Benutzer: Gast  Login

Titel:

R4Dyn: Exploring Radar for Self-Supervised Monocular Depth Estimation of Dynamic Scenes

Dokumenttyp:
Konferenzbeitrag
Art des Konferenzbeitrags:
Elektronisches Dokument
Autor(en):
Stefano Gasperini; Patrick Koch; Vinzenz Dallabetta; Nassir Navab; Benjamin Busam; Federico Tombari
Abstract:
While self-supervised monocular depth estimation in driving scenarios has achieved comparable performance to supervised approaches, violations of the static world assumption can still lead to erroneous depth predictions of traffic participants, posing a potential safety issue. In this paper, we present R4Dyn, a novel set of techniques to use cost-efficient radar data on top of a self-supervised depth estimation framework. In particular, we show how radar can be used during training as weak super...     »
Stichworte:
depth estimation; self-supervised; radar; autonomous driving; deep learning; machine learning
Dewey-Dezimalklassifikation:
000 Informatik, Wissen, Systeme
Kongress- / Buchtitel:
Proceedings of the IEEE International Conference on 3D Vision (3DV), 2021
Jahr:
2021
Monat:
Dec
Seiten:
751-760
Reviewed:
ja
Volltext / DOI:
doi:10.1109/3DV53792.2021.00084
Hinweise:
The first two authors contributed equally.
Copyright Informationen:
Copyright with IEEE.
 BibTeX