Benutzer: Gast  Login
Titel:

Learning stable robotic skills on Riemannian manifolds

Dokumenttyp:
Zeitschriftenaufsatz
Autor(en):
Saveriano, Matteo; Abu-Dakka, Fares J.; Kyrki, Ville
Abstract:
In this paper, we propose an approach to learn stable dynamical systems that evolve on Riemannian manifolds. Our approach leverages a data-efficient procedure to learn a diffeomorphic transformation, enabling the mapping of simple stable dynamical systems onto complex robotic skills. By harnessing mathematical techniques derived from differential geometry, our method guarantees that the learned skills fulfill the geometric constraints imposed by the underlying manifolds, such as unit quaternions...     »
Stichworte:
Learning from Demonstration, Learning stable dynamical systems, Riemannian manifold learning
Zeitschriftentitel:
Robotics and Autonomous Systems
Jahr:
2023
Band / Volume:
169
Seitenangaben Beitrag:
104510
Volltext / DOI:
doi:10.1016/j.robot.2023.104510
WWW:
https://www.sciencedirect.com/science/article/pii/S0921889023001495
Print-ISSN:
0921-8890
 BibTeX