There exist a significant number of models, which describe the dynamics of pneumatic transmission lines. The models are based on different assumptions and, thereby, vary in the physical phenomena they incorporate. These assumptions made are not always stated clearly and the models are rarely validated with measurement data. The aim of this article is to present multiple distributed parameter models that, starting from a physical system description, successively decrease in complexity and finally result in a rather simple system representation. Data, both from simulation studies as well as from a pneumatic test bench, serve as a quantitative validation of these assumptions. Based on a detailed discussion of the different models, this article aims at facilitating the choice of an appropriate model for a given task where the effect of long pneumatic transmission lines cannot be neglected and a trade-off between accuracy and complexity is required.
«
There exist a significant number of models, which describe the dynamics of pneumatic transmission lines. The models are based on different assumptions and, thereby, vary in the physical phenomena they incorporate. These assumptions made are not always stated clearly and the models are rarely validated with measurement data. The aim of this article is to present multiple distributed parameter models that, starting from a physical system description, successively decrease in complexity and finally...
»