This thesis presents new methods that aim to increase the robustness of bipedal walking robots in unknown environments. The main part is a strategy to adapt future motion according to the current state of the robot. A model for humanoid robots is proposed that allows an accurate and fast prediction. The state obtained from a state observer and the prediction model are used to calculate a reaction. All methods are applied to the real robot Lola and are evaluated in experiments.
Übersetzte Kurzfassung:
Diese Arbeit stellt neue Methoden zur Erhöhung der Robustheit von zweibeinigen Laufrobotern in unbekanntem Gelände vor. Kern der Arbeit ist dabei eine Strategie, welche auf Basis des aktuellen Roboterzustands die zukünftige Bewegung anpasst. Ein Prädiktionsmodell für humanoide Roboter wird eingeführt, welches eine genaue und schnelle Vorhersage ermöglicht. Der über einen Beobachter gewonnene Zustand des Roboters und das Prädiktionsmodell werden anschließend verwendet, um in Echtzeit eine Reaktion zu berechnen. Alle Methoden wurden in Experimenten am Laufroboter Lola getestet und evaluiert.
«
Diese Arbeit stellt neue Methoden zur Erhöhung der Robustheit von zweibeinigen Laufrobotern in unbekanntem Gelände vor. Kern der Arbeit ist dabei eine Strategie, welche auf Basis des aktuellen Roboterzustands die zukünftige Bewegung anpasst. Ein Prädiktionsmodell für humanoide Roboter wird eingeführt, welches eine genaue und schnelle Vorhersage ermöglicht. Der über einen Beobachter gewonnene Zustand des Roboters und das Prädiktionsmodell werden anschließend verwendet, um in Echtzeit eine Reaktio...
»