Benutzer: Gast  Login
Titel:

Partial Homoscedasticity in Causal Discovery with Linear Models

Dokumenttyp:
Zeitschriftenaufsatz
Autor(en):
Wu, Jun; Drton, Mathias
Abstract:
Recursive linear structural equation models and the associated directed acyclic graphs (DAGs) play an important role in causal discovery. The classic identifiability result for this class of models states that when only observational data is available, each DAG can be identified only up to a Markov equivalence class. In contrast, recent work has shown that the DAG can be uniquely identified if the errors in the model are homoscedastic, i.e., all have the same variance. This equal variance assump...     »
Stichworte:
Causal discovery, covariance matrix, equal variance, graphical model, structural equation model
Dewey Dezimalklassifikation:
510 Mathematik
Zeitschriftentitel:
IEEE Journal on Selected Areas in Information Theory
Jahr:
2023
Jahr / Monat:
2023-11
Quartal:
4. Quartal
Monat:
Nov
Seitenangaben Beitrag:
639 - 650
Sprache:
en
Volltext / DOI:
doi:10.1109/jsait.2023.3328476
WWW:
IEEE Xplore
Verlag / Institution:
Institute of Electrical and Electronics Engineers (IEEE)
E-ISSN:
2641-8770
Hinweise:
Early Access
Publikationsdatum:
01.11.2023
Semester:
WS 23-24
TUM Einrichtung:
Lehrstuhl für Mathematische Statistik
Format:
Text
 BibTeX