The astonishing boom of radio-frequency identification (RFID) technology is stimulating plenty of new RFID-based industrial applications. Consequently, in the very near future, an almost unlimited number of RFID tags could be embedded into manufactured goods of various shapes, assets, and machineries to enable their communication abilities. As a result, prototyping techniques of RFID tags on flexible substrates are becoming more crucial. In this article, four different techniques suitable for prototyping flexible tags are briefly explained and tested from many points of view: ease of use, processing time, cost, tag sensitivity, radiation pattern, impedance, and robustness of the realized prototype. Characterization methods and experimental setups are presented, and two tag layouts, one commercial and one appositely designed, are used to compare the different techniques.
«
The astonishing boom of radio-frequency identification (RFID) technology is stimulating plenty of new RFID-based industrial applications. Consequently, in the very near future, an almost unlimited number of RFID tags could be embedded into manufactured goods of various shapes, assets, and machineries to enable their communication abilities. As a result, prototyping techniques of RFID tags on flexible substrates are becoming more crucial. In this article, four different techniques suitable for pr...
»