User: Guest  Login
Original title:
Robust Structured and Unstructured Low-Rank Approximation on the Grassmannian
Translated title:
Robuste strukturierte und unstrukturierte Niedrigrangapproximation auf der Graßmann-Mannigfaltigkeit
Author:
Hage, Clemens Otto Benjamin
Year:
2017
Document type:
Dissertation
Faculty/School:
Fakultät für Elektrotechnik und Informationstechnik
Advisor:
Diepold, Klaus (Prof. Dr.)
Referee:
Diepold, Klaus (Prof. Dr.); Absil, Pierre-Antoine (Prof., Ph.D.); Kleinsteuber, Martin (Priv.-Doz. Dr.)
Language:
en
Subject group:
DAT Datenverarbeitung, Informatik
TUM classification:
DAT 001d
Abstract:
The thesis deals with low-rank approximation methods for static and temporally evolving subspaces and for additional linear structural constraints, assuming a low-rank-and-sparse data model. Algorithms for Robust PCA, Robust Subspace Tracking and Robust Structured Low-Rank Approximation are discussed, which involve optimization on the Grassmannian, the manifold of low-dimensional subspaces. A smoothed non-convex loss function is proposed to improve the sparsifying behavior compared to convex rel...     »
Translated abstract:
Die Arbeit diskutiert Niedrigrangapproximationen für statische und veränderliche Unterräume und zusätzliche strukturelle Bedingungen, unter der Annahme der Daten als Summe einer niedrigrangigen und einer dünnbesetzten Matrix. Die diskutierten Methoden für robuste PCA, robustes Tracking von Unterräumen und robuste, strukturierte Niedrigrangapproximation verwenden Optimierung auf der Graßmann-Mannigfaltigkeit, der Menge von linearen Unterräumen. Eine geglättete, nicht-konvexe Kostenfunktion verbes...     »
WWW:
https://mediatum.ub.tum.de/?id=1341394
Date of submission:
20.12.2016
Oral examination:
14.07.2017
File size:
4898062 bytes
Pages:
153
Urn (citeable URL):
https://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:91-diss-20170714-1341394-1-0
Last change:
02.10.2017
 BibTeX