Benutzer: Gast  Login
Titel:

Learning Stable Nonparametric Dynamical Systems with Gaussian Process Regression

Dokumenttyp:
Konferenzbeitrag
Art des Konferenzbeitrags:
Textbeitrag / Aufsatz
Autor(en):
W. Xiao; A. Lederer; S. Hirche
Abstract:
Modelling real world systems involving humans such as biological processes for disease treatment or human behavior for robotic rehabilitation is a challenging problem because labeled training data is sparse and expensive, while high prediction accuracy is required from models of these dynamical systems. Due to the high nonlinearity of problems in this area, data-driven approaches gain increasing attention for identifying nonparametric models. In order to increase the prediction performance of th...     »
Stichworte:
data_driven_control; rehyb
Kongress- / Buchtitel:
Proceedings of the 21st IFAC World Congress
Jahr:
2020
Jahr / Monat:
2020-07
 BibTeX