Table 7.1. If our augmentation pipeline and vanilla GAN already achieve great
results, Lf and Lt can further improve them, depending on the sensor type for Lf or
the specific tasks for Lt, and so covering a wider range of sensors and applications.
Leveraging these components, our depth pipeline not only learns purely from synthetic

data how to qualitatively denoise and declutter depth scans, but also considerably im-
proves the performance of recognition methods using it to pre-process their input. We
demonstrated how our depth solution makes such algorithms, simply trained on ren-
dered images, almost on a par with the same methods trained in a supervised manner,
on images from the real target domain.

7.3.3 Real RGB ! Synthetic Normals / Depth

In this section, we evaluate the performance our RGB pipeline given the two pre-defined
evaluation tasks by comparing it with state-of-the-art methods depending on the avail-
able training data (real images, corresponding annotations, CAD models, corresponding
realistic textures, or real images from a di↵erent domain). For each setup, the same
task-specific network is used, trained by itself against our augmentation pipeline A (with
texturing augmentation disabled for pre-textured data), or along some auxiliary gener-
ators or sub-networks for domain adaptation (e.g., for PixelDA [66] or DANN [82]; for
TS used with a pre-trained monocular-RGB-to-depth generator [167]).

121

7 Reverse Domain Adaptation

Table 7.5: Quantitative comparison of recognition pipelines, depending on the available
training data, for the task of localized instance classification and pose estimation
(ICPE) on LineMOD [3] with method T from Chapter 3.

Training
data Method

Angular error Classification
accuracy

Median Mean

GT
ANNOTRGB

TR 9.50��� 12.42��� 99.72%

CAD+TEXRGB
DANN 14.33� 30.45� 89.84%
PixelDA 15.38� 35.17� 91.06%

RGB CAD
DANN 43.63� 68.59� 40.13%
PixelDA 95.14� 97.36� 35.39%

CAD+TEX
TS+T 88.62� 92.35� 43.62%
TA+T 70.18� 84.22� 49.11%

RGB2 CAD
Iro et al. 52.43� 71.69� 41.49%

CAD
TA 41.23� 67.50� 34.38%
GRGB ! TS 13.37� 27.46� 91.28%

For both tasks, we consistently observe the positive impact of our RGB pipeline on
recognition, as shown in Tables 7.4-7.5. Despite being trained on the scarcest data, with
the largest domain gap, our generator GRGB brings the performance of the task-specific
methods TS above other solutions trained on more relevant information. The accuracy
improvement is even more apparent for the pose regression task, as our pipeline precisely
recovers geometrical features. It also appears clear that decoupling data augmentation
and recognition training is beneficial, as illustrated by the accuracy di↵erence between
the two last lines of each table. This follows our initial intuition on the logic of teaching
task methods in the available clean synthetic domain, while learning in parallel a map-
ping to project real data into this prior domain. This separation furthermore makes it
straightforward to train new task-specific methods, with GRGB ready to be plugged on
top.

7.3.3.1 Ablation of the Solution Components

Table 7.6 presents the results of an extensive ablation study done on our RGB multi-
modal network architecture GRGB. By consolidating several state-of-the-art works on
generative networks [152, 153, 154, 160], we developed a robust architecture to tackle
extreme domain mappings (e.g., real RGB to synthetic normals).

We can observe how the addition of decoders for auxiliary tasks improves the final
output by synergy. The inclusion of self-attention mechanism (SA layers) in the distilla-
tion module further enhances this e↵ect, weighting the contribution of features between
intermediary modalities, but also between distant internal regions. Finally, the benefits

122

7.4 Conclusion

Table 7.6: Architectural ablation study, with the “ICPE on LineMOD” task.

Encoder Decoders Distill. Layers Losses Angular error Classification
accuracy

E DN DD DM DL R
�!
SA

��!
skip L1..m

g Lt Median Mean

X X X X 15.75� 32.80� 87.35%

X X X X X 15.76� 33.76� 88.04%

X X X X X X X X 14.32� 30.31� 89.00%

X X X X X X X X 14.48� 30.71� 89.32%

X X X X X X X X X 14.22� 29.26� 89.67%

X X X X X X X X 14.66� 30.83� 88.59%

X X X X X X X X 16.07� 33.22� 87.69%

X X X X X X X X X 14.43� 29.56� 90.38%

X X X X X X X X X X 13.37��� 27.46��� 91.28%

of passing messages directly between each encoder block and their opposite block for
each decoder D1..m, through the use of skip layers (cf. U-Net architectures [152, 7]), is
clearly highlighted in the table, as well as the use of a triplet loss Lt at the bottleneck
to improve the quality of the embedding space.
All in all, our RGB network GRGB relies on a powerful multi-task architecture, struc-

tured to tackle real-to-synthetic mapping challenges, by utilizing any available synthetic
modalities to learn robust features. One could easily build on this solution by con-
sidering additional or more use-case relevant sub-tasks (e.g., contour regression, part
segmentation, etc.).

7.4 Conclusion

In this chapter, we presented a novel strategy for complex domain adaptation scenarios.
We tackle the domain mapping from the opposite direction, using our custom generator
to denoise unseen real samples and retain only the recognition-relevant features available
during training. This strategy was used to develop e↵ective solutions for both depth
and RGB domain. As a result, without accessing any real data or constraining the
recognition methods during training, our solutions outperform other unsupervised and
even supervised methods.

123

8 Network-Driven Domain
Randomization

In this chapter, we present an approach to tackle domain adaptation between synthetic
and real data. Instead of employing brute-force domain randomization, i.e., augmenting
synthetic renderings with random backgrounds or changing illumination and coloriza-
tion, we leverage the task network as its own adversarial guide toward useful augmen-
tations that maximize the uncertainty of the output. To this end, we design a min-max
optimization scheme where a given task competes against a special deception network
to minimize the task error subject to the specific constraints enforced by the deceiver.
The deception network samples from a family of di↵erentiable pixel-level perturbations
and exploits the task architecture to find the most destructive augmentations. Unlike
GAN-based approaches that require unlabeled data from the target domain, our method
achieves robust mappings that scale well to multiple target distributions from source data
alone. We apply our framework to the tasks of digit recognition on enhanced MNIST
variants, classification and object pose estimation on the Cropped LineMOD dataset as
well as semantic segmentation on the Cityscapes dataset and compare it to a number
of domain adaptation approaches, thereby demonstrating similar results with superior
generalization capabilities.

8.1 Introduction

We propose a general framework that performs guided randomization with the help of
an auxiliary deception network trained in a similar min-max fashion as GAN networks.
This is done in two alternating phases, as illustrated in Fig. 8.1. In the first phase, the
synthetic input is fed to our deception network responsible for producing augmented
images that are then passed to a recognition network to compute the final task-specific
loss with provided labels. Then, instead of minimizing the loss, we maximize it via
gradient reversal [81] and only back-propagate an update to the deception network pa-
rameters. The deception network parameters are steering a set of di↵erentiable modules
M1, ...,MN , from which augmentations are sampled. In the next phase, we feed the aug-
mented images to the recognition network together with the original images to minimize
the task-specific loss and update the recognition network. In this way, the deception
network is encouraged to produce domain randomization by confusing the recognition
network and making it resilient to such random changes. By adding di↵erent modules
and constraints we can influence how much and which parts of the image the deception
network alters. In this way, our method outputs images completely independent from

125

8 Network-Driven Domain Randomization

Input

Input + Transformed Input

Transformed Input

Deception Net (Fixed)

Deception Net Recognition Net (Fixed)

Class

Pose

Recognition Net

CNN
Class

Pose

1

2

G
ra

di
en

t R
ev

er
sa

l

CNN

DecoderEncoder

M1

M2

M3

Mn

DecoderEncoder

M1

M2

M3

Mn

Figure 8.1: Training pipeline. Training is performed in two alternating phases. Phase 1:
The weights of the deception network are updated, while those of the recognition
network are frozen. The recognition network’s objective is maximized instead of
being minimized, forcing the deception network to produce increasingly confusing
images. Phase 2: The generated deceptive images provided by the deception
network, whose weights are now frozen, are passed to the recognition network and
its weights are updated such that the loss is minimized. As a result of this min-max
optimization, the input images are automatically altered by the deception network,
forcing the recognition network to be robust to these domain changes.

the target domain and therefore generalizes much better to new unseen domains than
related approaches. In summary, our contributions are:

• DeceptionNet framework that performs a min-max optimization for guided
domain randomization;

• Various di↵erentiable pixel-level perturbation modules employed in such
a framework suited for synthetic data;

• Novel sequences: MNIST-COCO and Extended Cropped LineMOD (Based on
HomebrewedDB) that allow to demonstrate our strong generalization capabilities
to unseen domains.

In the experimental section we show that steered randomization by leveraging the net-
work structure generalizes much better to new domains than unsupervised approaches
with access to the target data while performing comparably well to them on known
target domains.

8.2 Methodology

As outlined, our approach towards steered domain randomization is essentially an exten-
sion of the task algorithm. Therefore, we have the actual task network T (x ; ✓T)! ŷ,
which, given an input image x, returns an estimated label ŷ (e.g., class, pose, segmen-
tation mask, etc.), and (2) a deception network D that takes the source image xS and
returns the deceptive image xD, which, when provided to the task net T (D(xS))! ŷD,

126

8.2 Methodology

(a) Deception Modules for MNIST

Input Deception Net

Distort
DecoderEncoder

RGB

BG/FG
Decoder

Noise
Decoder

(b) Deception Modules for LineMOD

Input Deception Net

Noise
DecoderEncoder

BG
Decoder

RGB-D

Normals

Distort
Decoder

Light
Decoder

Figure 8.2: Architecture of the deception networks used for the presented experi-
ments. For the case of MNIST classification, three deception modules are used:
the distortion module applying elastic deformations on the image, the BG/FG mod-
ule responsible for generating background and foreground colors, and the noise
module additionally distorting the image by applying slight noise. The LineMOD
dataset requires a more sophisticated treatment and features four deception mod-
ules: noise and distortion (applied on depth channel only), modules similar to the
previous case, pixel-wise BG module and light module generating di↵erent illumi-
nation conditions based on the Phong model.

maximizes the di↵erence between ŷD and yS . While the recognition network architec-
tures are standard and follow related work [168, 81], we will first focus on our structured
deception network, and then describe the optimization objective and the training.

To formalize our pipeline similar to Chapter 7, let XS
c := xS

c,i
8i 2 NS

c be a source

dataset composed ofNS
c source images xS

c for an object of class c. Then, XS := XS
c 8c 2

C is the source dataset covering all object classes C. A dataset of real images XR (not
used by us for training) is similarly defined.

8.2.1 Deception Modules

The deception network D follows the encoder-decoder architecture where input xS is
encoded to a lower-dimensional 2D latent space vector z and given as an input to mul-
tiple decoding modules M1, ...,Mn. The final output of D is then a weighted sum of
decoded outputs xD :=

P
i
wi ·Mi(z) where wi 2 [0, 1]H⇥W act as spatial masking op-

erations. While such a formulation allows for flexibility, the decoders must follow a set
of predefined constraints to create meaningful outputs and leverage an inherent image
structure instead of finding trivial mappings to decrease the task performance (e.g., by
decoding always to 0). Note that our proposed framework is general and, thus, requires
instantiations of the deception network for specific datasets. Similar to architecture
search, discovering the ”best” instantiation is infeasible, but good ones can be found
by analyzing the data source. After a reasonable experimentation we settled on certain
configurations for MNIST (RGB) and LineMOD (RGB-D), depicted in Fig. 8.2. We

127

8 Network-Driven Domain Randomization

Ape Bench. Camera Can Cat Driller Duck Holep. Iron Lamp Phone

Ite
ra
tio

ns

Figure 8.3: Deceptive images xd over consecutive iterations. The output becomes in-
creasingly more complex for T .

continue by providing more detail on the used decoder modules and their constraint
ranges.

8.2.1.1 Background Module (BG)

Since our source images have black backgrounds, they hardly transfer over to the real
world with infinite background variety, resulting in a significant accuracy drop. [169, 170]
tackle this problem by rendering objects on top of images from large-scale datasets (e.g.,
MS COCO [165]).

Instead, our background module produces its output by chaining multiple upsampling
and convolution operations. While the output is rather simple at start, the module re-
gresses very complex and visually confusing structures in the advanced stages of training.

For MNIST, we used a simpler variant that outputs a single RGB background color
2 [0, 1] and an RGB foreground bias 2 [0.1, 0.9] (restricted not to intersect with the
background color). To form the output, we first apply the background color and then
add the foreground bias using the mask. We ensure that the final values are in the range
[0, 1].

8.2.1.2 Distortion Module (DS)

The module is based on the idea of the elastic distortions first presented in [166]. Es-
sentially, a 2D deformation field is randomly initialized from [�1, 1] and then convolved
with a Gaussian filter of standard deviation �. For large values of �, the resulting field

128

8.2 Methodology

(a) MNIST (b) MNIST-M (c) MNIST-COCO (d) PixelDA [168] (e) Ours

Figure 8.4: Example samples of the MNIST modalities. MNIST (Source), MNIST-M
(Target), and MNIST-COCO (Generalization) on the left; and example augmenta-
tion images generated by PixelDA and our method respectively.

approaches 0, whereas smaller values of � keep the field mostly random. However, the
moderate values of � make the resulting field perform elastic deformations, where � de-
fines the elasticity coe�cient. The resulting field is then multiplied by a scaling factor
↵, which controls the deformation intensity.

Our implementation closely follows the described approach but we use the decoder
output as the distortion field and apply resampling, similar to spatial transformer net-
works [171]. We fix � = 4, but learn both ↵ 2 (0, 5] and the general decoder parameters.
This means that the network itself controls where and how much to deform the object.

8.2.1.3 Noise Module (NS)

Applying slight random noise augmentation to the network input during training is
common practice. In a similar fashion, we use the noise decoder to add generated values
to the input. The noise decoder regresses a tensor of the input size with values in the
range [�0.01, 0.01], which are then added to the input of the module.

8.2.1.4 Light Module (L)

Another feature not well covered by synthetic data is proper illumination. Recent meth-
ods [169, 170, 172] prerender a number of synthetic images featuring di↵erent light con-
ditions. Here, we instead implement di↵erentiable lighting based on the simple Phong
model [173], which is fully operated by the network. While more complex parametric
and di↵erentiable illumination models do exist, we found this basic approach to already
work quite well.

The module requires surface information which is provided in form of normal maps.
From this, we generate three di↵erent types of illumination, namely ambient, di↵usive,
and specular. The light decoder outputs a block of 9 parameters that are used to define
the final light properties, i.e., a 3D light direction, an RGB light color (restricted to the
range of [0.8, 1]), and a weight for each of the three illumination types (wa 2 [0.6, 1],wd 2
[0, 1],ws 2 [0, 1]).

129

8 Network-Driven Domain Randomization

(a) Synthetic (b) Real (c) Extended (d) PixelDA [168] (e) Ours

Figure 8.5: Example samples of the LineMOD modalities. Synthetic (Source), Real
(Target), and Extended (Generalization) on the left; and example augmentation
images generated by PixelDA and our method respectively.

8.2.2 Optimization Objective

The optimization objective of the deception network is essentially the loss of the recog-
nition network; however, instead of minimizing it, we maximize it by updating the pa-
rameters in the direction of the positive gradient. This is achieved by adding a gradient
reversal layer [81] between the deception and recognition nets as shown in Fig. 8.1. The
layer only negates the gradient when back-propagating, thereby resulting in the reversed
optimization objective for a given loss. Therefore, the general optimization objective
can be written as follows:

min
✓T

max
✓D

Lt(T (D(x; ✓D)),y; ✓T) (8.1)

subject to CMn for n = 1, . . . , Nm (8.2)

where x is the input image, y is the ground truth label, T is the task network, Lt is the
task loss, D is the deception network, and Cm denotes the hard constraints defined by
the deception modules enforced by projection after a gradient step. In this framework,
the deception network’s objective only depends on the objective of the recognition task
and can, therefore, be easily applied to any other task.

8.2.3 Training Procedure

We use two di↵erent SGD solvers, where the actual task network has a learning rate
of 0.001 with a decaying factor of 0.95 every 20000th iteration. The learning rate of
the deception network was found to work well with a constant value of 0.01. We train
with a batch size of 64 for all the experiments and we stop training after 500 epochs.
During the experimentation, we also discovered that concatenating real and perturbed
images led to a consistent improvement in numbers. In Fig. 8.3 we show the evolution of
samples over multiple training epochs while the deceptive capabilities steadily increase.

8.3 Experimental Evaluation

In this section, we conduct a series of experiments to compare the capabilities of our
pipeline with the state-of-the-art domain adaptation methods. We first compare our-

130

8.3 Experimental Evaluation

selves against these baselines for the problem of adaptation and will then compare in
terms of generalization. We will conclude with an ablative analysis to measure the
impact of each module and modality on the final performance.
As the first dataset, we used the popular handwritten digits dataset MNIST as well as

MNIST-M, introduced in [82] for unsupervised domain adaptation (depicted in Figs. 8.4a
8.4b). MNIST-M blends digits from the original monochrome set with random color
patches from BSDS500 [174] by simply inverting the color values for the pixels belonging
to the digit. The training split containing 59001 target images is then used for domain
adaptation. The remaining 9001 target images are used for evaluation. That means
that around 86% of the target data is used for training. Note that while MNIST is
not technically synthetic, its clean and homogeneous appearance is typical for synthetic
data.
The second dataset is the Cropped LineMOD dataset [175] consisting of small cen-

tered, cropped 64⇥64 patches of 11 di↵erent objects in cluttered indoor settings displayed
in various of poses. It is based on the LineMOD dataset [3] featuring a collection of an-
notated RGB-D sequences recorded using the Primesense Carmine sensor and associated
3D object reconstructions. The dataset also features a synthetic set of crops of the same
objects in various poses on a black background. We will treat this Synthetic Cropped
LineMOD as the source dataset and the Real Cropped LineMOD as the target dataset.
Domain adaptation methods use a split of 109208 rendered source images and 9673 real-
world target images, 1000 real images for validation, and a target domain test set of
2655 images for testing. We show examples in Figs. 8.5a and 8.5b.
The last dataset pair we used for the experiments is SYNTHIA [176] and Cityscapes [177].

SYNTHIA is a collection of pixel-annotated road scene frames rendered from a virtual
city. Cityscapes is its real counterpart acquired in the street scenes of 50 di↵erent actual
cities. Following a common evaluation protocol, we used a subset of 9400 SYNTHIA
images, also known as SYNTHIA-RAND-CITYSCAPES, as the source data and 500
Cityscapes validation images as the target data.

8.3.1 Adaptation Tests

All domain adaptation methods use a significant portion of the target data for training,
making the resulting mapped source images very similar to the target images (e.g.,
Fig. 8.4b vs 8.4d and Fig. 8.5b vs 8.5d). A common benchmark for domain adaptation
is then to compare the performance of a classifier trained on the mapped data against a
classifier trained on the source data only (lower baseline) and against a classifier trained
directly on the target data (upper baseline).
Our approach is generally disadvantaged since we can structure our domain mapping

only through the source data and the deception architecture. To show that our learned
randomization is indeed guided, we additionally implement an unguided randomization
variant that applies train time augmentation similar to the related work. It employs
the same modules and constraints as our deception network, but its perturbations are
conditioned on random values in each forward pass instead of latent codes from the
input.

131

8 Network-Driven Domain Randomization

Table 8.1: Baseline tests. While performing slightly worse than the leading state-of-the-
art domain adaptation methods using target data, we still manage to achieve very
competitive performance without access to target data.

MNIST !
MNIST-M

Synthetic Cropped LineMOD !
Real Cropped LineMOD

Model
Classification
Accuracy (%)

Classification
Accuracy (%)

Mean
Angle Error (�)

Source (S) 56.6 42.9 73.7

S

Unguided 83.1 53.1 52.6
Ours 90.4 95.8 51.9

S
+

T

CycleGAN [7] 74.5 68.2 47.5
MMD [178, 179] 76.9 72.4 70.6

DANN [82] 77.4 99.9 56.6
DSN [8] 83.2 100 53.3

DRIT [180] 91.5 98.1 34.4
PixelDA [168] 95.9 99.9 23.5

Target (T) 96.5 100 12.3

8.3.1.1 Classification on MNIST

In Table 8.1 we collect the results of the most relevant methods tested on the MNIST
! MNIST-M scenario and split them according to the type of data used. Since domain
adaptation methods use both source and target data for training, they are allocated to
a separate group (S + T). Both our method and the unguided randomization variant
only have access to the source data and are therefore grouped in S. The task network
follows the architecture presented in [81], which is also used by the other methods. The
task’s objective Lt is a simple cross entropy loss between the predicted and the ground
truth label distributions.

We can identify three key observations: (1) our method shows very competitive results
(90.4% classification) and is on par with the latest domain adaptation pipelines: DSN
– 83.2%, DRIT – 91.5% and PixelDA – 95.9%. Moreover, we outperform most of the
methods by a significant margin despite the fact that they had access to a large portion
of the target data to minimize the domain shift. (2) Guiding the randomization leads to
7% higher accuracy which supports our claim convincingly. (3) Surprisingly, unguided
randomization (with appropriate modules) alone is in fact enough to outperform most
methods on MNIST.

8.3.1.2 Classification and Pose Estimation on LineMOD

As before, the domain adaptation methods are trained on a mix of source (Synthetic
Cropped LineMOD) and target (Real Cropped LineMOD) data and we compare to the
predefined baselines. We use the common task network for this benchmark from [81]

132

8.3 Experimental Evaluation

Table 8.2: Generalization tests. Our method generalizes well to the extended datasets, while
the adaptation methods underperform due to overfitting.

MNIST !
MNIST-COCO

Synthetic Cropped LineMOD !
Extended Real Cropped LineMOD

Model
Classification
Accuracy (%)

Classification
Accuracy (%)

Mean
Angle Error (�)

Source (S) 57.2 63.1 78.3

S

Unguided 85.8 77.2 48.5
Ours 89.4 99.0 46.5

S
+
T DSN [8] 73.2 45.7 76.3

PixelDA [168] 72.5 76.0 84.2

Target (T) 96.1 100 14.7

and the associated task loss:

Lt(G) = Exs,ys

h
� ys> log ŷd + ⇠ log(1� qs>q̂d)

i
(8.3)

where the first term is the classification loss and the second term is the log of a quaternion
rotation metric [181]. ⇠ weighs both terms whereas qs and q̂d are the ground truth and
predicted quaternions, respectively.
The results in Table 8.1 present a more nuanced case. On this visually complex

dataset, unguided randomization performs only above the lower baseline and is far be-
hind any other method. Our guided randomization, on the other hand, with – 95.8%
classification and 51.9� angle error is competitive with those of the latest domain adap-
tation methods using target data: DSN – 100% & 53.3�, DRIT – 98.1% & 34.4�, and
PixelDA – 99.9% & 23.5�. Nonetheless, we believe that both DRIT and PixelDA are
not fully reachable by target-agnostic methods like ours since the space of all needed
adaptations (e.g., aberrations or JPEG artifacts) has to be spanned by our deception
modules. The augmentation di↵erences between PixelDA and our method (Figs. 8.5d
and 8.5e) suggest the existance of some visual phenomena we are still not accounting
for with our deception network.

8.3.2 Generalization Tests

For the second set of experiments, we test the generalization capabilities of our method
as well as the competing approaches. The major advantage of our pipeline is its inde-
pendence from any target domain by design. To support our case we designed two new
datasets:

• MNIST-COCO The data collection follows the exact same generation procedure
of MNIST-M and has the same exact number of images for both training and
testing. The only di↵erence here is that instead of the BSDS500 dataset, we use
crops from MS COCO. Fig. 8.4e demonstrates some of the newly generated images.

133

8 Network-Driven Domain Randomization

Table 8.3: Module ablation. Evaluation of the importance of the deception network’s mod-
ules. BG – background, NS – noise, DS – distortion, L – light.

MNIST !
MNIST-M

Synthetic Cropped LineMOD !
Real Cropped LineMOD

Modules
Classification
Accuracy (%)

Classification
Accuracy (%)

Mean
Angle Error (�)

None 56.6 42.9 73.7

BG 82.4 74.8 50.4
BG + NS 86.5 77.6 52.8

BG + NS + DS 90.4 78.7 48.2
BG + NS + DS + L - 95.8 51.9

• Extended Real Cropped LineMOD Thanks to the help of the authors of the
original LineMOD dataset [3], we were able to get some of the original LineMOD
objects, namely ”phone”, ”benchvise”, and ”driller”. We used the setup from
Chapter 6 and generated an annotated scene for each object. Each scene depicts
a specific object placed on a white markerboard atop a turntable and coarsely
surrounded by a small number of cluttered objects, slightly occluding the object
at times. Each sequence contains 130 RGB-D images covering the full 360� rota-
tion at an elevation angle of approximately 60�. Given the acquired and refined
poses, we again crop the images in the same fashion as in the Cropped LineMOD
dataset [175]. All 390 images are used for evaluation, with some examples shown
in Fig. 8.5c.

For a comparison with the strongest related methods, i.e., DSN, DRIT, and PixelDA,
we used open source implementations and diligently ensured that we are able to properly
train and reproduce the reported numbers from Table 8.1. While the DRIT implemen-
tation worked well for the adaptation experiments, we failed to produce reasonably high
numbers for the generalization experiment and chose to exclude it from the comparison.

Similar to before, we train them using the target data from MNIST-M and Real
Cropped LineMOD. After the training is finished and the corresponding accuracies on
the target test splits are achieved, we test them on the newly acquired dataset. While
di↵erent, these extended datasets still bear a certain resemblance to the target dataset
and we could expect to see a certain amount of generalization. For our randomization
methods, we can immediately test on the new data, since retraining is not necessary.

As is evident from Table 8.2, the accuracy of our method on MNIST-COCO is very
close to the MNIST-M number (90.4% and 89.4% respectively). For the case of Extended
Real Cropped LineMOD, we get even better results than for the Real Cropped LineMOD
for both accuracy and angle error: We only need to classify 3 objects instead of 11 with a
much smaller pose space, and the scenes are in general cleaner and less occluded. These
results underline our claim with respect to generalization. This is, however, not the case
for the domain adaptation methods showing drastically worse results. Interestingly, we
observe an inverse trend where better results on the original target data lead to a more

134

8.3 Experimental Evaluation

Table 8.4: Input modality ablation. Performance evaluation based on the input data type
used: depth, RGB, or RGB-D.

Synthetic Cropped LineMOD !
Real Cropped LineMOD

Synthetic Cropped LineMOD !
Extended Real Cropped LineMOD

Input
Classification
Accuracy (%)

Mean
Angle Error (�)

Classification
Accuracy (%)

Mean
Angle Error (�)

D 73.3 36.6 78.7 34.9
RGB 84.8 57.4 85.9 49.4

RGB-D 95.8 51.9 99.0 46.5

significant drop. Despite of having a very high accuracy on the target data and the
ability to generate additional samples that do not exist in the dataset, these methods
present typical signs of overfit mappings that cannot generalize well to the extensions
of the same data acquired in a similar manner. The simple reason for this might be the
nature of these methods: they do not generalize to the features that matter the most for
the recognition task, but to simply replicate the target distribution as close as possible.
As a result, it is not clear what the classifier exactly focuses on during inference; however,
it could very likely be the particular type of images (e.g., in case of MNIST-COCO) or
a specific type of backgrounds and illumination (e.g., in case of Extended Real Cropped
LineMOD). In contrast to domain adaptation methods, our pipeline is designed not to
replicate the target distribution, but to make the classifier invariant to the changes that
should not a↵ect classification, which is the reason why our results remain stable.

8.3.3 Ablation Studies

In this section, we perform a set of ablation studies to gain more insight into the im-
pact of each module inside the deception network. Obviously, our modules model only
a fraction of possible perturbations and it is important to understand the individual
contributions. Moreover, we demonstrate how well we perform provided di↵erent types
of input modalities for the LineMOD datasets.

8.3.3.1 Deception Modules

We tested four di↵erent variations of the deception net that use varying combinations
of the deception modules: background (BG), noise (NS), distortion (DS), and light (L).
The exact combinations and the results on both datasets are listed in Table 8.3.
It can be clearly seen that each additional module in the deception network adds to

the discriminative power of the final task network. The most important modules can
also be easily distinguished based on the results. Apparently, the background module
always makes a significant di↵erence: the purely black backgrounds of the source data are
drastically di↵erent from the real imagery. Another interesting observation is the strong
impact the lighting perturbation has in the case of the Cropped LineMOD dataset. This
enforces the notion that real sequences undergo many kinds of lighting changes that are

135

8 Network-Driven Domain Randomization

Table 8.5: Real-world application. Segmentation performance on SYNTHIA ! Cityscapes
benchmark based on Intersection over Union (IoU) tested on 16 (mIoU) and 13
(mIoU*) classes of the Cityscapes dataset. Our method outperforms source and
unguided by a significant margin and remains competitive to the methods relying on
the target data.

Road SW BLDG Wall Fence Pole TL TS VEG Sky PRSN Rider Car Bus Mbike Bike mIoU mIoU*

Source (S) 3.8 10.2 46.3 1.8 0.3 19.1 4.0 7.5 71.8 72.2 44.6 3.4 24.9 5.2 0.0 2.5 19.8 22.8

S

Unguided 17.9 8.8 59.2 0.8 0.4 22.1 3.5 6.1 71.4 70.4 40.3 7.3 37.9 3.3 0.2 7.3 22.3 25.7
Ours 51.4 17.8 62.5 1.6 0.4 22.6 6.0 11.9 70.9 73.5 42.1 8.2 40.9 8.1 3.9 18.4 27.5 32.0

S
+

T

FCNs Wld [182] 11.5 19.6 30.8 4.4 0.0 20.3 0.1 11.7 42.3 68.7 51.2 3.8 54.0 3.2 0.2 0.6 20.1 22.9
CDA [183] 65.2 26.1 74.9 0.1 0.5 10.7 3.7 3.0 76.1 70.6 47.1 8.2 43.2 20.7 0.7 13.1 29.0 34.8

Cross-City [184] 62.7 25.6 78.3 - - - 1.2 5.4 81.3 81.0 37.4 6.4 63.5 16.1 1.2 4.6 - 35.7
Tsai et al. [185] 78.9 29.2 75.5 - - - 0.1 4.8 72.6 76.7 43.4 8.8 71.1 16.0 3.6 8.4 - 37.6
ROAD-Net [186] 77.7 30.0 77.5 9.6 0.3 25.8 10.3 15.6 77.6 79.8 44.5 16.6 67.8 14.5 7.0 23.8 36.1 41.7

LSD-seg [187] 80.1 29.1 77.5 2.8 0.4 26.8 11.1 18.0 78.1 76.7 48.2 15.2 70.5 17.4 8.7 16.7 36.1 42.1
Chen et al. [188] 78.3 29.2 76.9 11.4 0.3 26.5 10.8 17.2 81.7 81.9 45.8 15.4 68.0 15.9 7.5 30.4 37.3 43.0

Target (T) 96.5 74.6 86.1 37.1 33.2 30.2 39.7 51.6 87.3 90.4 60.1 31.7 88.4 52.3 33.6 59.1 59.5 65.5

not well-represented by synthetic renderings without any additional relighting. Note
that the MNIST deception network does not employ lighting.

8.3.3.2 Input Modalities

For the task of simultaneous instance classification and pose estimation, we (as well as
the other methods) always use the full RGB-D information. This ablation aims to show
how well we fare provided only a certain type of data and the impact on the final results.
Table 8.4 shows that RGB allows for better classification, whereas depth provides better
pose estimates. We can further boost the classification enormously and reduce the pose
error by combining both modalities.

8.3.4 Real-World Scenario

We demonstrate a real-world application of our approach on a more practical problem of
semantic segmentation using the common SYNTHIA ! Cityscapes benchmark. Having
only synthetic SYNTHIA renderings, we try to generalize to the real Cityscapes data
by evaluating our method on 13 and 16 classes using the Intersection over Union (IoU)
metric. This setup is particularly di�cult since the domain gap problem here is inten-
sified by a completely di↵erent set of segmentation instances and camera views. For a
fair comparison, all methods use a VGG-16 base (FCN-8s) recognition network. The
deception modules used in this case are as follows: 2D noise (NS), elastic distortion
(DS), and light (L). Normal maps for the light module are generated from the available
synthetic depth data. The sample outputs from each of the above-mentioned modules
are shown in Fig. 8.6.

Table 8.5 shows that even without access to target domain data, our pipeline remains
competitive with the methods relying on target data, showing mIoU of 27.5% and mIoU*
of 32% (16 and 13 classes) – well above source and unguided. The results also confirm the
generality of the approach with respect to the di↵erent task architectures and datasets.

136

8.4 Conclusion

Original Noise (N) Light (L) Distortion (D)

Figure 8.6: Deceptive augmentations. Augmentations applied for the SYNTHIA !
Cityscapes scenario.

8.4 Conclusion

In this chapter, we presented a new framework to tackle the domain gap problem when no
target data is available. Using a task network and its objective, we show how to extend
it with a simple encoder-decoder deception network and bind both in a min-max game in
order to achieve guided domain randomization. As a result, we obtain increasingly more
robust task networks. We demonstrate a comparable performance to domain adaptation
methods on two datasets and, most importantly, show superior generalization capabilities
where the domain adaptation methods tend to drop in performance due to overfitting
to the target distribution. Our results suggest that guided randomization, because of its
simple but e↵ective nature, should become a standard procedure to define baselines for
domain transfer and adaptation techniques.

137

9 Conclusion and Outlook

In this final chapter, we present a summary of the presented methods, analyze their
advantages and limitations, and propose new directions for future research.

9.1 Summary

In this thesis, we covered the problems of 3D object pose estimation and domain adapta-
tion and presented a number of industry-relevant solutions. First, multiple pose estima-
tion methods of various complexity were proposed. We started from a 3D pose estimation
pipeline based on manifold learning and nearest-neighbor search. To e�ciently improve
its the scalability properties and the robustness of the feature space, we introduced the
loss with dynamic margin and made the pipeline end-to-end by combining it with direct
pose regression. Second, we proposed a dense correspondence-based 6D pose estimation
solution that works in RGB and can be trained entirely on synthetic data while showing
state-of-the-art results. Moreover, this method is robust to occlusions and clutter and
can run real-time on a mobile device. Next, we used this pose estimation solution to
build a full 9D pose estimation pipeline that not only estimates the full 6D object’s
pose but also its shape and scale. To make this possible, it uses a di↵erentiable SDF
shape database and a novel di↵erentiable SDF renderer. We show that this approach
can recover a substantial amount of cuboid labels with high precision, and that these
labels can be used to train downstream 3D object detectors with results close to the
state of the art.

In the second part of the thesis we proposed two solutions to tackle the problem of the
domain gap between synthetic and real data. The first solution presents a reverse domain
adaptation pipeline, where instead of making synthetic images look more realistic, it
aims to map real images to the synthetic domain. This helps to completely decouple the
domain adaptation network from the downstream solver, which subsequently improves
the end downstream performance. Moreover, while this solution does not utilize any real
data, it outperforms general GAN solutions using real data on the same tasks. Lastly,
we proposed an adversarial domain randomization pipeline. As opposed to standard
domain randomization, our method is driven by the downstream task. As a result, it
only introduces meaningful augmentations that are most confusing for the downstream
network. After this extended training procedure, the downstream network becomes
much more robust to domain changes, outperforming standard domain randomization
and being on par with the domain adaptation pipelines using real data.

139

9 Conclusion and Outlook

9.2 Limitations and Future Work

The topic of pose estimation leaves many challenges for further explorations. While the
proposed manifold learning pose estimation method scales well with respect to the num-
ber of objects, it does not provide the pose accuracy to compete with the correspondence-
based methods. This a common problem for template-based methods and to get feasible
estimates, the usual solution is to use refinement as a post-processing step [55, 189].
However, doing so su�ciently harms the overall runtime making it di�cult to deploy in
real time. On the other hand, the presented correspondence-based methods provide very
precise estimates, are robust to occlusions and clutter, and are real-time-capable, but
when one network has to estimate correspondences for multiple objects, the accuracy
drops dramatically as shown in Chapter 6. Moreover, there is no explicit treatment of
symmetric objects, resulting in ambiguous and noisy estimates when a need for estimat-
ing poses of such objects appears. A method combining the strengths of template- and
correspondence-based approaches would be extremely useful for industrial applications.

Our autolabeling pipeline allows to reliably estimate 9D bounding boxes and car
shapes. However, it works on local 2D detections and does not use any global informa-
tion about the other detected objects in the image. Such information would potentially
allow to resolve ambiguious cases by global optimization, e.g., when only a small portion
of a car is visible and one cannot reliably estimate its pose. Another interesting direc-
tions are the multi-view and tracking scenarios. Having multiple images and relations
between them provides much more information compared to a monocular case and would
allow to better deal with occlusions and recover the metric scale. Yet another direction
could be an extension of the current di↵erentiable DeepSDF database to non-rigid ob-
jects. While the current implementation works for any kind of rigid objects, it does not
simply extend to objects like people and animals. To solve it one could try to encode all
possible kinematic shape variations into DeepSDF, however it seems more reasonable to
either integrate the support for atriculated objects [190] or change the underlying shape
representation, e.g., adopt the SMPL model [191] for people or SMAL [192] for animals.

The topic of the realism gap for CNN-based methods is underrepresented in the lit-
erature and many problems still remain unresolved. The majority of full-scale 6D pose
estimation methods either train directly on real data or use networks pretrained on real
data and freeze the layers to adapt to another domain and prevent overfitting. While
the presented domain adaptation solutions show impressive performance when applied
to localized image patches, they do not simply extend to full-sized images. Moreover,
both pipelines require carefully designed augmentation modules to cover possible visual
variations of the object. Unfortunately, one cannot guarantee that all possible combina-
tions are indeed covered and many existing ones actually might never appear in reality
directly a↵ecting the performance. One of the promising directions aiming to solve this
problem lies in using realistic (di↵erentiable) rendering and physical engines to signifi-
cantly improve the quality of the simulated data and decrease the realism gap [193, 4].

140

A Authored and Co-Authored
Publications

Authored:

1. S. Zakharov, W. Kehl, B. Planche, A. Hutter, S. Ilic. 3D Object Instance Recog-
nition and Pose Estimation Using Triplet Loss with Dynamic Margin. IEEE/RSJ
International Conference on Intelligent Robots and Systems (IROS), 2017

2. S. Zakharov*, B. Planche*, Z. Wu, A. Hutter, H. Kosch, S. Ilic. Keep it Un-
real: Bridging the Realism Gap for 2.5D Recognition with Geometry Priors Only.
International Conference on 3DVision (3DV), 2018 (*equal contribution)

3. B. Planche*, S. Zakharov*, Z. Wu, A. Hutter, H. Kosch, S. Ilic. Seeing Beyond
Appearance - Mapping Real Images into Geometrical Domains for Unsupervised
CAD-based Recognition. IEEE/RSJ International Conference on Intelligent Robots
and Systems (IROS), 2019 (*equal contribution)

4. S. Zakharov, W. Kehl, S. Ilic. DeceptionNet: Network-Driven Domain Random-
ization. IEEE International Conference on Computer Vision (ICCV), 2019

5. S. Zakharov*, I. Shugurov*, S. Ilic. DPOD: 6D Pose Object Detector and Re-
finer. IEEE International Conference on Computer Vision (ICCV), 2019 (*equal
contribution)

6. S. Zakharov*, W. Kehl*, A. Bhargava, A. Gaidon. Autolabeling 3D Objects with
Di↵erentiable Rendering of SDF Shape Priors. IEEE Conference on Computer
Vision and Pattern Recognition (CVPR), 2020 (*equal contribution)

Co-Authored:

1. B. Planche, Z. Wu, K. Ma, S. Sun, S. Kluckner, T. Chen, A. Hutter, S. Zakharov,
H. Kosch, J. Ernst DepthSynth: Real-Time Realistic Synthetic Data Generation
from CAD Models for 2.5D Recognition. International Conference on 3D Vision
(3DV), 2017

2. M. Bui, S. Zakharov, S. Albarqouni, S. Ilic, N. Navab. When Regression meets
Manifold Learning for Object Recognition and Pose Estimation. IEEE Interna-
tional Conference on Robotics and Automation (ICRA), 2018

3. R. Kaskman, S. Zakharov, I. Shugurov, S. Ilic. HomebrewedDB: RGB-D Dataset
for 6D Pose Estimation of 3D Objects. IEEE International Conference on Com-
puter Vision (ICCV) Workshops, 2019

141

Bibliography

[1] R. Hartley and A. Zisserman. Multiple view geometry in computer vision. Cam-
bridge university press, 2003.

[2] L. v. d. Maaten and G. Hinton. Visualizing data using t-sne. Journal of Machine
Learning Research, 9, 2008.

[3] S. Hinterstoisser, V. Lepetit, S. Ilic, S. Holzer, G. Bradski, K. Konolige, and
N. Navab. Model based training, detection and pose estimation of texture-less
3d objects in heavily cluttered scenes. In Asian conference on computer vision
(ACCV), 2012.

[4] Parallel domain: Data generation for autonomy. https://www.paralleldomain.
com/.

[5] T. Hodan, P. Haluza, Š. Obdržálek, J. Matas, M. Lourakis, and X. Zabulis. T-less:
An rgb-d dataset for 6d pose estimation of texture-less objects. In IEEE Winter
Conference on Applications of Computer Vision (WACV), 2017.

[6] A. Shrivastava, T. Pfister, O. Tuzel, J. Susskind, W. Wang, and R. Webb. Learning
from simulated and unsupervised images through adversarial training. In IEEE
Conference on Computer Vision and Pattern Recognition (CVPR), 2017.

[7] J.-Y. Zhu, T. Park, P. Isola, and A. A. Efros. Unpaired image-to-image translation
using cycle-consistent adversarial networks. In IEEE International Conference on
Computer Vision (ICCV), 2017.

[8] K. Bousmalis, G. Trigeorgis, N. Silberman, D. Krishnan, and D. Erhan. Do-
main separation networks. In Advances in Neural Information Processing Systems
(NeurIPS), 2016.

[9] Y. Li, G. Wang, X. Ji, Y. Xiang, and D. Fox. Deepim: Deep iterative matching for
6d pose estimation. In European Conference on Computer Vision (ECCV), 2018.

[10] I. Goodfellow, Y. Bengio, and A. Courville. Deep learning. Book in preparation
for MIT Press, 2016. URL: http://www.deeplearningbook.org.

[11] M. A. Nielsen. Neural networks and deep learning. URL:
http://neuralnetworksanddeeplearning. com, 2015.

[12] A. Karpathy. Convolutional neural networks for visual recognition, 2015.

143

https://www.paralleldomain.com/
https://www.paralleldomain.com/
http://www.deeplearningbook.org

BIBLIOGRAPHY

[13] S. C. Welch. Neural networks demystified, part 4: Backpropagation. URL: https:
//www.youtube.com/watch?v=GlcnxUlrtek.

[14] S. Ruder. An overview of gradient descent optimization algorithms. arXiv, 2016.

[15] Y. A. LeCun, L. Bottou, G. B. Orr, and K.-R. Müller. E�cient backprop. In
Neural networks: Tricks of the trade. Springer, 2012.

[16] B. Blaus. Anatomy of a multipolar neuron, 2013. URL: https://commons.

wikimedia.org/w/index.php?curid=28761830.

[17] S. Io↵e and C. Szegedy. Batch normalization: Accelerating deep network train-
ing by reducing internal covariate shift. In International Conference on Machine
Learning (ICML), 2015.

[18] Z. Zhang. A flexible new technique for camera calibration. IEEE Transactions on
pattern analysis and machine intelligence (TPAMI), 22(11), 2000.

[19] N. Dalal and B. Triggs. Histograms of oriented gradients for human detection.
In IEEE Conference on Computer Vision and Pattern Recognition (CVPR), vol-
ume 1. IEEE, 2005.

[20] S. Hinterstoisser, S. Holzer, C. Cagniart, S. Ilic, K. Konolige, N. Navab, and
V. Lepetit. Multimodal templates for real-time detection of texture-less objects in
heavily cluttered scenes. In International conference on computer vision (ICCV).
IEEE, 2011.

[21] S. Hinterstoisser, C. Cagniart, S. Ilic, P. Sturm, N. Navab, P. Fua, and V. Lep-
etit. Gradient response maps for real-time detection of textureless objects. IEEE
Transactions on Pattern Analysis and Machine Intelligence (TPAMI), 34(5), 2012.

[22] Y. Konishi, Y. Hanzawa, M. Kawade, and M. Hashimoto. Fast 6d pose estimation
from a monocular image using hierarchical pose trees. In European Conference on
Computer Vision (ECCV). Springer, 2016.

[23] R. Rios-Cabrera and T. Tuytelaars. Discriminatively trained templates for 3d
object detection: A real time scalable approach. In IEEE International Conference
on Computer Vision (ICCV), 2013.

[24] W. Kehl, F. Tombari, N. Navab, S. Ilic, and V. Lepetit. Hashmod: A hashing
method for scalable 3d object detection. In British Machine Vision Conference
(BMVC), volume 1, 2015.

[25] T. Hodaň, X. Zabulis, M. Lourakis, Š. Obdržálek, and J. Matas. Detection and
fine 3d pose estimation of texture-less objects in rgb-d images. In IEEE/RSJ
International Conference on Intelligent Robots and Systems (IROS), 2015.

144

https://www.youtube.com/watch?v=GlcnxUlrtek
https://www.youtube.com/watch?v=GlcnxUlrtek
https://commons.wikimedia.org/w/index.php?curid=28761830
https://commons.wikimedia.org/w/index.php?curid=28761830

BIBLIOGRAPHY

[26] R. Hadsell, S. Chopra, and Y. LeCun. Dimensionality reduction by learning an
invariant mapping. In IEEE Conference on Computer Vision and Pattern Recog-
nition (CVPR), volume 2. IEEE, 2006.

[27] H. Guo, J. Wang, Y. Gao, J. Li, and H. Lu. Multi-view 3d object retrieval with
deep embedding network. IEEE Transactions on Image Processing, 25(12), 2016.

[28] E. Ho↵er and N. Ailon. Deep metric learning using triplet network. In International
Workshop on Similarity-Based Pattern Recognition. Springer, 2015.

[29] P. Wohlhart and V. Lepetit. Learning descriptors for object recognition and 3d
pose estimation. In IEEE Conference on Computer Vision and Pattern Recognition
(CVPR), 2015.

[30] D. G. Lowe. Local feature view clustering for 3d object recognition. In IEEE Con-
ference on Computer Vision and Pattern Recognition (CVPR), volume 1. IEEE,
2001.

[31] H. Bay, T. Tuytelaars, and L. Van Gool. Surf: Speeded up robust features. In
European conference on computer vision (ECCV). Springer, 2006.

[32] S. Holzer, J. Shotton, and P. Kohli. Learning to e�ciently detect repeatable inter-
est points in depth data. In European Conference on Computer Vision (ECCV).
Springer, 2012.

[33] E. Rosten, R. Porter, and T. Drummond. Faster and better: A machine learning
approach to corner detection. IEEE transactions on pattern analysis and machine
intelligence (TPAMI), 32(1), 2008.

[34] M. Ozuysal, M. Calonder, V. Lepetit, and P. Fua. Fast keypoint recognition using
random ferns. IEEE transactions on pattern analysis and machine intelligence
(TPAMI), 32(3), 2009.

[35] V. Lepetit and P. Fua. Keypoint recognition using randomized trees. IEEE trans-
actions on pattern analysis and machine intelligence (TPAMI), 28(9), 2006.

[36] K. M. Yi, E. Trulls, V. Lepetit, and P. Fua. Lift: Learned invariant feature
transform. In European Conference on Computer Vision (ECCV), 2016.

[37] A. Crivellaro, M. Rad, Y. Verdie, K. Moo Yi, P. Fua, and V. Lepetit. A novel
representation of parts for accurate 3d object detection and tracking in monocular
images. In IEEE international conference on computer vision (ICCV), 2015.

[38] M. Rad and V. Lepetit. Bb8: A scalable, accurate, robust to partial occlusion
method for predicting the 3d poses of challenging objects without using depth. In
IEEE International Conference on Computer Vision (ICCV), 2017.

145

BIBLIOGRAPHY

[39] J. Redmon, S. Divvala, R. Girshick, and A. Farhadi. You only look once: Unified,
real-time object detection. In IEEE conference on computer vision and pattern
recognition (CVPR), 2016.

[40] B. Tekin, S. N. Sinha, and P. Fua. Real-time seamless single shot 6d object pose
prediction. In IEEE Conference on Computer Vision and Pattern Recognition
(CVPR), 2018.

[41] J. Shotton, B. Glocker, C. Zach, S. Izadi, A. Criminisi, and A. Fitzgibbon. Scene
coordinate regression forests for camera relocalization in rgb-d images. In IEEE
Conference on Computer Vision and Pattern Recognition (CVPR), 2013.

[42] A. Guzman-Rivera, P. Kohli, B. Glocker, J. Shotton, T. Sharp, A. Fitzgibbon, and
S. Izadi. Multi-output learning for camera relocalization. In IEEE Conference on
Computer Vision and Pattern Recognition (CVPR), 2014.

[43] J. Valentin, M. Nießner, J. Shotton, A. Fitzgibbon, S. Izadi, and P. H. Torr.
Exploiting uncertainty in regression forests for accurate camera relocalization. In
IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2015.

[44] J. Taylor, J. Shotton, T. Sharp, and A. Fitzgibbon. The vitruvian manifold:
Inferring dense correspondences for one-shot human pose estimation. In IEEE
Conference on Computer Vision and Pattern Recognition (CVPR). IEEE, 2012.

[45] E. Brachmann, F. Michel, A. Krull, M. Ying Yang, S. Gumhold, et al. Uncertainty-
driven 6d pose estimation of objects and scenes from a single rgb image. In IEEE
conference on computer vision and pattern recognition (CVPR), 2016.

[46] R. A. Güler, N. Neverova, and I. Kokkinos. Densepose: Dense human pose estima-
tion in the wild. In IEEE Conference on Computer Vision and Pattern Recognition
(CVPR), 2018.

[47] A. Kendall, M. Grimes, and R. Cipolla. Posenet: A convolutional network for real-
time 6-dof camera relocalization. In IEEE International Conference on Computer
Vision (ICCV), 2015.

[48] F. Walch, C. Hazirbas, L. Leal-Taixe, T. Sattler, S. Hilsenbeck, and D. Cremers.
Image-based localization using lstms for structured feature correlation. In IEEE
International Conference on Computer Vision (ICCV), 2017.

[49] A. Kendall and R. Cipolla. Geometric loss functions for camera pose regression
with deep learning. In IEEE Conference on Computer Vision and Pattern Recog-
nition (CVPR), 2017.

[50] W. Kehl, F. Manhardt, F. Tombari, S. Ilic, and N. Navab. Ssd-6d: Making rgb-
based 3d detection and 6d pose estimation great again. In IEEE International
Conference on Computer Vision (ICCV), 2017.

146

BIBLIOGRAPHY

[51] P. Besl and D. McKay. Method for registration of 3-d shapes. In Robotics-DL
tentative. International Society for Optics and Photonics, 1992.

[52] Y. Chen and G. G. Medioni. Object modeling by registration of multiple range
images. Image Vis. Comput., 10(3), 1992.

[53] C. Harris and C. Stennett. Rapid-a video rate object tracker. In British Machine
Vision Conference (BMVC), 1990.

[54] T. Drummond and R. Cipolla. Real-time visual tracking of complex structures.
IEEE Transactions on pattern analysis and machine intelligence (TPAMI), 24(7),
2002.

[55] W. Kehl, F. Manhardt, F. Tombari, S. Ilic, and N. Navab. Ssd-6d: Making rgb-
based 3d detection and 6d pose estimation great again. In IEEE Conference on
Computer Vision and Pattern Recognition (CVPR), 2017.

[56] F. Manhardt, W. Kehl, N. Navab, and F. Tombari. Deep model-based 6d pose
refinement in rgb. In European Conference on Computer Vision (ECCV), 2018.

[57] C. Szegedy, S. Io↵e, V. Vanhoucke, and A. A. Alemi. Inception-v4, inception-
resnet and the impact of residual connections on learning. In Thirty-first AAAI
conference on artificial intelligence, 2017.

[58] S. Hinterstoisser, V. Lepetit, S. Ilic, S. Holzer, G. Bradski, K. Konolige, and
N. Navab. Model based training, detection and pose estimation of texture-less
3d objects in heavily cluttered scenes. In Asian conference on computer vision
(ACCV). Springer, 2012.

[59] M. M. Loper and M. J. Black. OpenDR: An approximate di↵erentiable renderer.
In European conference on computer vision (ECCV), 2014.

[60] Y. U. Hiroharu Kato and T. Harada. Neural 3d mesh renderer. In IEEE Conference
on Computer Vision and Pattern Recognition (CVPR), 2018.

[61] S. Liu, T. Li, W. Chen, and H. Li. Soft rasterizer: A di↵erentiable renderer for
image-based 3d reasoning. In IEEE International Conference on Computer Vision
(ICCV), 2019.

[62] T.-M. Li, M. Aittala, F. Durand, and J. Lehtinen. Di↵erentiable monte carlo
ray tracing through edge sampling. In Conference and Exhibition on Computer
Graphics & Interactive Techniques in Asia (SIGGRAPH Asia), 2018.

[63] M. J. Landau, B. Y. Choo, and P. A. Beling. Simulating kinect infrared and depth
images. IEEE transactions on cybernetics, 46(12), 2015.

[64] B. Planche, Z. Wu, K. Ma, S. Sun, S. Kluckner, T. Chen, A. Hutter, S. Zakharov,
H. Kosch, and J. Ernst. Depthsynth: Real-time realistic synthetic data generation

147

BIBLIOGRAPHY

from cad models for 2.5 d recognition. In International Conference on 3D Vision
(3DV), 2017.

[65] Y. Taigman, A. Polyak, and L. Wolf. Unsupervised cross-domain image generation.
International Conference on Learning Representations (ICLR), 2017.

[66] K. Bousmalis, N. Silberman, D. Dohan, D. Erhan, and D. Krishnan. Unsupervised
pixel-level domain adaptation with generative adversarial networks. In IEEE con-
ference on computer vision and pattern recognition (CVPR), 2017.

[67] P. Isola, J.-Y. Zhu, T. Zhou, and A. A. Efros. Image-to-image translation with
conditional adversarial networks. In IEEE Conference on Computer Vision and
Pattern Recognition (CVPR), 2017.

[68] I. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley, S. Ozair,
A. Courville, and Y. Bengio. Generative adversarial nets. In Advances in Neural
Information Processing Systems (NeurIPS), 2014.

[69] A. Radford, L. Metz, and S. Chintala. Unsupervised representation learning with
deep convolutional generative adversarial networks. arXiv, 2015.

[70] T. Salimans, I. Goodfellow, W. Zaremba, V. Cheung, A. Radford, and X. Chen.
Improved techniques for training gans. In Advances in Neural Information Pro-
cessing Systems (NeurIPS), 2016.

[71] C. Li and M. Wand. Precomputed real-time texture synthesis with markovian gen-
erative adversarial networks. In European conference on computer vision (ECCV).
Springer, 2016.

[72] L. Yu, W. Zhang, J. Wang, and Y. Yu. Seqgan: Sequence generative adversarial
nets with policy gradient. In AAAI conference on artificial intelligence, 2017.

[73] X. Chen, Y. Duan, R. Houthooft, J. Schulman, I. Sutskever, and P. Abbeel.
Infogan: Interpretable representation learning by information maximizing gen-
erative adversarial nets. In Advances in Neural Information Processing Systems
(NeurIPS), 2016.

[74] P. Luc, C. Couprie, S. Chintala, and J. Verbeek. Semantic segmentation using
adversarial networks. In NeurIPS Workshop on Adversarial Training, 2016.

[75] D. Nie, R. Trullo, J. Lian, C. Petitjean, S. Ruan, Q. Wang, and D. Shen. Medical
image synthesis with context-aware generative adversarial networks. In Interna-
tional Conference on Medical Image Computing and Computer-Assisted Interven-
tion (MICCAI). Springer, 2017.

[76] Y. Xue, T. Xu, H. Zhang, L. R. Long, and X. Huang. Segan: Adversarial network
with multi-scale l 1 loss for medical image segmentation. Neuroinformatics, 16(3-
4), 2018.

148

BIBLIOGRAPHY

[77] J. Gauthier. Conditional generative adversarial nets for convolutional face gen-
eration. Class Project for Stanford CS231N: Convolutional Neural Networks for
Visual Recognition, Winter semester, 2014(5), 2014.

[78] E. L. Denton, S. Chintala, R. Fergus, et al. Deep generative image models using
a laplacian pyramid of adversarial networks. In Advances in Neural Information
Processing Systems (NeurIPS), 2015.

[79] M.-Y. Liu and O. Tuzel. Coupled generative adversarial networks. In Advances in
neural information processing systems (NeurIPS), 2016.

[80] L. Chongxuan, T. Xu, J. Zhu, and B. Zhang. Triple generative adversarial nets.
In Advances in neural information processing systems (NeurIPS), 2017.

[81] Y. Ganin and V. Lempitsky. Unsupervised domain adaptation by backpropagation.
In International Conference on Machine Learning (ICML), 2015.

[82] Y. Ganin, E. Ustinova, H. Ajakan, P. Germain, H. Larochelle, F. Laviolette,
M. Marchand, and V. Lempitsky. Domain-adversarial training of neural networks.
Journal of Machine Learning Research (JMLR), 2016.

[83] E. Tzeng, J. Ho↵man, K. Saenko, and T. Darrell. Adversarial discriminative do-
main adaptation. IEEE Conference on Computer Vision and Pattern Recognition
(CVPR), 2017.

[84] M. Rad, M. Oberweger, and V. Lepetit. Feature mapping for learning fast and ac-
curate 3d pose inference from synthetic images. In IEEE Conference on Computer
Vision and Pattern Recognition (CVPR), 2018.

[85] M. Rad, M. Oberweger, and V. Lepetit. Domain transfer for 3d pose estimation
from color images without manual annotations. In Asian Conference on Computer
Vision. Springer, 2018.

[86] F. Sadeghi and S. Levine. (cad)2rl: Real single-image flight without a single real
image. Robotics: Science and Systems(RSS), 2017.

[87] J. Tobin, R. Fong, A. Ray, J. Schneider, W. Zaremba, and P. Abbeel. Domain
randomization for transferring deep neural networks from simulation to the real
world. In IEEE/RSJ International Conference on Intelligent Robots and Systems
(IROS). IEEE, 2017.

[88] K. Perlin. Noise hardware. Real-Time Shading SIGGRAPH Course Notes, 2001.

[89] H. Su, C. R. Qi, Y. Li, and L. J. Guibas. Render for cnn: Viewpoint estimation in
images using cnns trained with rendered 3d model views. In IEEE International
Conference on Computer Vision (ICCV), 2015.

149

BIBLIOGRAPHY

[90] M. Bui, S. Albarqouni, M. Schrapp, N. Navab, and S. Ilic. X-ray posenet: 6 dof pose
estimation for mobile x-ray devices. In IEEE Winter Conference on Applications
of Computer Vision (WACV). IEEE, 2017.

[91] R. A. Güler, N. Neverova, and I. Kokkinos. Densepose: Dense human pose estima-
tion in the wild. In IEEE Conference on Computer Vision and Pattern Recognition
(CVPR), 2018.

[92]

[93] S. Peng, Y. Liu, Q. Huang, X. Zhou, and H. Bao. Pvnet: Pixel-wise voting network
for 6dof pose estimation. In IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), 2019.

[94] T.-Y. Lin, M. Maire, S. Belongie, J. Hays, P. Perona, D. Ramanan, P. Dollár, and
C. L. Zitnick. Microsoft coco: Common objects in context. In European conference
on computer vision (ECCV). Springer, 2014.

[95] K. He, X. Zhang, S. Ren, and J. Sun. Deep residual learning for image recognition.
In IEEE conference on computer vision and pattern recognition (CVPR), 2016.

[96] Z. Zhang. A flexible new technique for camera calibration. IEEE Transactions on
pattern analysis and machine intelligence (TPAMI), 22, 2000.

[97] S. Hinterstoisser, V. Lepetit, P. Wohlhart, and K. Konolige. On pre-trained image
features and synthetic images for deep learning. In Proceedings of the European
Conference on Computer Vision (ECCV), 2018.

[98] W. Liu, D. Anguelov, D. Erhan, C. Szegedy, S. Reed, C.-Y. Fu, and A. C. Berg.
Ssd: Single shot multibox detector. In European conference on computer vision
(ECCV). Springer, 2016.

[99] J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-Fei. Imagenet: A large-
scale hierarchical image database. In IEEE Conference on Computer Vision and
Pattern Recognition (CVPR). Ieee, 2009.

[100] E. Brachmann, A. Krull, F. Michel, S. Gumhold, J. Shotton, and C. Rother.
Learning 6d object pose estimation using 3d object coordinates. In European
conference on computer vision. Springer, 2014.

[101] Y. Xiang, T. Schmidt, V. Narayanan, and D. Fox. Posecnn: A convolutional neural
network for 6d object pose estimation in cluttered scenes. Robotics: Science and
Systems (RSS), 2018.

[102] M. Oberweger, M. Rad, and V. Lepetit. Making deep heatmaps robust to partial
occlusions for 3d object pose estimation. In European Conference on Computer
Vision (ECCV), 2018.

150

BIBLIOGRAPHY

[103] E. Brachmann, F. Michel, A. Krull, M. Ying Yang, S. Gumhold, et al. Uncertainty-
driven 6d pose estimation of objects and scenes from a single rgb image. In Pro-
ceedings of the IEEE Conference on Computer Vision and Pattern Recognition,
2016.

[104] J. Lee, S. Walsh, A. Harakeh, and S. Waslander. Leveraging pre-trained 3d object
detection models for fast ground truth generation. In International Conference on
Intelligent Transportation Systems (ITSC), 2018.

[105] C. Huang. Adding a dimension: Annotating 3d objects with 2d data. 2018.
https://scale.com/blog/3d-cuboids-annotations.

[106] Z. Wang, H. Ling, D. Acuna, A. Kar, and S. Fidler. Object instance annotation
with deep extreme level set evolution. In IEEE Conference on Computer Vision
and Pattern Recognition (CVPR), 2019.

[107] H. Ling, J. Gao, A. Kar, W. Chen, and S. Fidler. Fast interactive object annotation
with curve-gcn. In IEEE Conference on Computer Vision and Pattern Recognition
(CVPR), 2019.

[108] W. Chen, J. Gao, H. Ling, E. J. Smith, J. Lehtinen, A. Jacobson, and S. Fidler.
Learning to predict 3d objects with an interpolation-based di↵erentiable renderer.
In Advances in Neural Information Processing Systems (NeurIPS), 2019.

[109] A. Yuille and D. Kersten. Vision as bayesian inference: analysis by synthesis?
Trends in cognitive sciences, 10(7), 2006.

[110] A. Kundu, Y. Li, and J. M. Rehg. 3d-rcnn: Instance-level 3d object reconstruction
via render-and-compare. In IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), 2018.

[111] H. Wang, S. Sridhar, J. Huang, J. Valentin, S. Song, and L. J. Guibas. Normalized
object coordinate space for category-level 6d object pose and size estimation. In
IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2019.

[112] J. J. Park, P. Florence, J. Straub, R. Newcombe, and S. Lovegrove. Deepsdf:
Learning continuous signed distance functions for shape representation. In IEEE
Conference on Computer Vision and Pattern Recognition (CVPR), 2019.

[113] A. Geiger, P. Lenz, and R. Urtasun. Are we ready for autonomous driving? the
kitti vision benchmark suite. In IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), 2012.

[114] A. Dosovitskiy, G. Ros, F. Codevilla, A. Lopez, and V. Koltun. CARLA: An open
urban driving simulator. In Conference on Robot Learning (CoRL), 2017.

[115] A. Gaidon, Q. Wang, Y. Cabon, and E. Vig. Virtual worlds as proxy for multi-
object tracking analysis. In IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), 2016.

151

https://scale.com/blog/3d-cuboids-annotations

BIBLIOGRAPHY

[116] B. Curless and M. Levoy. A volumetric method for building complex models from
range images. In Conference on Computer graphics and interactive techniques
(SIGGRAPH), 1996.

[117] W. E. Lorensen and H. E. Cline. Marching cubes: A high resolution 3d surface
construction algorithm. In Conference on Computer graphics and interactive tech-
niques (SIGGRAPH), 1987.

[118] H. Pfister, M. Zwicker, J. van Baar, and M. Gross. Surfels: Surface elements as ren-
dering primitives. In Conference on Computer graphics and interactive techniques
(SIGGRAPH), 2000.

[119] P. Schönemann. A generalized solution of the orthogonal procrustes problem. In
Psychometrika, 1966.

[120] H. Caesar, V. Bankiti, A. H. Lang, S. Vora, V. E. Liong, Q. Xu, A. Krishnan,
Y. Pan, G. Baldan, and O. Beijbom. nuscenes: A multimodal dataset for au-
tonomous driving. In IEEE Conference on Computer Vision and Pattern Recog-
nition (CVPR), 2020.

[121] A. Paszke, S. Gross, S. Chintala, G. Chanan, E. Yang, Z. DeVito, Z. Lin, A. Des-
maison, L. Antiga, and A. Lerer. Automatic di↵erentiation in pytorch. In Advances
in neural information processing systems (NeurIPS) Workshops, 2017.

[122] Y. Wu, A. Kirillov, F. Massa, W.-Y. Lo, and R. Girshick. Detectron2. https:

//github.com/facebookresearch/detectron2, 2019.

[123] K. He, G. Gkioxari, P. Dollár, and R. B. Girshick. Mask R-CNN. In IEEE
International Conference on Computer Vision (ICCV), 2017.

[124] A. H. Lang, S. Vora, H. Caesar, L. Zhou, J. Yang, and O. Beijbom. Pointpillars:
Fast encoders for object detection from point clouds. In IEEE Conference on
Computer Vision and Pattern Recognition (CVPR), 2019.

[125] A. Simonelli, S. Rota Bulo, L. Porzi, M. Lopez-Antequera, and P. Kontschieder.
Disentangling monocular 3d object detection. In IEEE International Conference
on Computer Vision (ICCV), 2019.

[126] F. Manhardt, W. Kehl, and A. Gaidon. Roi-10d: Monocular lifting of 2d detection
to 6d pose and metric shape. In IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), 2019.

[127] X. Chen, H. Ma, J. Wan, B. Li, and T. Xia. Multi-view 3d object detection network
for autonomous driving. In IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), 2017.

[128] R. Girshick, J. Donahue, T. Darrell, and J. Malik. Rich feature hierarchies for
accurate object detection and semantic segmentation. In IEEE conference on
computer vision and pattern recognition (CVPR), 2014.

152

https://github.com/facebookresearch/detectron2
https://github.com/facebookresearch/detectron2

BIBLIOGRAPHY

[129] R. Girshick. Fast r-cnn. In IEEE International Conference on Computer Vision
(ICCV), 2015.

[130] S. Ren, K. He, R. Girshick, and J. Sun. Faster r-cnn: Towards real-time ob-
ject detection with region proposal networks. In Advances in neural information
processing systems (NeurIPS), 2015.

[131] K. He, G. Gkioxari, P. Dollár, and R. Girshick. Mask r-cnn. In IEEE international
conference on computer vision (ICCV), 2017.

[132] T. Hodaň, P. Haluza, Š. Obdržálek, J. Matas, M. Lourakis, and X. Zabulis. T-
LESS: An RGB-D dataset for 6D pose estimation of texture-less objects. IEEE
Winter Conference on Applications of Computer Vision (WACV), 2017.

[133] A. Tejani, D. Tang, R. Kouskouridas, and T.-K. Kim. Latent-class hough forests
for 3d object detection and pose estimation. In European conference on computer
vision (ECCV). Springer, 2014.

[134] A. Doumanoglou, R. Kouskouridas, S. Malassiotis, and T.-K. Kim. 6d object
detection and next-best-view prediction in the crowd. In IEEE Computer Vision
and Pattern Recognition (CVPR), volume 1, 2016.

[135] Z. Xie, A. Singh, J. Uang, K. S. Narayan, and P. Abbeel. Multimodal blending for
high-accuracy instance recognition. In 2013 IEEE/RSJ International Conference
on Intelligent Robots and Systems. IEEE, 2013.

[136] A. Aldoma, T. Fäulhammer, and M. Vincze. Automation of “ground truth” an-
notation for multi-view rgb-d object instance recognition datasets. In IEEE/RSJ
International Conference on Intelligent Robots and Systems (IROS). IEEE, 2014.

[137] C. Rennie, R. Shome, K. E. Bekris, and A. Ferreira De Souza. A dataset for
improved rgbd-based object detection and pose estimation for warehouse pick-
and-place. IEEE Robotics and Automation Letters (RA-L), 1, 02/2016 2016.

[138] N. Correll, K. E. Bekris, D. Berenson, O. Brock, A. Causo, K. Hauser, K. Okada,
A. Rodriguez, J. M. Romano, and P. R. Wurman. Analysis and observations from
the first amazon picking challenge. IEEE Transactions on Automation Science
and Engineering, 15(1), 2016.

[139] A. Singh, J. Sha, K. S. Narayan, T. Achim, and P. Abbeel. Bigbird: A large-scale
3d database of object instances. In IEEE International Conference on Robotics
and Automation (ICRA). IEEE, 2014.

[140] T. Hodan, F. Michel, E. Brachmann, W. Kehl, A. GlentBuch, D. Kraft, B. Drost,
J. Vidal, S. Ihrke, X. Zabulis, et al. Bop: Benchmark for 6d object pose estimation.
In European Conference on Computer Vision (ECCV), 2018.

153

BIBLIOGRAPHY

[141] S. Garrido-Jurado, R. Muñoz-Salinas, F. J. Madrid-Cuevas, and M. J. Maŕın-
Jiménez. Automatic generation and detection of highly reliable fiducial markers
under occlusion. Pattern Recognition, 47(6), 2014.

[142] G. Bradski. The OpenCV Library. Dr. Dobb’s Journal of Software Tools, 2000.

[143] Artec 3D. https://www.artec3d.com/. Accessed: 2019-03-23.

[144] P. Cignoni, M. Callieri, M. Corsini, M. Dellepiane, F. Ganovelli, and G. Ranzuglia.
MeshLab: an Open-Source Mesh Processing Tool. In V. Scarano, R. D. Chiara,
and U. Erra, editors, Eurographics Italian Chapter Conference. The Eurographics
Association, 2008.

[145] N. Max. Weights for computing vertex normals from facet normals. J. Graph.
Tools, 4(2), March 1999. URL: http://dx.doi.org/10.1080/10867651.1999.
10487501, doi:10.1080/10867651.1999.10487501.

[146] J. Sturm, N. Engelhard, F. Endres, W. Burgard, and D. Cremers. A benchmark
for the evaluation of rgb-d slam systems. In IEEE/RSJ International Conference
on Intelligent Robots and Systems (IROS), 2012.

[147] B. Curless and M. Levoy. A volumetric method for building complex models
from range images. In Proceedings of the 23rd Annual Conference on Com-
puter Graphics and Interactive Techniques, SIGGRAPH ’96, New York, NY,
USA, 1996. ACM. URL: http://doi.acm.org/10.1145/237170.237269, doi:
10.1145/237170.237269.

[148] B. Drost, M. Ulrich, N. Navab, and S. Ilic. Model globally, match locally: E�cient
and robust 3d object recognition. In IEEE Conference on Computer Vision and
Pattern Recognition (CVPR), 2010.

[149] D. Eigen and R. Fergus. Predicting depth, surface normals and semantic labels
with a common multi-scale convolutional architecture. In IEEE Conference on
Computer Vision and Pattern Recognition (CVPR), 2015.

[150] P. Wang, X. Shen, Z. Lin, S. Cohen, B. Price, and A. L. Yuille. Towards uni-
fied depth and semantic prediction from a single image. In IEEE Conference on
Computer Vision and Pattern Recognition (CVPR), 2015.

[151] S. Gupta, J. Ho↵man, and J. Malik. Cross modal distillation for supervision trans-
fer. In IEEE Conference on Computer Vision and Pattern Recognition (CVPR),
2016.

[152] R. Kuga, A. Kanezaki, M. Samejima, Y. Sugano, and Y. Matsushita. Multi-task
learning using multi-modal encoderdecoder networks with shared skip connections.
In IEEE International Conference on Computer Vision Workshop (ICCVW), 2017.

154

https://www.artec3d.com/
http://dx.doi.org/10.1080/10867651.1999.10487501
http://dx.doi.org/10.1080/10867651.1999.10487501
http://dx.doi.org/10.1080/10867651.1999.10487501
http://doi.acm.org/10.1145/237170.237269
http://dx.doi.org/10.1145/237170.237269
http://dx.doi.org/10.1145/237170.237269

BIBLIOGRAPHY

[153] A. Kendall, Y. Gal, and R. Cipolla. Multi-task learning using uncertainty to weigh
losses for scene geometry and semantics. In IEEE conference on computer vision
and pattern recognition (CVPR), 2018.

[154] D. Xu, W. Ouyang, X. Wang, and N. Sebe. Pad-net: Multi-tasks guided prediction-
and-distillation network for simultaneous depth estimation and scene parsing. In
IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2018.

[155] N. Neverova, P. Luc, C. Couprie, J. Verbeek, and Y. LeCun. Predicting deeper
into the future of semantic segmentation. In IEEE International Conference on
Computer Vision (ICCV), 2017.

[156] V. Mnih, N. Heess, A. Graves, et al. Recurrent models of visual attention. In
Advances in neural information processing systems (NeurIPS), 2014.

[157] J. Ba, V. Mnih, and K. Kavukcuoglu. Multiple object recognition with visual
attention. arXiv, 2014.

[158] M.-T. Luong, H. Pham, and C. D. Manning. E↵ective approaches to attention-
based neural machine translation. In Conference on Empirical Methods in Natural
Language Processing, 2015.

[159] J. Cheng, L. Dong, and M. Lapata. Long short-term memory-networks for machine
reading. In Conference on Empirical Methods in Natural Language Processing,
2016.

[160] H. Zhang, I. Goodfellow, D. Metaxas, and A. Odena. Self-attention generative
adversarial networks. In International Conference on Machine Learning (ICML).
International Machine Learning Society (IMLS), 2019.

[161] J. F. Blinn. Models of light reflection for computer synthesized pictures. In Con-
ference on Computer graphics and interactive techniques (SIGGRAPH), 1977.

[162] M. Ounsworth. Anticipatory Movement Planning for Quadrotor Visual Servoeing.
PhD thesis, McGill University Libraries, 2015.

[163] K. Perlin. Improving noise. In ACM Transactions on Graphics (TOG), 2002.

[164] S. Worley. A cellular texture basis function. In Conference on Computer graphics
and interactive techniques (SIGGRAPH). ACM, 1996.

[165] T.-Y. Lin, M. Maire, S. Belongie, J. Hays, P. Perona, D. Ramanan, P. Dollár, and
C. L. Zitnick. Microsoft coco: common objects in context. In European conference
on computer vision (ECCV), 2014.

[166] P. Y. Simard, D. Steinkraus, J. C. Platt, et al. Best practices for convolutional
neural networks applied to visual document analysis. In International Conference
on Document Analysis and Recognition (ICDAR), 2003.

155

BIBLIOGRAPHY

[167] I. Laina, C. Rupprecht, V. Belagiannis, F. Tombari, and N. Navab. Deeper depth
prediction with fully convolutional residual networks. In International Conference
on 3D Vision (3DV). IEEE, 2016.

[168] K. Bousmalis, N. Silberman, D. Dohan, D. Erhan, and D. Krishnan. Unsupervised
pixel-level domain adaptation with generative adversarial networks. In IEEE con-
ference on computer vision and pattern recognition (CVPR), 2017.

[169] W. Kehl, F. Manhardt, F. Tombari, S. Ilic, and N. Navab. Ssd-6d: Making rgb-
based 3d detection and 6d pose estimation great again. In IEEE International
Conference on Computer Vision (ICCV), 2017.

[170] F. Manhardt, W. Kehl, N. Navab, and F. Tombari. Deep model-based 6d pose
refinement in rgb. In European conference on computer vision (ECCV), 2018.

[171] M. Jaderberg, K. Simonyan, A. Zisserman, and K. Kavukcuoglu. Spatial trans-
former networks. In Advances in neural information processing systems (NeurIPS),
2015.

[172] S. Hinterstoisser, V. Lepetit, P. Wohlhart, and K. Konolige. On pre-trained im-
age features and synthetic images for deep learning. In European Conference on
Computer Vision Workshops (ECCVW), 2018.

[173] B. T. Phong. Illumination for computer generated pictures. Communications of
the ACM, 1975.

[174] P. Arbelaez, M. Maire, C. Fowlkes, and J. Malik. Contour detection and hierar-
chical image segmentation. IEEE transactions on pattern analysis and machine
intelligence (TPAMI), 2011.

[175] P. Wohlhart and V. Lepetit. Learning descriptors for object recognition and 3d
pose estimation. In IEEE Conference on Computer Vision and Pattern Recognition
(CVPR), 2015.

[176] G. Ros, L. Sellart, J. Materzynska, D. Vazquez, and A. M. Lopez. The synthia
dataset: A large collection of synthetic images for semantic segmentation of ur-
ban scenes. In IEEE Conference on Computer Vision and Pattern Recognition
(CVPR), 2016.

[177] M. Cordts, M. Omran, S. Ramos, T. Rehfeld, M. Enzweiler, R. Benenson,
U. Franke, S. Roth, and B. Schiele. The cityscapes dataset for semantic urban scene
understanding. In IEEE Conference on Computer Vision and Pattern Recognition
(CVPR), 2016.

[178] E. Tzeng, J. Ho↵man, N. Zhang, K. Saenko, and T. Darrell. Deep domain confu-
sion: Maximizing for domain invariance. arXiv, 2014.

156

BIBLIOGRAPHY

[179] M. Long, Y. Cao, J. Wang, and M. I. Jordan. Learning transferable features
with deep adaptation networks. International Conference on Machine Learning
(ICML), 2015.

[180] H.-Y. Lee, H.-Y. Tseng, J.-B. Huang, M. Singh, and M.-H. Yang. Diverse image-
to-image translation via disentangled representations. In European conference on
computer vision (ECCV), 2018.

[181] D. Q. Huynh. Metrics for 3d rotations: Comparison and analysis. Journal of
Mathematical Imaging and Vision, 2009.

[182] J. Ho↵man, D. Wang, F. Yu, and T. Darrell. Fcns in the wild: Pixel-level adver-
sarial and constraint-based adaptation. arXiv, 2016.

[183] Y. Zhang, P. David, and B. Gong. Curriculum domain adaptation for semantic
segmentation of urban scenes. In IEEE International Conference on Computer
Vision (ICCV), 2017.

[184] Y.-H. Chen, W.-Y. Chen, Y.-T. Chen, B.-C. Tsai, Y.-C. Frank Wang, and M. Sun.
No more discrimination: Cross city adaptation of road scene segmenters. In IEEE
International Conference on Computer Vision (ICCV), 2017.

[185] Y.-H. Tsai, W.-C. Hung, S. Schulter, K. Sohn, M.-H. Yang, and M. Chandraker.
Learning to adapt structured output space for semantic segmentation. In IEEE
Conference on Computer Vision and Pattern Recognition (CVPR), 2018.

[186] Y. Chen, W. Li, and L. Van Gool. Road: Reality oriented adaptation for seman-
tic segmentation of urban scenes. In IEEE Conference on Computer Vision and
Pattern Recognition (CVPR), 2018.

[187] S. Sankaranarayanan, Y. Balaji, A. Jain, S. Nam Lim, and R. Chellappa. Learning
from synthetic data: Addressing domain shift for semantic segmentation. In IEEE
Conference on Computer Vision and Pattern Recognition (CVPR), 2018.

[188] Y. Chen, W. Li, X. Chen, and L. V. Gool. Learning semantic segmentation from
synthetic data: A geometrically guided input-output adaptation approach. In
IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2019.

[189] M. Sundermeyer, Z.-C. Marton, M. Durner, M. Brucker, and R. Triebel. Implicit
3d orientation learning for 6d object detection from rgb images. In European
conference on computer vision (ECCV), 2018.

[190] T. Jeruzalski, B. Deng, M. Norouzi, J. P. Lewis, G. Hinton, and A. Tagliasacchi.
Nasa: Neural articulated shape approximation. arXiv, 2019.

[191] M. Loper, N. Mahmood, J. Romero, G. Pons-Moll, and M. J. Black. Smpl: A
skinned multi-person linear model. ACM transactions on graphics (TOG), 34(6),
2015.

157

BIBLIOGRAPHY

[192] S. Zu�, A. Kanazawa, D. W. Jacobs, and M. J. Black. 3d menagerie: Modeling the
3d shape and pose of animals. In Proceedings of the IEEE conference on computer
vision and pattern recognition, 2017.

[193] T. Hodaň, V. Vineet, R. Gal, E. Shalev, J. Hanzelka, T. Connell, P. Urbina,
S. Sinha, and B. Guenter. Photorealistic image synthesis for object instance de-
tection. IEEE International Conference on Image Processing (ICIP), 2019.

158

	Abstract
	Zusammenfassung
	Acknowledgments
	Contents
	List of Figures
	List of Tables
	1 Introduction
	1.1 Challenges of Industrial Computer Vision
	1.2 Contributions
	1.3 Outline

	2 Background
	2.1 Neural Networks
	2.1.1 Fully Connected Neural Networks
	2.1.2 Convolutional Neural Networks
	2.1.3 Optimization

	2.2 Projective Geometry
	2.2.1 Rigid Body Transformations
	2.2.2 Pinhole Camera Model

	2.3 Pose Estimation
	2.3.1 Template-Based Methods
	2.3.2 Correspondence-Based Methods
	2.3.3 Direct Pose Regression Methods
	2.3.4 Pose Refinement

	2.4 Domain Adaptation

	I Pose Estimation
	3 3D Pose Estimation Based on Manifold Learning
	3.1 Introduction
	3.2 Methodology
	3.2.1 Loss Function
	3.2.1.1 Triplet Loss with Dynamic Margin
	3.2.1.2 Multitask Loss

	3.2.2 Dataset Generation
	3.2.2.1 In-plane Rotations
	3.2.2.2 Treating Rotation-Invariant Objects
	3.2.2.3 Surface Normals
	3.2.2.4 Background Noise Generator

	3.3 Evaluation
	3.3.1 Tests on In-plane Rotations
	3.3.2 Tests on the Dynamic Margin Triplet Loss
	3.3.3 Tests on Background Noise Types
	3.3.4 Tests on Input Image Channels
	3.3.5 Tests on Larger Datasets
	3.3.6 Combining Manifold Learning and Regression
	3.3.6.1 Multi-Task Learning vs Single-Task Learning
	3.3.6.2 Influence of Network Architecture
	3.3.6.3 Feature Visualization
	3.3.6.4 Scalability
	3.3.6.5 Sensitivity to Regularization Parameter

	3.4 Conclusion

	4 6D Pose Estimation Based on Dense Correspondences
	4.1 Introduction
	4.2 Methodology
	4.2.1 Data Preparation
	4.2.1.1 Correspondence Mapping
	4.2.1.2 Online Data Generation and Augmentation

	4.3 Dense Object Detection Pipeline
	4.4 Deep Model-Based Pose Refinement
	4.5 Training Details
	4.6 Evaluation
	4.6.1 Datasets
	4.6.2 Evaluation Metrics
	4.6.3 Single Object Pose Estimation
	4.6.4 Multiple Object Pose Estimation
	4.6.5 Ablation Study
	4.6.5.1 RANSAC Iterations
	4.6.5.2 Runtime Analysis
	4.6.5.3 Correspondence Quality
	4.6.5.4 Refinement

	4.7 Conclusion

	5 9D Pose Estimation for Autolabeling
	5.1 Introduction
	5.2 Methodology
	5.2.1 Coordinate Shape Space
	5.2.2 Differentiable SDF Rendering
	5.2.3 3D Autolabeling Pipeline
	5.2.3.1 Initialization and Optimization
	5.2.3.2 Verification and CSS Retraining

	5.3 Experimental Evaluation
	5.3.1 Correctness of Autolabels
	5.3.2 Ablation
	5.3.3 Autolabeling for 3D Object Detection

	5.4 Conclusion

	6 RGB-D 6D Pose Estimation Dataset
	6.1 Introduction
	6.2 Related Datasets
	6.3 HomebrewedDB Dataset Creation
	6.3.1 Calibration of RGB-D Sensors
	6.3.2 Sequence Acquisition
	6.3.3 3D Model Reconstruction
	6.3.4 Depth Correction
	6.3.5 Creation of Ground Truth Annotations
	6.3.6 Accuracy of Ground Truth Poses

	6.4 Benchmarks and Experiments
	6.4.1 Evaluation Metrics
	6.4.2 Scalability Benchmark
	6.4.3 Scene Benchmarks
	6.4.4 Domain Adaptation Benchmark
	6.4.5 Drawbacks of Training on Real Data

	6.5 Conclusion

	II Domain Adaptation in Depth and RGB
	7 Reverse Domain Adaptation
	7.1 Introduction
	7.2 Methodology
	7.2.1 GAN-Based Architecture for Depth
	7.2.2 Multi-Modal U-Net Architecture for RGB
	7.2.3 Learning from Purely Geometrical CAD Data
	7.2.3.1 Synthetic Data Generation
	7.2.3.2 Online Data Augmentation

	7.3 Experimental Evaluation
	7.3.1 Experimental Setup
	7.3.2 Real Depth Synthetic Depth
	7.3.2.1 Comparison to Usual Domain Adaptation GANs
	7.3.2.2 Ablation of the Solution Components

	7.3.3 Real RGB Synthetic Normals / Depth
	7.3.3.1 Ablation of the Solution Components

	7.4 Conclusion

	8 Network-Driven Domain Randomization
	8.1 Introduction
	8.2 Methodology
	8.2.1 Deception Modules
	8.2.1.1 Background Module (BG)
	8.2.1.2 Distortion Module (DS)
	8.2.1.3 Noise Module (NS)
	8.2.1.4 Light Module (L)

	8.2.2 Optimization Objective
	8.2.3 Training Procedure

	8.3 Experimental Evaluation
	8.3.1 Adaptation Tests
	8.3.1.1 Classification on MNIST
	8.3.1.2 Classification and Pose Estimation on LineMOD

	8.3.2 Generalization Tests
	8.3.3 Ablation Studies
	8.3.3.1 Deception Modules
	8.3.3.2 Input Modalities

	8.3.4 Real-World Scenario

	8.4 Conclusion

	9 Conclusion and Outlook
	9.1 Summary
	9.2 Limitations and Future Work

	A Authored and Co-Authored Publications
	Bibliography

