User: Guest  Login
Title:

Comparison of Deep Learning Architectures for Dimensionality Reduction of 3D Flow Fields of a Racing Car

Document type:
Konferenzbeitrag
Contribution type:
Textbeitrag / Aufsatz
Author(s):
Reck, Michaela; Hilbert, Marc; Hilhorst, René; Indinger, Thomas
Abstract:
In motorsports, aerodynamic development processes target to achieve gains in performance. This requires a comprehensive understanding of the prevailing aerodynamics and the capability of analysing large quantities of numerical data. However, manual analysis of a significant amount of Computational Fluid Dynamics (CFD) data is time consuming and complex. The motivation is to optimize the aerodynamic analysis workflow with the use of deep learning architectures. In this research, variants of 3D de...     »
Dewey Decimal Classification:
620 Ingenieurwissenschaften
Book / Congress title:
SAE Technical Paper Series
Publisher:
SAE International
Date of publication:
11.04.2023
Year:
2023
Covered by:
Scopus
Print-ISBN:
0148-719
E-ISBN:
2688-3627
Language:
en
Fulltext / DOI:
doi:10.4271/2023-01-0862
WWW:
https://www.sae.org/publications/technical-papers/content/2023-01-0862/
TUM Institution:
Lehrstuhl für Aerodynamik und Strömungsmechanik
 BibTeX