
Fakultät für Maschinenwesen
Lehrstuhl für Angewandte Mechanik

Robust Walking Robots in Unknown Environments
– Dynamic Models, State Estimation and Real-Time Trajectory Optimization

Robert Wittmann

Vollständiger Abdruck der von der Fakultät für Maschinenwesen der Technischen Universität
München zur Erlangung des akademischen Grades eines

Doktor-Ingenieurs (Dr.-Ing.)

genehmigten Dissertation.

Vorsitzender: Prof. Dr.-Ing. Florian Holzapfel

Prüfer der Dissertation:

1. Prof. Dr.-Ing. Dr.-Ing. habil. Heinz Ulbrich, i.R.

2. Prof. Dr.-Ing. habil. Boris Lohmann

Die Dissertation wurde am 05.04.2017 bei der Technischen Universität München eingereicht und
durch die Fakultät für Maschinenwesen am 11.08.2017 angenommen.

i

Abstract

This thesis presents new methods that aim to increase the robustness of bipedal walking
robots in unknown environments. The main part is a strategy to adapt future motion
according to the current state of the robot. A model for humanoid robots is proposed
that allows an accurate and fast prediction. The state obtained from a state observer and
the prediction model are used to calculate a reaction. All methods are applied to the real
robot LOLA and are evaluated in experiments.

KEYWORDS: Bipedal Robots, modeling, state estimation, trajectory optimization,
model predictive control.

Zusammenfassung

Diese Arbeit stellt neue Methoden zur Erhöhung der Robustheit von zweibeinigen Laufro-
botern in unbekanntem Gelände vor. Kern der Arbeit ist dabei eine Strategie, welche auf
Basis des aktuellen Roboterzustands die zukünftige Bewegung anpasst. Ein Prädiktions-
modell für humanoide Roboter wird eingeführt, welches eine genaue und schnelle Vor-
hersage ermöglicht. Der über einen Beobachter gewonnene Zustand des Roboters und
das Prädiktionsmodell werden anschließend verwendet, um in Echtzeit eine Reaktion zu
berechnen. Alle Methoden wurden in Experimenten am Laufroboter LOLA getestet und
evaluiert.

STICHWORTE: Zweibeinige Roboter, Modellierung, Zustandsschätzung, Trajektori-
enoptimierung, Modellprädiktive Regelung.

ii

iii

Acknowledgements

This thesis is the result of my research activities at the Chair of Applied Mechanics, Tech-
nical University Munich. It received important results from the four-year research project
“Flexibles und Robustes Gehen in unbekannten Umgebungen. During the project I got
supported by many people, without whom this work would not have been possible.

First of all I want to thank my supervisor professor Ulbrich for his guidance and
interest in my reserach – even after your retirement. You gave me the opportunity to
work in a very fruitful environment on an interesting project. Thus, I had the chance to
develop my own ideas. I am also very grateful to his successor professor Rixen. Not only
did you give me the freedom to proceed with my research directly at the Chair but also
you were actively interested in the progress and the work of the robotics group. Thank
you for your valuable advice and support! I would also like to acknowledge Professor
Boris Lohmann for serving on my thesis defense committee.

I am deeply grateful for having had the chance to work with a number of very talented
and highly motivated people. I am especially thankful to the research group working
on the robot Lola. A person without whom my work would not have been possible is
Thomas Buschmann. He drew my interest and fascination for humanoid robots during
my Diploma thesis under his guidance. I learned so much about motion planning and
control of bipedal robots from his long experience with bipedal robots. Thank you for
the inspiring discussions and your advice. I warmly thank Arne-Christoph Hildebrandt
who was working on footstep planning and obstacle avoidance throughout the project
and Daniel Wahrmann who developed the vision system for LOLA. You both were a
very valuable and motivating project partners. Thank you for all the discussions, your
motivated work and all the time we spent in the lab. I am also very grateful to Felix
Sygulla for helping with the development of the new ETHERCAT based communication
system. All final experiments would not have been possible without this upgrade. I
would like to thank the other robotics team members Felix Ellensohn, Philipp Seiwald
and Christoph Schütz for all the inspiring discussions on robotics research topics.

I also would like to express my gratitude to Sebastian Lohmeier, Thomas Buschmann,
Markus Schwienbacher and Valerio Favot for providing such a great robot to do my re-
search. Experimental robotics research is impossible without decent hardware and I am
especially grateful for Simon Gerer, Georg König and Georg Mayr’s work in repairing
and manufacturing LOLA. I owe special thanks to Georg Mayr. His long experience with
legged robots, his help in maintaining and helping with the ETHERCAT-upgrade for the
robot LOLA were invaluable.

I would also like to thank my (ex-) colleagues Thomas Buschmann, Arne-Christoph
Hildebrandt, Felix Sygulla and Philipp Seiwald for proofreading this thesis and giving
helpful comments.

Table of Contents

Table of Contents v

List of Abbreviations ix

1 Introduction 1
1.1 Problem Statement . 1
1.2 Related Work . 3
1.3 Contributions of this Thesis . 5

2 Feasibility and Stability of Bipedal Robots 7
2.1 Dynamics of Bipedal Locomotion . 7
2.2 Feasibility in Bipedal Locomotion . 9

2.2.1 Constraints – The Zero Moment Point 9
2.2.2 Center of Gravity Trajectory Planning Concepts 10

2.3 Stability in Bipedal Locomotion . 12
2.3.1 Stability Criteria . 13
2.3.2 Feedback Control in Bipedal Walking 15
2.3.3 State Dependent Foot Placement . 18

2.4 Chapter Summary . 20

3 Control Framework for Robust Walking 21
3.1 Introduction . 21
3.2 The Bipedal Robot LOLA – System Overview 21

3.2.1 Mechanical Design . 21
3.2.2 Sensor and Communication System 23
3.2.3 Planning and Control System . 25
3.2.4 Coordinate Systems and Orientation Errors 29

3.3 Control System Extensions for Robust Walking 30
3.3.1 Model Predictive Trajectory Adaptation 30
3.3.2 Integration with Collision Avoidance Methods 31
3.3.3 Improved Joint Feedforward Control 33
3.3.4 Real–Time System . 35

3.4 Chapter Summary . 37

4 Models for Real-Time Control 39
4.1 Introduction . 39
4.2 Related Work . 40
4.3 Proposed Model . 42

4.3.1 Two Degrees of Freedom Prediction Model 42
4.3.2 Controlled Model . 45
4.3.3 Reduced Controlled Model . 46
4.3.4 Model Verification by Model Order Reduction 47

v

vi TABLE OF CONTENTS

4.3.5 Numerical Solution . 50
4.3.6 Prediction Accuracy – Results . 52

4.4 Model Motion Adaptations . 56
4.4.1 Swing Foot Modification . 56
4.4.2 Center of Gravity Modification . 58
4.4.3 Gradient Computations . 59
4.4.4 Additional Contact Points - Including Arms 61

4.5 Three-Dimensional Model . 61
4.6 Chapter Summary . 64

5 State Estimation 65
5.1 Introduction . 65
5.2 Extended Kalman Filter based State Estimator 67

5.2.1 Estimator Overview . 67
5.2.2 Prediction and Measurement Model 68
5.2.3 Observability of the Nonlinear System 70

5.3 Model Error Compensation . 71
5.4 LIPM Based State Estimator . 71
5.5 Comparison and Analysis . 74

5.5.1 Filter Performance . 74
5.5.2 Error Analysis . 76

5.6 Chapter Summary . 77

6 Model Predictive Trajectory Adaptation 79
6.1 Introduction . 79
6.2 Related Work . 80
6.3 Problem Description . 81

6.3.1 Problem A . 82
6.3.2 Problem B . 82

6.4 Foot Trajectory Modifications . 83
6.4.1 Foot Position Optimization . 83
6.4.2 Coupled 2D Foot Position Optimization 86
6.4.3 Predictive Inclination Compensation 88
6.4.4 Continuous Trajectory Replanning 90

6.5 Center of Gravity Modification . 91
6.5.1 Center of Gravity Trajectory Optimization 92
6.5.2 Pontryagin’s Minimum Principle with Additional Parameters . . . 94
6.5.3 Center of Gravity and Footstep Optimization 99
6.5.4 System Integration Details . 100

6.6 Constraints from Obstacle Avoidance . 102
6.6.1 Geometric Constraints . 104
6.6.2 Finding Safe Regions . 105
6.6.3 Footstep Modification with Geometric Constraints 107
6.6.4 Implementation Details . 108

6.7 Chapter Summary . 108

7 Experimental Results 111
7.1 Walking on the Spot with Disturbances . 111

7.1.1 Footstep Optimization (Experiment 1a) 111
7.1.2 Center of Gravity Optimization (Experiment 1b) 113

7.2 Forward Walking with Disturbances (Experiment 2) 115
7.3 Rough Terrain Walking (Experiment 3) . 117

TABLE OF CONTENTS vii

7.4 Disturbances with Obstacles . 118
7.4.1 Synthetic Case (Experiment 4a) . 118
7.4.2 Forward Walking with Vision System (Experiment 4b) 120

8 Conclusions 123
8.1 Summary and Discussion . 123
8.2 Recommendations for Future Work . 125

A Joint Tracking Performance 127

B Prediction Model Gradient Computation 131

C Alternative Derivation of Pontryagin’s Minimum Principle for Problem B 133

D Supervised Student Theses 135

Bibliography 137

List of Abbreviations

BVP Boundary Value Problem

CAN Controller Area Network
CoG Center of Gravity
CoP Center of Pressure

DDP Differential Dynamic Programming
DoF Degree of Freedom
DRC Darpa Robotics Challenge
DS Double Support

EoM Equation of Motion

FIFO First-In First-Out
FoR Frame of Reference
FRI Foot Rotation Indicator
FTS Force-Torque Sensors

IMU Inertial Measurement Unit

LIPM Linear Inverted Pendulum Model

MBS Multibody System
MPC Model Predictive Control

ODE Ordinary Differential Equation

RMSE Root Mean Squared Error

SLIPM Spring Loaded Inverted Pendulum
Model

SS Single Support
SSV Swept-Sphere-Volume
SVD Singular Value Decomposition

wrt. with respect to

ZMP Zero Moment Point

ix

Chapter 1

Introduction

In the past years robotic systems advanced in terms of their autonomy and versatility.
Mobile robots acting in unknown environments are a good example for the progress. One
important property of these robots is that they have the ability to move their base which
is on the one hand a huge benefit and increases the range of applications. On the other
hand several safety issues arise since the robots have to interact and adapt to changing
environmental conditions. Several perception and motion planning problems have to be
solved to enable a safe operation. The robot has to gather information of its environment
in addition to its own state. Depending on this information it has to decide whether it
has to adapt or stop its planned behavior. Additionally, the robot has to detect unforeseen
errors, decide what to do and, if necessary, plan a reaction. The overall time for detection,
decision and reaction is a crucial point since the robot has to react instantaneously.

Bipedal robots belong to the class of mobile robots. They have human-like capa-
bilities and can perform in environments designed for humans. In environments with
stairs, doors or unmovable obstacles they are potentially superior to wheeled robotic sys-
tems since legged systems require only discrete foothold positions. Nevertheless bipedal
robots introduce additional challenges to the ones of mobile robots. Recent research in
the field of humanoid robots includes perception, motion planning, feedback control or
manipulation.

Application fields of humanoid robots are e.g. prosthesis development, service robots
and disaster operation. The latter was initiated by the Fukushima Accident in 2011. There
was a lack of available tele-operated robots that can perform repair work inside the con-
taminated nuclear power plant. This inspired the Darpa Robotics Challenge (DRC) from
2012 to 20151. During the challenge several teams from all over the world had to solve
tasks with humanoid robots only by using tele-operation. One main drawback of the im-
pressive solutions was their lack of autonomy. Almost all decisions were controlled by
the human operators.

While the DRC focuses on solving a wide range of different tasks (open valve, use
tools, open doors, climb stairs), the work presented in this thesis aims to increase the
autonomy of bipedal walking. It was conducted during the project “Flexible and ro-
bust biped walking in uneven terrain” funded by the DFG (Deutsche Forschungsgemein-
schaft).

1.1 Problem Statement

One important requirement to bring bipedal robots to real world applications is a reliable
hardware and software system that solves its locomotion tasks autonomously. This thesis
covers software methods to increase the robustness of bipedal robots that act in unknown

1http://www.darpa.mil/program/darpa-robotics-challenge

1

http://www.darpa.mil/program/darpa-robotics-challenge

2 Introduction

Figure 1.1: Bipedal robot Lola of the chair of applied mechanics.

environments. Robustness means the robot’s ability to recover from severe disturbances
resulting from external forces or errors and uncertainties in the environment model. This
can be assigned to the research field of bipedal walking stabilization. The robot’s me-
chanical properties have to be accounted for developing new stabilization methods. A
bipedal robot has many joints compared to conventional industrial robots. To generate
a stabilizing motion all joints have to be coordinated in the right way and the robot’s
nonlinear kinematics and dynamics have to be considered. Furthermore the biped is not
fixed to the environment. This is a necessary requirement since bipedalism consists of
continuously closing and breaking contacts between the feet and the ground in order to
move the overall system. However this introduces limitations on the reaction forces the
robot can apply to the environment. In particular, the robot can not pull the ground.
When increasing the robustness of bipedal robots several general questions arise:

• What is the robot’s current state?
Since the robot is not fixed to the environment the absolute position and orientation
with respect to (wrt.) the world is mainly of interest.

• Will the robot fall?
Given the current state and the desired motion the future behavior of the robot has
to be predicted with an appropriate model.

• How to adapt future motion?
When the robot is predicted to fall the final question is how to adapt its overall
motion in order to pretend this.

Another crucial point is real-time capability of the overall control system. This is espe-
cially important for the prediction model and the adaptation of future motion. The main
research platform for this work is the robot LOLA (Figure 1.1), developed at the Chair of
Applied Mechanics, Technical University of Munich. The developed model-based meth-
ods are applied and tested with this robot but can be used for other fully actuated hu-
manoids.

1.2 Related Work 3

©
JS

K
R

ob
ot

ic
s

La
b,

U
ni

ve
rs

it
y

of
To

ky
o

©
H

on
da

M
ot

or
C

o.
,L

td
.

©
Bo

st
on

D
yn

am
ic

s.

©
Bo

st
on

D
yn

am
ic

s.

©
JS

K
R

ob
ot

ic
s

La
b,

U
ni

ve
rs

it
y

of
To

ky
o

a) HRP3L-JSK b) Asimo c) Atlas next Generation

e) Pet-Protod) HRP2

Figure 1.2: Humanoid robots in uneven terrain or with unknown disturbances.

1.2 Related Work

The following part is intended to give a brief overview of research groups whose work
is considered to be most relevant for this thesis. In particular only work with full sized
humanoid robots and methods that are applied to real hardware are considered in this
summary. Special effort is put towards the robot’s ability to overcome an unknown dis-
turbance, with focus on the robustness of the method. Some examples are shown in
Figure 1.2.

Tokyo University

The JSK-laboratory of the Tokyo University has a long tradition in developing humanoid
robots and walking control methods. In 2011 Urata presented a powerful trajectory opti-
mization to react to huge external pushes. Their robot is a modified version of the HRP3L
robot with high power leg joints. They can achieve very fast and accurate leg motions
which increased the overall system performance (Urata et al. 2010). During the DRC a
revised robot called Schaft was developed. It performed best during the trials.

The JSK-laboratory entered the DRC-finals with a different team and a modified ver-
sion of the HRP2-robot (Kaneko et al. 2004).

4 Introduction

Honda

Honda realized many electrically powered robots since the 1990s that show very impres-
sive results. Beside manipulation, recognition and high level control they introduced fun-
damental control concepts for walking control and stabilization. Those methods inspired
much other research work. With their current robot Asimo they achieved high walking
and running speeds as well as robust walking. Their basic model-based approach uses
Inertial Measurement Unit (IMU) and Force-Torque Sensors (FTS) data to stabilize the
overall robot (Hirose and Ogawa 2007). The basic ideas are published in few papers and
patent applications.

Boston Dynamics

With impressive videos Boston Dynamics gained a lot of attention. Using the hydrauli-
cally actuated bipedal robots Petman and Pet-Proto, they showed the bipeds recovering
from severe pushes, performing walking with additional support of the arms in very
difficult situations. Details to the hardware and control design are except one vague pub-
lication not available (Nelson et al. 2012). Recently, they provided the Atlas robot which
served for several teams of the DRC as hardware platform for their algorithms. There
are videos of a revised version of the robot (Atlas next Generation) walking fully au-
tonomously through snow and forest. This can be seen as one of the most impressive
walking performances over the world. Unfortunately there are no publications concern-
ing the walking control.

IHMC and CMU

Florida Institute of Human & Machine Cognition (IHMC) started with robots using serial
elastic actuators. Carnegie Mellon University (CMU) built with Raibert several hopping
robots during the 90s (Raibert 1986). As each of them received an Atlas robot for the DRC
those laboratories made a large progress in the field of fully actuated human sized hu-
manoids. Both groups show promising results with the robot walking over unmodelled
uneven terrain, receiving external pushes and stabilizing using the arms (Feng et al. 2014;
Kuindersma et al. 2015). IHMC also showed static walking experiments where the robot
has to walk over partial footholds such as line contacts.

KAIST

The Humanoid Robot Research Center (HUBO Labs) was founded in 1985 at the Korean
Institute of Technology (KAIST). They developed several generations of the HUBO robot
(Park et al. 2005). Most recently a modified version to participate in the DRC was shown.
The team from KAIST showed convincing results during the finals and won the chal-
lenge. One reason is the robust well tested control framework which results from many
years of experience.

1.3 Contributions of this Thesis 5

1.3 Contributions of this Thesis

The main objective of this thesis is the development of methods to increase the robustness
of bipedal robots. These methods stabilize the robot (prevent falling) when unforeseen
events like external disturbances occur. They use measurement data to calculate a re-
action that adapts the robot’s current and future motion. All algorithms are developed
with special effort to their applicability on the real robot. This requires that they can be
performed in real-time2.

A secondary objective is a robust communication system for the overall mechatron-
ics and low level control. This is especially related to synchronizing several processes,
detecting errors of the overall control system and exchanging data with the sensor-actor
network of the robot. The low level control for the joints is decentralized and has a huge
influence to the system’s overall walking performance. Especially for large disturbances
there are fast reaction motions that have to be realized by the joints. The main contribu-
tions of this thesis are:

• The development of a sensor-based trajectory adaptation framework with non-
standard approach that can be integrated into the overall walking control system of
LOLA. Interaction with collision avoidance methods is also considered.

• Development of a new class of fast and accurate dynamic prediction models that
include fundamental properties of the biped. Those models allow a online trajec-
tory planning for humanoids which does not use the Zero Moment Point (ZMP) (cf.
Subsection 2.2.1).

• State estimation for bipeds using nonlinear models. This is mainly used to filter the
IMU data.

• Real-time trajectory optimization methods, including:

– Parameter optimization by a direct shooting method

– Trajectory optimization by a conjugate gradient method

– Combination of both methods by an indirect formulation

– Consideration of inequality constraints that result from kinematic limits and
online detected obstacles

• A robust ETHERCAT-based real-time system and low level joint control. Both in-
crease the robustness and reliability of the overall mechatronic system.

• Experimental verification of the stabilization methods on the bipedal robot LOLA.

The thesis’ structure is as follows: Chapter 2 describes the background on the dy-
namics, feasibility and stability of bipedal robots. An overview of the experimental plat-
form LOLA and of the control system extension is part of Chapter 3. It also presents an
improved joint control. A new class of dynamic prediction models is presented in Chap-
ter 4. The models can be applied for state estimation (Chapter 5) and trajectory adaptation
(Chapter 6). Different methods to add sensor feedback to the robot’s trajectory plannning
are presented. Chapter 7 shows experimental results for the overall walking stabilization
in different experiments. Finally, Chapter 8 concludes the thesis with a summary and a
discussion of the results.

2
Real-time means that there is a hard response deadline for the algorithms which is in this case within few

milliseconds.

Chapter 2

Feasibility and Stability of Bipedal Robots

Dealing with stability of biped robots requires to understand the underlying dynam-
ics and properties of such systems. This chapter gives an overview of the dynamics of
humanoids and discusses resulting challenges. One is the limitation of possible interac-
tion forces with the environment, which arises from the fact that the robot is not rigidly
fixed to the environment. It introduces limits for feasible motions of the robot. A brief
overview is given, how it can be dealt with in motion planning. The second challenge is
the underactuation of bipedal robots being mainly a concern of stability. Existing stability
criteria and stabilization approaches are discussed in the later part.

2.1 Dynamics of Bipedal Locomotion

Bipedal robots present a class of mechanical systems with different challenging proper-
ties for planning and control. Beside their nonlinear multibody dynamics with many
Degrees of Freedom (DoFs) these robots are in contrast to industrial manipulators not
fixed to the environment. This is necessary for locomotion as it requires to “regularly
breaking and recovering contacts in order to obtain a displacement of the whole system”
(Wieber 2002). This structure-varying property means that the robot has to be able to
open and close its contacts. In mechanics those contacts are classified as unilateral, which
introduces inequality constraints for possible contact forces. If the contact state changes
unintentionally e.g. when a strong disturbance occurs, or the contacts are considered to
be compliant the system is also underactuated as it has less actuators than DoFs. It can be
described mathematically by stating the overall Equation of Motion (EoM) of the robot as
presented in Fujimoto et al. (1998). The overall DoFs q ∈ Rn are split into the free floating
base qT ∈ R6 part and the joints qJ ∈ Rn−6 of the robot

[
MTT MTJ
M JT M J J

] [
q̈T
q̈J

]
+

[
hT
hJ

]
=

[
0
τ

]
+

[
JT

λ,T
JT

λ,J

]
Λ. (2.1)

The mass matrix entries are denoted by M ij, hi describe the nonlinear vectors for Coriolis,
centrifugal and gravitational forces and τ ∈ Rn−6 the joint torques from the actuators.
The contact forces Λ ∈ R12 are projected with the matrices Jλ,T, Jλ,J to the directions of qT
and qJ respectively. There are several works dealing with control of such underactuated
mechanical systems (Huang et al. 2015; Romano et al. 2014) but without the switching of
the contact states.

The way how to deal with the contact forces can be basically split into two different
categories namely assuming them as rigid or compliant. Rigid contacts are often used
for whole-body control approaches (Kuindersma et al. 2015; Ott et al. 2011; Ramos et al.
2014, e.g.) but also for analytic approaches (Chevallereau et al. 2008; Grizzle et al. 2003;

7

8 Feasibility and Stability of Bipedal Robots

a) b) c)

Figure 2.1: Contact models for bipeds. a) rigid body contacts b) compliant contacts and c)

compliant contact model of Lola (red arrows visualize forces).

Huang et al. 1999). These works mainly try to avoid tipping over one edge by constrain-
ing the contact forces and moments, which can be formulated with inequality constraints
or non-smooth equality constraints (Buschmann 2010; Leine and Nijmeijer 2004). As long
as the contact forces and moments are inside the set of feasible values, the foot remains
flat on the ground and the system can be treated as fully actuated. Nevertheless there
is always a finite compliance between foot and ground and for some robots compliant
material is intentionally used at the sole Lohmeier (2009) and Yamaguchi and Takanishi
(1996). One postulated advantage is to obtain a shock absorbing property which is cru-
cial for situations when the swing-leg touches the ground too early due to disturbances
such as external pushes, rough terrain or simply modeling errors. This is at the expense
of obtaining a system being additionally all the time underactuated which has to be con-
sidered especially in walking stabilization. However compliant contacts allow to apply
robust admittance control for the reaction forces (Buschmann et al. 2009; Hashimoto et al.
2012) at moderate update rates. The two different contact types and the compliant con-
tact model of the bipedal robot LOLA are shown in Figure 2.1. Assuming a discretization
of each foot with nc contact elements that produce a force f j with a displacement4r f j to
the reference point of foot i, the contact wrench can be summed up with

λi =

[
F i
T i

]
where F i = ∑

j∈Ci

f j(q, q̇), T i = ∑
j∈Ci

4r f j × f j(q, q̇). (2.2)

The set of all active contacts Ci ≤ nc has to be determined at each time instant by verifying
the sign of the contact forces and the gap function. Note that the element forces f j depend
on the robot’s state q, q̇ if a compliant contact model is used, e.g. a linear spring–damper
model. The overall contact force vector Λ in (2.1) is finally constructed with the entries
of both feet

Λ = [λT
1 , λT

2]
T. (2.3)

The above shown dynamics description is visualized in Figure 2.2. Details will be ex-
plained in the following parts. It can be summarized by the following two statements:

a) unilateral contacts and the resulting constraints for possible motions are a concern
of feasibility in bipedal locomotion

b) underactuation and the resulting inability to directly control the full state are a con-
cern of stability in bipedal locomotion.

2.2 Feasibility in Bipedal Locomotion 9

[
MTT MTJ
M JT M J J

] [
q̈T
q̈J

]
+

[
hT
hJ

]
=

[
0
τ

]
+

[
JT

λ,T
JT

λ,J

]
λ

ṗ(q, q̇, q̈)−mg = FCoG
L̇CoG(q, q̇, q̈) = TCoG

ZMP COP

Feasibility:
ZMP/COP inside
support polygon

contact forces
unilateral (compliant)

constraints underactuation

Stability:
bounded error in qT,
stable contact states

=̂

Figure 2.2: Overview – di�erent concepts for feasibility and stability. Relations to the overall

multibody dynamics are shown as well.

2.2 Feasibility in Bipedal Locomotion

The first line in (2.1) is considered for the discussion of feasibility. It gathers the Newton
and Euler equations of the whole robot (Wieber 2008) which can be split into the change
of linear (ṗ) and angular momentum (L̇CoG) about the system’s overall Center of Gravity
(CoG)

ṗ(q, q̇, q̈)−mg = FCoG, (2.4)

L̇CoG(q, q̇, q̈) = TCoG. (2.5)

The forces FCoG and torques TCoG correspond to the right hand side of the overall EoM.
They are limited due to unilateral contacts, i.e. they have to be inside a valid subset of
the contact wrench. It was shown in Buschmann (2010) and Kajita et al. (2014) that this
corresponds to the widely used ZMP concept (Vukobratovic and Borovac 2004).

2.2.1 Constraints – The Zero Moment Point

The concept of the ZMP was introduced more than 40 years ago by Vukobratovic and
Stepanenko (1972) and is to this day a widely used tool for trajectory generation and
control in humanoid robotics. “The ZMP is defined as that point on the ground at which the
net moment of the inertial forces and the gravity forces has no component along the horizontal
axes“(Vukobratovic and Borovac 2004). The assumptions are that there are only coplanar
contacts (normally related to contact surface between foot and ground) and there is no

10 Feasibility and Stability of Bipedal Robots

slippage. Assuming that the total acting force F0 and torque T0 are known for a fixed
reference point 0 i.e. using the result from (2.4) and (2.5)

T0 = TCoG − r0,CoG × FCoG and F0 = FCoG (2.6)

the ZMP position r0,zmp = [xzmp, yzmp, 0] can be computed with the relation

Tzmp = T0 − r0,zmp × F0 =
[
0 0 Tzmp,z

]T . (2.7)

Solving (2.7) for the horizontal position delivers finally the ZMP equations

xzmp = −T0,y

Fz
, yzmp =

T0,x

Fz
. (2.8)

Note that the ZMP is assumed to lie on a horizontal plane which intersects with the point
0 such that zzmp = 0. This can be realized by simply shifting the appropriate Frame of
Reference (FoR). Defining the support polygon as the minimal convex hull of all active
contact points (see Figure 2.3 for one leg or two legs on the ground) the ZMP criterion
states that the robot is dynamically balanced or its motion is physically feasible if the ZMP lies
strictly inside it (Vukobratovic and Stepanenko 1972; Wieber 2002). For a given motion
(q(t), q̇(t), q̈(t)) the total change of linear and angular momentum can be computed with
(2.4) and (2.5) and the necessary reaction forces and torques can be afterwards evaluated
in terms of feasibility using the ZMP relations of (2.8) with the current support polygon.
That means that those trajectories can be tracked by a control algorithm as long as this cri-
terion is fulfilled. Note that this criterion is not a necessary condition for stable walking,
e.g. see Pratt (2001). Huang et al. (1999) used this approach to generate a walking pattern
for a 7-link planar model of a biped. They parametrize the hip trajectory via cubic splines
and modify initial and final values of the x position until the ZMP condition is met. The
ZMP concept can be extended to rough terrain situation (Sardain and Bessonnet 2004) by
a more general formulation where the ZMP can exist on any surface (not only horizontal)
and by introducing a virtual surface. This is a weighted mean surface of all surfaces that
are currently in contact with the feet. Nevertheless the conditions of sufficient friction
and coplanar contact of each foot remain. The authors also showed that the Center of
Pressure (CoP) is identical to the ZMP. The only difference is their computation, since the
CoP is determined from the reaction forces and the ZMP from the motion, i.e. right and
left hand side of (2.4) and (2.5).

The authors of (Goswami 1999) introduced the Foot Rotation Indicator (FRI) point
which is a point on the foot/ground contact surface where the net ground reaction force
would have to act to keep the foot stationary. This point coincides with the ZMP/CoP
as long as the foot contact is stationary. If the foot rotates over an edge the FRI moves
outside the support polygon. It can be therefore seen as a generalization of the ZMP
criterion.

The ZMP criterion can be used in an inverse manner by first determining a feasible
ZMP trajectory for a given sequence of steps and the corresponding support polygons
in order to calculate afterwards a corresponding CoG trajectory. This inverse problem is
commonly solved using a simplified model and is subject of the next section.

2.2.2 Center of Gravity Trajectory Planning Concepts

Optimization based methods which solve the overall EoM of the robot showed to take too
much computational time to be applied in real-time, e.g. Bessonnet (2004) and Buschmann
et al. (2005). There are several groups that work on the computational efficiency to reduce
the time to obtain a solution (Kuindersma et al. 2015; Tassa et al. 2012) or use machine

2.2 Feasibility in Bipedal Locomotion 11

support polygon

F

ZMP

a) b)

Figure 2.3: Physical feasible ZMP position (a) and support polygon definition for one leg and

two legs on the ground (b).

learning techniques to generate motions from a database (Koch et al. 2015). While (2.4)
and (2.5) describe the dynamics of a biped exactly, in real-time motion generation it is of-
ten assumed that |L̇CoG| � 1. The simplification can be inserted in (2.6). This delivers the
Linear Inverted Pendulum Model (LIPM) which is introduced in Kajita and Tani (1995)
and can be used to describe the horizontal motion of the CoG. Writing the CoG vector
r0,CoG = [xc, yc, zc]T, the x and y components are denoted by

T0,x = 0 + myc(z̈c + g)−mzcÿc, (2.9)
T0,y = 0 + mzc ẍc −mxc(z̈c + g). (2.10)

The simplification that the CoG height is constant z(t) = h = const. and inserting the
relations (2.8) finally delivers the LIPM dynamics

ẍc =
g
h
(xc − xzmp) and ÿc =

g
h
(yc − yzmp). (2.11)

Since the simplified equations for the x and y direction are identical, the following con-
siderations only treat the x direction. The same results for motions in y direction can
be obtained be simply replacing the corresponding variables. The analytic solution for
xc from (2.11) can be stated if the ZMP trajectory is assumed to be constant or linear by
superposition of the homogeneous and particular solution

xc(t) = c1eωt + c2e−ωt + xzmp(t). (2.12)

The constant ω =
√

g/h describes the natural eigenfrequency of the LIPM. Equation
(2.12) suggests to consider the ZMP as input in order to generate a CoG trajectory. Follow-
ing this idea and assuring that the ZMP trajectory is always inside the support polygon
results in a feasible xc(t) by solving (2.12) for an initial state xc(0), ẋc(0). One problem
in this straight forward procedure is the unstable eigenvalue resp. divergent solution
which results in an unbounded behavior of the CoG motion. This can be avoided be
constraining the final position to some desired value xc(te). If the generated trajectory
should ensure C1-continuity this results in an over-constraint Boundary Value Problem
(BVP). One possibility to solve this problem is to introduce a modification of the ZMP
trajectory with an additional free parameter γ (Buschmann 2010)

xzmp(t) = xzmp,id(t) + ∆xzmp(γ, t). (2.13)

This results finally in a linear equation system that can be solved very efficiently (cf.
Figure 2.4).

The work of Harada et al. (2004) extended this idea to arbitrary Spline-trajectories for
the ZMP. The work in Takenaka et al. (2009a) extended it by a point mass located at each

12 Feasibility and Stability of Bipedal Robots

xzmp,id

pzmp,min

pzmp,max
∆xzmp

t

Figure 2.4: Example ZMP trajectory within allowable region with an additional modification.

foot resulting in a three-mass model. The inertia of the feet is considered as a disturbance
term in the ZMP trajectory. The authors solve their problem with an arbitrary but known
right hand side by a shooting method. Another interesting point is that they do not
choose to set final values for position and/or velocity of the CoG but set a final value
for the divergent component of motion. This avoids too restrictive constraints for the
resulting BVP. The formulation based on motion decomposition is also used for CoG
trajectory planning in Englsberger et al. (2011) and Morisawa et al. (2012).

In contrast to above stated methods, input and output can be shifted for a different
problem formulation. This was first introduced in Kajita et al. (2003) and many other
works followed this idea (Dimitrov et al. 2008; Lanari and Hutchinson 2015; Sugihara
and Nakamura 2005; Tajima et al. 2009; Wieber 2006). The problem is formulated by
introducing an input ux =

...
x c and applying a preview control for the resulting ZMP

trajectory which is considered to be the output (also known as cart-table model)

d
dt

xc
ẋc
ẍc

 =

0 1 0
0 0 1
0 0 0

xc
ẋc
ẍc

+

0
0

ux

 , xzmp =

[
1 0 − h

g

]

xc
ẋc
ẍc

 . (2.14)

Note that the inversion of the unstable system dynamics (2.11) results in a system with
a positive zero at ω (Lanari and Hutchinson 2015), which creates a system that is non-
minimum phase. The preview controller for the ZMP position takes future reference
values into account. The work of Dimitrov et al. (2008) extends the formulation to a
direct collocation method with additional inequality constraints for allowable the ZMP
positions. They apply an efficient active set solver for the resulting problem which per-
forms in real-time rates. In Nishiwaki and Kagami (2006) and Tajima et al. (2009) the
current sensed state of the robot is used as initial value and the optimization is solved at
a high frequency in real-time. The former work uses a database for the Riccati-solutions
to reduce computational time. There is also the possibility to extend the formulation by
additional variables for a step length modification (Stephens and Atkeson 2010; Urata
et al. 2011; Wieber 2006) which can be used for large disturbance rejection.

Those works already include the idea to adapt the overall set of trajectories (walking
pattern) according to the current state of the robot. Tracking a feasible set of trajectories
is not sufficient for stable walking. This will be subject of the next section.

2.3 Stability in Bipedal Locomotion

The starting point of the following stability considerations in bipedal locomotion are the
overall EoM (2.1) partitioned into actuated and unactuated DoFs. As stated before a
bipedal robot is underactuated since there are less input variables than DoFs of the robot.
Assuming that the qJ can be controlled via the motor torques τ, the basic control flow is
as follows: The system input τ controls the joints’ DoFs qJ and is used to modify contact

2.3 Stability in Bipedal Locomotion 13

forces λi. This has to be done in such a way that the unactuated DoFs qT follow the
desired values. Note that this implies that the generated motion q accounts for limitations
of λi. In other words the motion has to be feasible. In addition the inertia MTJ of the links
can be used to produce a modified reaction force and moment which ends in wind-milling
strategies (Goswami and Kallem 2004) or future contact force limits can be modified by
shifting next footstep positions.

In the following a short overview of stability criteria is given and feedback stabiliza-
tion concepts for bipedal robots are summarized. Those concepts include local feedback
controllers as well as predictive modification strategies.

2.3.1 Stability Criteria

Viability Kernel

In order to transcript the avoid-falling-objective into a mathematical description Wieber
(2008) proposes the use of viability theory (Aubin 1991). The author introduces the set
F (t) of all configurations q where the robot has fallen or tips over, in other words config-
urations that have to be avoided and that are non-viable

∀t, q(t) 6∈ F (t). (2.15)

Additionally all configurations that lead to a fall, whatever the robot is going to do, are
also labeled as non-viable. Thus the set of all viable configurations V(t) includes all
q(t) that are neither a fallen state nor lead to a fall. The distance between a given con-
figuration of the system to the closest non-viable configuration is the viability margin
and can be used as stability margin of the system. Unfortunately for such complex sys-
tems as humanoid robots the set V(t) can not be determined numerically. Nevertheless
this introduces the idea to use Model Predictive Control (MPC) with a simplified model.
Non-viable configurations are represented by appropriate cost functions and inequality
constraints. WIEBER proposes to use the LIPM together with a minimization of the CoG
velocity and the constraints that the ZMP has to remain inside the support polygon Z(t)

min
xc(t)

∞∫

t0

|ẋc(t)|2dt s.t. ẍc = ω2(xc − xzmp),

xzmp(t) ∈ Z(t) ∀t ≥ t0.

(2.16)

This means that future motion will not diverge and will remain feasible as long as the
biped can be represented by a pendulum. However the question how to describe a viable
configuration remains which is the same concern as in standard stability theory. Describ-
ing a stable state for a humanoid robot in a mathematical way is still an open question in
current research. It is also related to the used model. In this thesis a model with passive
DoFs is used that allows to represent the underactuated behavior of the robot more pre-
cisely. One of those is the absolute inclination of the model wrt. the world which is then
used in a MPC control scheme to avoid non-viable states by minimizing the inclination
over a certain time horizon.

Periodic Motions

Bipedal locomotion with constant velocity can be seen as a cyclic motion which includes
two steps (also called one stride). Cyclic trajectories starting at the state x(t) return after
a time period T to the initial state x

x(t + kT) = x(t) ∀k ∈N. (2.17)

14 Feasibility and Stability of Bipedal Robots

In order to obtain such a limit cycle the system has to behave in such a way that deviations
from the periodic limit cycle due to disturbances is going to return to it. This can be
analyzed using Poincaré Maps (Khalil and Grizzle 2002) where a linear relation can be
stated for small deviations ∆x of the state

∆x(t + T) = K∆x(t). (2.18)

The matrix K describes a linear return matrix with one eigenvalue at 1.0 and the remain-
ing ones have to be less than one in order to receive a stable limit cycle. This is often used
for limit cycle walking robots (Grizzle et al. 2003; M’Closkey and Burdick 1993; Wester-
velt et al. 2003) in order to study their stability or design feedback laws. Hobbelen and
Wisse (2009) successfully applied the cyclic stability criterion to their two-legged robot
FLAME. They also combined it with an active lateral foot placement strategy. Another
successful application can be found in Renjewski et al. (2015) for the robot ATRIAS. They
extended the strategy of limit cycles with additional control laws and enabled the robot
to walk on the grass applying a spring-mass model. However the eigenvalue analysis
of the Poincaré return maps assumes periodicity and is only valid for small deviations.
Walking arbitrary in unknown environments where also large disturbances occur this
seems to be not the right criterion to analyze the stability of a bipedal system.

Capturability

The capture point is first introduced in Pratt et al. (2006) and Pratt and Tedrake (2006)
and describes the ability of a robot to place its foot in such a way that the CoG will come
to rest over it. Additionally they state that the trajectory leading to this captured state
has to be feasible and the point has to be reachable. In the context of their capturability
analysis the authors also introduce the capture region which is the set of all possible
capture points. For larger disturbances they introduce the N-step capture point. The
later means a capture point that can be reached within N steps.
They derive the capture point for a biped modeled as LIPM from the conservation of the
orbital energy (Kajita et al. 1990). For a given state of the CoG (xc, ẋc) it was shown in
Englsberger et al. (2011) that the capture point px can be computed with

px = xc +
ẋc

ω
. (2.19)

It should be noted that this is the divergent component of motion previously introduced
and used in Matsumoto et al. (2004). Assuming a constant ZMP position xzmp in (2.12),
the solution for a given initial state (xc(0), ẋc(0)) is

xc(t) =
1
2

(
xc(0)− xzmp −

ẋc(0)
ω

)
e−ωt +

1
2

(
xc(0)− xzmp +

ẋc(0)
ω

)
eωt (2.20)

which will diverge if the factor of eωt is not equal to zero. This leads finally to the same
condition as stated in (2.19) (Buschmann 2010, p.52) and is also related to the usage of
the divergent component of motion for trajectory planning. The divergent component
of motion q(t) is the unstable solution of the LIPM dynamics which can be obtained by
a decomposition into a convergent and a divergent part p(t) and q(t) (Takenaka et al.
2009a). The two parts are defined as follows

[
p
q

]
=

[
1 − 1

ω

1 1
ω

] [
xc
ẋc

]
. (2.21)

With (2.21) the LIPM-dynamics (2.11) can be transformed to
[

ṗ
q̇

]
=

[−ω 0
0 ω

] [
p
q

]
+

[
ω
−ω

]
xzmp. (2.22)

2.3 Stability in Bipedal Locomotion 15

a)

xc
ẋc

xzmp

b)

xc
ẋc

xzmp

Figure 2.5: Stable (a) and unstable (b) state of the biped with the same CoG and ZMP position.

An application of the capturability-theory to the robot M2V2 is shown in Koolen et al.
(2012). The conclusion drawn from (2.20) shows that the ZMP criterion (cf. Subsec-
tion 2.2.1) can not be used as stability criterion as it does not consider the CoG velocity
of the robot. This is illustrated in Figure 2.5 where the robot is depicted with an identi-
cal CoG and ZMP position but in the first case with ẋc ≈ 0 and in the second case with
ẋc � 0. From (2.19) it can be seen that the necessary p∗x easily exceeds possible values in-
side the support polygon (or a kinematic possible future support polygon) if ẋc increases,
while the ZMP criterion is fulfilled for both situations. This is the reason why the authors
of (Pratt and Tedrake 2006) name the capture point a velocity based stability criterion.

2.3.2 Feedback Control in Bipedal Walking

The above introduced stability considerations are necessary when the bipedal robot does
not exactly follow the ideal planned motion. Reasons are modeling errors and other ex-
ternal disturbances such as unknown rough terrain or pushes. Therefore the ideal motion
plan has to be adapted according to the current state of the robot in order to avoid insta-
bility and a possible fall. There exist many feedback control methods in robotics (Siciliano
et al. 2009) that are not directly applicable due to underactuation and the hybrid nature of
bipedal walking. Strategies from literature that have been applied to bipedal locomotion
can be divided in local modifications and (global) model predictive modifications for a
given time horizon. In addition one can distinguish between formulations in workspace
(Siciliano et al. 2009, p.84) and in configuration space of the robot which can also appear
in mixed formulations.

Hirai et al. (1998) present a stabilizer of the humanoid robot ASIMO. The main feed-
back variable is the absolute inclination of the upper body which is treated as horizontal
displacement error of the CoG and is used to calculate a reaction moment. This reaction
moment aims to restore an upright posture. The regulation of the moment is then dis-
tributed on several control strategies which are a direct ground reaction force control, model
ZMP control and foot landing position control. They are activated one after each other if
the admissible limit of the former is reached. The ground reaction force control modifies
the foot rotation depending on the tracking error of the reaction moment until the phys-
ical limit due to the foot geometry is reached. The remaining stabilizing moment that
can not be regulated directly is then fed into the model ZMP control which accelerates the
upper body’s horizontal position in order to compensate for the moment. If the ZMP
that results from this modified CoG trajectory exceeds the physical limits (reaches the
edge of the support polygon), the foot landing position control adjusts the next stance po-
sition in order to make the CoG plan feasible. There is an extension to running motions
with details given in Takenaka et al. (2009c). A short overview of the feedback control is

16 Feasibility and Stability of Bipedal Robots

Walking parameters

Walking pattern
generator

Position controlled
robot

Ground reaction
force control

Model ZMP control

Foot landing
position control

CoG mod.

Foot angle mod.

Inclination error

Figure 2.6: Feedback control of humanoid robot Asimo (adapted from Takenaka et al. (2009c)).

depicted in Figure 2.6. In this diagram the block position controlled robot includes the
inverse kinematics solution.

A feedback control framework for the biped HRP2 is presented in Nishiwaki and
Kagami (2009a) and Nishiwaki and Kagami (2009b). It is based on a continuous recal-
culation of the walking pattern with a moderate frequency and local adaption of the
trajectories with a high frequency. The authors use an IMU in order to estimate current
position, velocity and acceleration of the CoG. These values are used as initial values for
the trajectory planning problem which is formulated as a preview control of the LIPM
and runs with a cycle time of 10 ms. The local feedback runs at a frequency of 1 kHz and
consists of several control strategies. The authors use an I-controller in order to follow
the desired ZMP trajectory which is compared to the current acting ZMP calculated with
contact force measurements. The output is a displacement of the horizontal torso posi-
tion. In Nishiwaki and Kagami (2007a) a local modification for the swing foot trajectory
depending on the inclination error is presented. It basically shifts the swing foot’s height
and orientation in order to ensure a touch down at the planned time and with the desired
orientation. For large disturbances there exists an additional adaptation of future step
parameters as the step time and next footstep position. An overview of the described
control scheme is shown in Figure 2.7.

Another interesting approach is described in Tajima et al. (2009) which shows con-
vincing results for a running humanoid robot. The authors also use a continuous recal-
culation of the trajectories with the estimated current state of the robot as initial value. In
addition they reduce toe, ankle and knee joint stiffness just before expected landing time
in order to absorb shocks at touchdown. This is realized by lowering the position control
gains for the mentioned joints. A notable fact is that they do not use any information of
the current acting contact wrench for their stabilization. In Tajima and Suga (2006) they
roughly describe a method to adjust next foot landing position depending on the robot’s
current state which is based on the LIPM.

Compared to the acceleration of the CoG to produce a certain reaction moment mod-
ification a different approach is to directly control interaction forces and torques by mod-
ifying the trajectories of the feet that are in contact with the ground. The authors of
Fujimoto et al. (1998) present a hybrid position/force control by using a tracking control
in taskspace for the overall dynamics of the biped (2.4) and (2.5). Kajita et al. (2010) uses a
damping control for the horizontal contact moments and vertical contact force by modify-

2.3 Stability in Bipedal Locomotion 17

Walking parameters

Walking pattern
generator

Position controlled
robot

Swing foot
modification

ZMP control
CoG mod.

Foot pose mod.

Sensor data

Figure 2.7: Feedback control of humanoid robot HRP2 (adapted from Nishiwaki and Kagami

(2009b)).

ing the according angles and vertical displacement of the feet. There is a similar approach
which considers a simple model for the contact dynamics in order to design an interac-
tion force controller (Hashimoto et al. 2012). The problem of how to distribute a desired
contact force or moment over both feet is commonly solved by using a preplanned force-
distribution depending on the relative time of the walking cycle (Buschmann et al. 2009;
Kajita et al. 2010; Nishiwaki and Kagami 2009b) but there is also a work that tries to solve
it by an optimization formulation (Ott et al. 2011).

Position Control versus Torque Control

The basic difference between stiff position control and the torque control concept is vi-
sualized in Figure 2.8. For the former the inner cascade is the position loop which can
be formulated for the joint angles Θ. The outer loop is consequently the force feedback
that produces a modification ∆w for the ideal taskspace trajectories wid. The desired joint
angles Θd can be computed for example with an inverse kinematics formulation on ve-
locity level. This is shifted for the torque control where the position feedback is the outer
cascade and the inner loop tries to track a desired force τd. Those are computed by an
inverse dynamics model by feedback linearization. Note that in both concepts the quanti-
ties Θd and τd have to be computed central and can be sent then to local joint controllers.
As a consequence the update rate for both quantities is of the same order and one has to
decide what is the main objective in order to choose the most suitable framework.

A walking controller that is based on the full robot model was introduced in Löffler
et al. (2002) for the biped robot JOHNNIE. The authors use a feedback-linearization tech-
nique to impose a linear behavior for the tracking errors. In Löffler (2006) it was reported
that due to limited bandwidth of the inner force control loop a different stabilization that
is based on an impedance control (Ott et al. 2010) with an inner position loop shows
better results for fast walking tasks. It correlates with the principal design for most of
the successful and powerful walking controllers for bipedal walking robots. This is an
important result which shows that when using cascaded feedback loops the bandwidth
of the inner loop limits the possible bandwidth of the outer ones and should be consid-
ered in the overall controller design. This is especially the case for whole-body controller
that use a feedback on position and velocity level (Kuindersma et al. 2014; Sherikov et al.
2014) and compute with an inverse dynamics based method desired torques that are then
regulated for each joint. This rises the general question what is the main objective for the
whole system. If the robot should perform a certain task (walk in a commanded direc-

18 Feasibility and Stability of Bipedal Robots

λd -
Force

control

wid

Inverse
kin. -

Position
control Robot

Θ

λ

∆w Θd

wd, ẇd
-

Position
control

ẅid

Inverse
dynamics -

Torque
control Robot

Direct
kin.

τ

Θ, Θ̇w, ẇ

∆ẅ τd

Figure 2.8: Concept comparison: Sti� position control (top) versus torque control (bo�om).

tion or walk fast) a good tracking performance for the position level is preferable. If the
terrain gets very unknown and rough and the robot should be compliant in its behavior a
certain tracking for commanded torques are the main objective. But this requires models
that are more complex for the control and the sensors have to fulfill certain bandwidth
characteristics. This may be especially crucial for 6-axis force torque sensors and the IMU
as well as for communication issues. Another question that has to be answered is the
validity of the LIPM as planning tool because it assumes a stiff position controlled robot
which was shown in Furusho and Masubuchi (1987) and will be a concern in Chapter 4.

While the focus of this part was mainly to describe overall sensor feedback frame-
works for bipedal walking the next section treats methods that drastically change the
future motion by modifying next foot landing positions. This aims mainly to increase the
stability for large disturbances that can not be stabilized with local feedback laws and can
be classified as a global stabilization strategy.

2.3.3 State Dependent Foot Placement

A modification of next footstep positions for stabilizing the robot is a challenging task
which is in the author’s opinion not yet completely solved. Given a current disturbed
state of the overall robot the adaptation for the following footstep positions has to be
computed in real-time. The solution of this problem has to consider the following con-
straints and properties

a) foot positions can not be changed immediately due to velocity limitations in the
joints.

b) modified foot positions have to be reachable (inside the kinematic limits)

c) the effect of the next footstep position on the overall state evolution of the robot is
in general nonlinear

d) modified footstep affects the feasibility of already planned CoG trajectories.

A stabilizing solution for a disturbed state that would lead to a divergence of the robot
is schematically shown in Figure 2.9. The consequences of the above stated issues a) –
d) can be seen in this diagram: the robot’s absolute inclination at time t1 is the same for
the ideal and stabilizing trajectories (if the feet’s inertia is neglected). From the end of

2.3 Stability in Bipedal Locomotion 19

initial
state
(t0)

step 1
(t1)

step 2
(t2)

⇒

Ideal trajectories Stabilizing trajectories

Figure 2.9: State evolution of a biped with disturbed initial state (current state) with snapshots

taken at t = t0, t1, t2. A stabilizing solution is shown on the right hand side.

the first step (t1) until the second step (t2) the modified step length has an influence to
the robot’s behavior and can stabilize it. A consequence is that footstep modifications
are normally determined in a model predictive way. Due to the fact that the swing foot
requires a certain amount of time to move to its final position the necessary prediction
horizon is long compared to other real-time model predictive methods.

One often applied concept to determine footstep modifications is the capture point
introduced in Pratt et al. (2012) and Pratt et al. (2006). Following the definition of the
capture point and using the LIPM it can be computed with (2.19). In a walking controller
it can be used to calculate a footstep modification depending on the measured CoG po-
sition and velocity error which is then used to generate a feasible new CoG trajectory.
In Hodgins and Raibert (1991) and Raibert (1986) some very efficient heuristics for hop-
ping robots are presented. They also introduce the concept of the neutral point which is
a point the robot has to step in order to maintain its velocity. Based on the model of a
two-link walker with point feet Wight et al. (2008) derived their foot placement estimator
which is based on an energy conservation approach. Another way to generalize the effi-
ciency of foot placement strategies is the usage of learning methods. Rebula et al. (2007)
extended the capture point framework by an additionally learned offset which showed
for learned situations a better performance. There exist also work for online learning
techniques (Missura and Behnke 2015) that showed for planar considerations impressive
results. Nevertheless there remains the question, how to extend those methods to gen-
eral walking situations. In Aftab et al. (2012) the authors compared the results of a LIPM
based stepping criterion with human balance measurements for similar perturbations.

The problem for a state dependent foot placement can be solved together with the
problem to determine a feasible CoG trajectory. This can be done by formulating an
overall optimization problem for both unknown quantities in a MPC formulation. There
are several works solving the problem by approximating the robot with the LIPM and
using a direct optimization method (Diedam et al. 2008; Stephens and Atkeson 2010;
Urata et al. 2011). Sherikov et al. (2014) extended this approach by an inverse dynamics
stabilization methods which is integrated in the stated optimization problem. The work
shown in Urata et al. (2011) shows very impressive results which is also affected by a
sophisticated hardware design using high power joint actuators (Urata et al. 2010) and
very efficient calculation techniques. The authors state the optimal control problem for
the pendulum in a different way by choosing the time derivative of the CoP as input
and setting the weight of the input to zero. This allows to give an explicit solution of
the problem and to compute more than hundred iterations of the optimization in each
control cycle. To the author’s knowledge this is the only work that includes an additional

20 Feasibility and Stability of Bipedal Robots

step time optimization.
The methods presented in this work are related to the above mentioned strategies.

Based on a new proposed nonlinear and more accurate prediction model an optimization
based method to determine stabilizing foot placements will be presented. This is also
extended to additionally optimize the CoG trajectory. In the author’s opinion one main
drawback in existing approaches is the inaccuracy of the LIPM and its restriction to flat
ground/flat foot walking. These assumptions are removed with the newly introduced
prediction model in Chapter 4.

Divergent component of motion with prediction

Beside using the divergent component of motion q(t) computed from the current state it
is also possible to predict its evolution into the future and use the predicted value in order
to calculate a footstep modification similar to (2.7). The solution of q(t) can be written as

q(t) = q(0)eωt −ω

t∫

0

eω(t−τ)xzmp dτ = q(0)eωt + xzmp(1− eωt). (2.23)

Starting with the divergent component of motion and the end of the step q(t1), one can
solve (2.23) for xzmp for a given end value q(t1 + T) = qd(t1 + T) after a time period T

xzmp =
qd(t1 + T)

1− eωT − q(t1)eωT (2.24)

The stepping criterion reduces for T → ∞ to xzmp = q(t1) which corresponds to using
the predicted divergent component at t1 (for qd = 0) as desired footstep modification. In
Takenaka et al. (2009c) a similar criterion for a footstep modification is stated.

2.4 Chapter Summary

This chapter gave an overview of the underlying dynamics of bipedal locomotion. Fea-
sibility and stability criteria are introduced and some well known concepts for motion
planning and stabilization of bipedal robots are reviewed. The relations are visualized
in Figure 2.2. The ZMP/CoP can be computed from the Newton and Euler equations of
the whole system and verified whether they lie inside the support polygon or not. This
is a popular tool to validate feasibility of the planned motion as long as one restricts to
flat footed gaits with no slippage. Otherwise one has to consider the force constraints
introduced by unilateral contacts directly on the Multibody System (MBS). As the biped
has less inputs than DoFs it is underactuated. This property results also from the unilat-
eral (compliant) contacts and is mainly a concern of stability. Considerations of cascaded
feedback loops that stabilize bipedal locomotion and how to design a framework that fits
best to an existing hardware were shown. They will be used in the following chapter to
extend the control system of LOLA to increase its robustness.

Chapter 3

Control Framework for Robust Walking

3.1 Introduction

This chapter starts with a brief overview of the mechanics, electronics and communica-
tion system of the bipedal robot LOLA. The basic structure of the planning and control
system is presented. The description includes the general procedure to generate a walk-
ing pattern, existing feedback loops and models used in specific methods. This overview
is the basis to introduce the control framework extensions for unknown environments in
the second part of this chapter.

Unknown environments raise multiple issues for robotic systems: (1) Motion gener-
ation problems in complex environments have to be solved autonomously. (2) Robots
have to be able to react quickly to dynamically changing environments or user input. (3)
Robots have to be reliable and robust - even when subjected to unknown disturbances.
The issues are solved by adapting the robot’s motion according to sensor data. The sensor
data can be classified into two categories: First category is data from a vision system that
can be used to adapt the robot’s motion to avoid collisions with the environment. The
second category includes sensor data that is related to the state of the robot and its con-
tact forces. Depending on this state the walking control system has to adapt the robot’s
overall motion. This is mainly a concern of the robot’s ability to recover from severe
disturbances resulting from external forces or model errors.

The second part of this chapter summarizes a hierarchical approach for using sensor
data in LOLA’s walking control system. First, methods for disturbance rejection are in-
troduced. Afterwards, an integration and combination with collision avoidance methods
is discussed. Details on the real-time system implementation are given since most al-
gorithms are computationally expensive. Additionally a method to improve the overall
positional tracking of the joint control is presented.

3.2 The Bipedal Robot Lola – System Overview

This section gives a summary of important properties and design concepts of the bipedal
robot LOLA. The focus is on the overall mechatronic system including mechanics, elec-
tronics and control.

3.2.1 Mechanical Design

The aim of the LOLA-project is to develop a robot with human-like capabilities with a fo-
cus on bipedal locomotion. It is a platform to develop new methods for fast, flexible and
robust walking. The robot weights approximately 60 kg and is 1.8 m tall. The mechanical
structure of the robot is designed to be lightweight but stiff. The legs are designed to

21

22 Control Framework for Robust Walking

x y

z

Joint DoF
Head 2
Shoulder 2
Elbow 1
Pelvis 2
Hip 3
Knee 1
Ankle 2
Toe 1

Total 24

Figure 3.1: Photograph and kinematic structure of Lola. The table on the right hand side gives

an overview of the robot’s joints.

have low inertia. This increases the robot’s capabilities to perform fast walking motions
and moves the effective CoG height upwards. The mechanical design and its motivation
can be summarized with the statement given in Lohmeier (2009):

“Both static and dynamic behaviors of the mechanical system have a strong
influence on the walking capabilities. In particular, structural weak points of
the locomotor system can degrade walking performance by causing structural
vibrations and deviations from the reference trajectories, which can destabi-
lize the robot.”

The kinematic structure with 24 joints is shown in Figure 3.1. Each leg consists of seven
joints including an active toe. To increase the robot’s redundancy there are two pelvis
joints connecting the legs with the upper body. The arms are mainly used to compensate
for the leg’s motion and to minimize the angular momentum. They have three DoFs.
All joints are electrically actuated using high power brushless DC motors. Most of the
robot’s joints are equipped with stiff high ratio Harmonic Drive transmission gears except
for the ankle and knee. The ankle joints are designed by a parallel kinematics using
two spatial slider crank mechanisms. Each is actuated with a motor mounted to the
thigh. This introduces three main advantages, (1) the motors are shifted upwards which
decreases the overall inertia of the leg. (2) by using parallel kinematics the peak torques
of the motors can be reduced by approximately one third and (3) an increased workspace
of the joints is realized. The knee joints are based on a roller-screw based linear drive
with a four-bar linkage mechanism. Both ankle and knee kinematics have a nonlinear
kinematics and therefore a nonlinear torque-speed characteristics. Mechanical data of all
different joint types are listed in Table 3.1. Load ratings and top speed refer to joint side
measurement units. The joints’ ratio is chosen low compared to other robotic systems.
This fact and the high power and low weight joint design especially for ankle, knee and
hip fits perfect for large and fast movements during walking tasks of the robot.

3.2 The Bipedal Robot LOLA – System Overview 23

Table 3.1: Mechanical joint actuator data. A: hip flexion, B: hip adduction, C: hip rotation,

D: pelvis adduction/rotation, E: shoulder flexion, F: shoulder adduction/elbow flexion, G: toe

flexion (data taken from Lohmeier (2010, p.179)). For ankle and knee joints only maximal values

are given of the nonlinear kinematics.

Drive Mass Top speed Continous Peak load Gear ratio

[kg] [rad/s] load [Nm] [Nm] [-]

A 3.010 12.06 122 243 50

B 1.438 8.16 108 284 100

C 1.522 8.16 108 284 100

D 0.933 8.16 78 147 100

E 1.082 8.16 78 147 100

F 0.973 9.17 54 110 100

G 0.531 10.68 24 48 100

Knee 1.931 10.68 ≤ 189 ≤ 378 ≤ 72

Ankle 0.516 10.68 ≤ 115 ≤ 230 ≤ 70

Pan 0.237 8.90 0.90 7.50 100

Tilt 0.066 10.47 0.44 1.40 100

3.2.2 Sensor and Communication System

The biped LOLA is equipped with different sensors used to control its motion and rec-
ognize disturbances from the environment. Every sensor is chosen to be lightweight,
precise and to have a high update rate. The last property is also related to the communi-
cation system and includes the time to transmit the sensor data to a feedback controller.
This directly influences the bandwidth of the closed loop system. Considering for exam-
ple the IMU whose data is used in the central controller the overall transmission time
consists of the digitization of the measurements, sensor data fusion and sending the data
with the communication system to the central computer. In the following a summary of
available sensors (cf. Figure 3.2) and the utilized communication systems is given.

Inertial Measurement Unit

The IMU used on the robot is the commercial high precision system iVRU-FC-C167 from
iMAR Navigation. The sensor is rigidly fixed to the upper body of the robot and consists
of three fiber-optic gyroscopes and three MEMS accelerometers. The system runs with
a frequency of 200 Hz including internal sensor fusion algorithms and error compensa-
tion models (e.g. velocity, acceleration based switching between different compensation
models/methods) which provide accurate and drift-free measurements for the absolute
inclination and inclination rate. The generated data can be accessed via Controller Area
Network (CAN).

Force/Torque Sensors

LOLA’s feet are equipped with 6 axis FTS developed with an optimized shear-beam ge-
ometry and strain gauges to measure deformations. They are mounted between ankle
joint and foot in order to measure the reaction forces acting on the robot (considering the
feet massless). The FTS data is read with the frequency of the high level control and has
an accuracy of approx. 0.6 %. The discrete contact state is resolved with contact switches

24 Control Framework for Robust Walking

b)

c)

d)

e)

f)

a)

Figure 3.2: Mounted sensors and their locations: RGB-D sensor (a), absolute encoder with

integrated limit switch (b), incremental encoder (c), IMU (d), FTS (e) and contact sensors (f).

that are directly located at the contact elements of each foot. The FTS data and the contact
state is read with an in-house developed microcontroller-board (Cortex-M4) and is sent
via CAN messages to the network.

Joint Sensors

Each joint is equipped with an absolute encoder on the link side and an incremental en-
coder on the motor side. The encoder evaluation is performed on local servo controller
(servo controller from ELMO Motion Control are used) and is directly used for indepen-
dent joint control. For safety reasons a limit switch is mounted on joint side enabling
hardware collision checking. The resolution for incremental and absolute encoder for all
joints is resp. 11520 and 131072 counts/rev..

Communication System and On-Board computer

The desired joint motion (target data) of the biped is planned on a central control unit
and is sent to local servo controllers. The overall sensor data has to be transmitted to the
central control unit in order to observe the overall state of the robot and adapt its motion
according to its environment. Updated values for sensor and target data have to be avail-
able with a frequency of 1 kHz. A high performance communication system is required
to transmit all mentioned data within the specified cycle time. Therefore the central con-
trol unit is connected with the servo controllers (ELMO Gold1) by an ETHERCAT-bus2.
The IMU and FTS are accessed with a CAN-gateway running with 1000 kBds. An ad-
ditional GPIO slave with A/D inputs is integrated which allows to include additional
measurements or triggers of external sensors and devices.

The vision system is mounted together with the central control unit on the back of
the robot. It is connected with the RGB-D sensor (Asus Xtion PRO LIVE 3) located at the
head. Both on-board computers consist of a mini-ITX embedded board with Intel Core

1www.elmomc.com
2www.beckhoff.de
3https://www.asus.com/de/Multimedia/Xtion_PRO_LIVE

www.elmomc.com
www.beckhoff.de
https://www.asus.com/de/Multimedia/Xtion_PRO_LIVE

3.2 The Bipedal Robot LOLA – System Overview 25

Robot

central control unit

vision system

Asus Xtion

servo controller 1

servo controller 2

servo controller 3

. . .

servo controller 24

CAN gateway IMU

FTS 1

FTS 2

GPIO/AD

ethernet switch

monitoring computer

ETHERCAT

CAN

LAN

USB

Figure 3.3: Overview of the communication system.

i7-4770S@3.1GHz (4x) processor and 8GB RAM. The computer with the vision processing
software runs under a Linux OS and the other, on which the walking control is executed,
runs under QNX NEUTRINO 6.6. Both computers use TCP to communicate via Ethernet.
The overall architecture is summarized in Figure 3.3. The procedure of generating new
desired data and using sensor data will be part of the following section.

3.2.3 Planning and Control System

The planning and control system receives high level walking commands from the moni-
toring computer and generates target data for the robot’s servo controllers. Motion com-
mands can be a 2D-velocity vector with a desired curvature or desired step lengths and
step time. The generated motion has to assure that the robot will follow the given com-
mands and will remain stable. It has to be computed in real-time since the commands
are sent during execution and the walking control system has to consider sensor data.
Remembering the basic challenges of the dynamics of bipedal locomotion this is a non
trivial task. In order to fulfill the real-time requirement the state-of-the-art solution is to
split the problem into sub problems that are solved hierarchically. The following descrip-
tion summarizes the work presented in Buschmann (2010) and Buschmann et al. (2012,
2007, 2009). The main parts of the planning and control system are shown in Figure 3.4.

26 Control Framework for Robust Walking

finite state machine

step sequence planning

ideal motion planning

gl
ob

al
co

nt
ro

l

walking stabilization

inverse kinematics

robot (with
dezentralized joint control)

lo
ca

lc
on

tr
ol

walking commands

ideal motion and forces

mod. motion

joint target data

sensor data

(3)

	 0.1 ms

(2)

	 1 ms

(1)

� event

Figure 3.4: Overview of the existing planning and control system of Lola (adapted from

Buschmann (2010)).

Global Control

Coordination of the global control is done with a finite state machine that can change its
state between standing, start walking, walking and stop walking. The walking–state is further
partitioned in a Single Support (SS) phase, a Double Support (DS) phase and a contact
event when the current swing leg touches the ground. An event based control is used
(Buschmann et al. 2012) in order to increase the system’s robustness. Sensor data namely
the contact force measurements (or the contact switch information) are observed and can
cause a transition from SS to DS before the ideal planned transition would occur. This is
called an early contact event and increases the robustness of the overall system especially
in unknown environments.

The step sequence planning uses the determined state together with the walking com-
mand to calculate a step sequence. Each step is described with a set of parameters includ-
ing step lengths in x and y direction, maximal swing foot height, step timing for SS and
DS, reference CoG height and others. The sequence consists of four to ten future steps
and is determined once after every completed step. This parameter set is used to plan
the ideal taskspace trajectories wd(t). They consist of

• the foot positions wrt. the robot’s CoG (TrCoG,FR , TrCoG,FL),

• the foot orientations wrt. the upper body (TsTFR , TsTFL),

• the absolute CoG position (TrCoG),

• the absolute upper body orientation (TsT),

3.2 The Bipedal Robot LOLA – System Overview 27

• toe angles (qTR, qTL) and

• pan and tilt angles (qpan, qtilt) for the camera head.

Note that the first four parts are written in a reference system “T” which is an ideal
planning FoR explained in Subsection 3.2.4. The foot trajectories as well as the verti-
cal CoG trajectory are planned using fifth order polynomials that connect several tar-
get points specified through the step parameters. Using fifth order polynomials satisfies
C2–continuity, which is mandatory for planning the horizontal CoG trajectories. Those
trajectories have to be feasible in terms of considering the constraints caused by unilat-
eral contacts (see Chapter 2). For LOLA this is solved by determining ideal feasible force
or ZMP trajectories in advance and specifying initial and final values for the horizontal
CoG position and velocity. This is done for a time horizon of two steps. The robot is ap-
proximated with a three mass model in order to state the BVP. The CoG trajectories are
represented by a set of exponential splines which can be used to transform the problem
into a linear equation system (Buschmann et al. 2007). This can be solved efficiently in
real-time. The solution includes a time-varying CoG height and considers inertia effects
of the foot motion which is important for fast walking. The global control provides finally
ideal motion and forces to the local control.

Local Control

The local control runs with a cycle time of tc = 1 ms and uses the planned motion (wd, ẇd)
and total forces and moments (λd = [F0, T0]T) for the current time instant. It modifies
them depending on sensor data and finally generates joint target data which is sent to
the local joint controllers. The walking stabilization (Buschmann et al. 2009) is done in
two steps. The global aim is to keep the upper body in an upright position. Therefore the
measured absolute inclinations (ϕx, ϕy) and inclination rates (ϕ̇x, ϕ̇y) in x and y direction
from the IMU are used to generate stabilizing forces and moments

Ty,stab = Kp,y(ϕx − ϕx,d) + Kd,y(ϕ̇x − ϕ̇x,d)

Tx,stab = Kp,x(ϕy,d − ϕy) + Kd,x(ϕ̇y,d − ϕ̇y)

Fz,stab = Kp,z4zCoG + Kd,z4żCoG.

(3.1)

Note that the index for the moments indicates a rotation about the corresponding axis.
The additional modification of the desired vertical force is based on the error 4zCoG be-
tween the planned and the resulting CoG height which is computed using the output of
the inverse kinematics. This prevents drift of the CoG height which is caused by model
inaccuracies of the robot’s total mass and foot motion caused by vertical force control on
uneven terrain or when the robot is tilting. The drift would be produced by the subse-
quent force control. The adapted forces and moments λmod = λd + λstab are distributed
to both feet using the desired force distribution (Λmod = [ρ f 1λmod, ρ f 2λmod]

T) and are for-
warded to a hybrid position/force control. The control uses an explicit contact model of
the feet that consists of decoupled point contacts with a linear stiffness (2.2). By means
of this model the controller modifies the planned taskspace target data according to the
tracking error between target Λmod and measured forces Λ. The controller is designed to
impose a linear error dynamics

Sλ

(
4Λ̇ + Kλ4Λ

)
= O where4Λ = Λmod −Λ (3.2)

with the time constant Kλ. Sλ is a selection matrix that specifies which components are
used for the control. For LOLA the horizontal contact moments and the vertical force is
chosen for each foot. The relation (3.2) and the contact model can be used to derive a

28 Control Framework for Robust Walking

control law for the taskspace modification (wstab, ẇstab). It is restricted to the vertical foot
position and horizontal foot orientations with a selection matrix Sx:

ẇmod = ẇd + Sxẇstab, (3.3)

wmod = wd + Sxwstab where wstab =
∫

ẇstabdt. (3.4)

When the swing foot leaves the ground the control for its components blends from force
to position control. This is done by using a hybrid position/force control. Next the mod-
ified taskspace trajectories have to be transformed into the robot’s joint space. The robot
is eight times redundant (w ∈ R22, q ∈ R30). The method used for LOLA is based on
automatic supervisory control originally proposed by (Liégeois 1977). It is a velocity level
inverse kinematics algorithm developed for redundant manipulators. The problem is
formulated as optimization where joint velocities and an arbitrary chosen cost function
H(q) are minimized subject to inverse kinematics as equality constraints. The cost func-
tion H is used to avoid joint limits and impose a comfort pose. Schwienbacher et al.
(2011) extended the method by self-collision avoidance and vertical angular momentum
minimization. The closed form solution is

q̇d = J#
w,Wẇmod +

(
E− J#

w,W Jw
)

W−1 ∂H
∂q

T
(3.5)

with the Jacobian of the total system Jw = ∂ẇ
∂q̇ . The matrix W is used as weighting

matrix for the joint velocities q̇ in the cost function and J#
w,W describes the W-weighted

pseudo-inverse of Jw. The resulting joint target data (qd, q̇d) is transformed to motor
angles/velocities (θd, θ̇d) and sent via the ETHERCAT-bus to the local joint controllers.

Decentralized Joint Control

The control of each joint is running as cascaded position, velocity and current feedback
control on the ELMO servo controllers (Siciliano et al. 2009, pp. 319). An overview is
shown in Figure 3.5. It consists of a P-control for the motor position, a PI-control for the
velocity and PI-control for current. Sampling times are 0.1 ms for position and velocity
and 50 µs for current feedback. Feedback of the motor motion (θ, θ̇) is obtained from
the incremental encoders and current (I) is measured with an integrated current sensor.
Additional feedforward values for velocity (θ̇d) and current (Id) can be commanded to
the controllers. At the time of writing (November 2016) only velocity feedforward is
used from the inverse kinematics output. Using the current feedforward part to include
computed torque feedforward (inverse dynamics from planned motion) did not improve
the used joint control system in terms of position tracking errors.

Summary of Feedback loops

The control system of LOLA can be summarized with the following three main feedback
loops

(1) event based feedback from the contact switches to the finite state machine,

(2) continuous central feedback to current motion (in taskspace) depending on IMU
and FTS data,

(3) and continuous decentralized joint control for the motor position.

3.2 The Bipedal Robot LOLA – System Overview 29

θd -
P-

control

	 0.1 ms

-
PI-

control

	 0.1 ms

-
PI-

control

	 50 µs

joint
motor

θ̇d

Id

I
θ̇θ

Figure 3.5: Decentralized cascaded joint control of Lola.

Note that the inner cascades show a higher bandwidth than the outer ones. It follows
the concept of stiff position control for humanoids shown in Figure 2.8. One main ad-
vantage is that the planned motion is adapted according to the reaction forces with a
moderate bandwidth (it is mainly limited due to compliance in the contacts and the used
I-controller for the force tracking) in an outer cascade while the commanded position is
controlled with a high bandwidth. Following this control system concept, an additional
continuous feedback to the global motion planning is added. The update frequency is
chosen to be more than one magnitude lower than the local control.

3.2.4 Coordinate Systems and Orientation Errors

This section reviews details on the main coordinate systems and how orientation errors
of the robot are represented. For the taskspace definition a planning frame of reference
(denoted by index T) is used. This planning frame has its origin at the toe of the robot’s
stance foot and for an upright posture the x axis points horizontally forward and the
z axis vertically upward. During a step it does not move in x direction. The planning
frame is used to calculate direct and inverse kinematics of the robot, calculate the inverse
dynamics and represent planned trajectories in taskspace. If the robot has a non-zero
posture error, this FoR does not coincide with a world fixed frame (in the following sub-
script I assigns quantities that are represented in this world FoR). This is schematically
shown in Figure 3.6. A special representation of the upper body’s orientation is used for
the walking control of LOLA originally proposed by Löffler (2006). This allows for treat-
ing the inclination in the x and y direction independently. The kinematics are explained
in Buschmann (2010). Defining the axis of the world frame with Iex, Iey, Iez and of the
planning frame with Tex, Tey, Tez the inclination angles are defined as follows

φx =∠(Iez,T ex), (3.6)
φy =∠(Iez,T ey), (3.7)
α =∠(Iex,T e′x). (3.8)

Orientation measurements from the IMU (represented as roll-pitch-yaw) are converted
to the above stated parametrization. The final data of the absolute inclinations (φx, φy)
and inclination rates (φ̇x, φ̇y) is available to be used in the walking control of the robot.
For the prediction models introduced within this thesis slightly different variables are
used to represent orientation errors. The inclination angles (3.6) and (3.7) are shifted by
the value π/2 and are defined in the opposite direction:

ϕx =
π

2
− φx, (3.9)

ϕy =
π

2
− φy. (3.10)

30 Control Framework for Robust Walking

g

Tx
I x

IzTz

Ty
Iy

ϕx

ϕy

α

Tex

TeyTez

Iex

Iey

Iez

Te′x

Figure 3.6: Le�: inertial (index I) and planning (index T) frame of reference for an arbitrary

robot posture. Right: representation of the upper body orientation (Buschmann 2010, p.69).

3.3 Control System Extensions for Robust Walking

The presented control system is extended in this work by several methods to improve
the robot’s walking capabilities in unknown environments. The main part is a model
predictive trajectory adaptation. Integration details with collision avoidance methods
are presented as well. Finally the real-time system will be explained and an improved
joint feedforward control will be presented.

3.3.1 Model Predictive Trajectory Adaptation

This section describes how the existing control system is extended to increase the ro-
bustness of the biped in rough unknown environments. The main contribution is the in-
troduction of a continuous sensor based trajectory adaptation (Nishiwaki and Kagami
2009a) which is done in a model predictive way. The method is summarized in Figure 3.7.
The ideal planned motion and forces are adapted in the global control module according
to current sensor data. The leg trajectories and the horizontal CoG trajectories are mod-
ified with an update frequency of 50 Hz. The main input variable is the measured error
of the upper body inclination and inclination rate. With the assumption that the posture
error of the upper body corresponds to the transformation between the planning and in-
ertial FoR, the inclination errors are part of the robot’s unactuated DoF qT. These are one
of the main state errors that have to be considered and minimized if large disturbances
occur during walking in an unknown environment. Note that this directly extends the
idea of the existing walking stabilization by an additional predictive approach since the
same feedback variables are used. Further, stability issues of the system due to underac-
tuation discussed in Chapter 2 are considered. It also matches the approach to describe
the planned motion in an ideal FoR and adapt it according to the orientation error wrt.
the world (cf. Subsection 3.2.4). With the sensor feedback being not a state error that
is included in the taskspace w, computation times for the modification larger than one
control cycle do not introduce discontinuities in the commanded trajectories.

A prediction model is used that includes the inclination error between robot and the
environment as unactuated DoF. Additionally the model has to include the planned foot
and CoG trajectories and should include the effect of the walking stabilization. The last
point is important because otherwise results obtained by the model would be always
too pessimistic. Speaking from a control theory point of view, the controller of the outer
cascade has to use the plant with the effect of the inner feedback control loops. These

3.3 Control System Extensions for Robust Walking 31

ideal motion and forces

trajectory adaptation
(Chap. 6)

state estimator
(Chap. 5) sensor data

prediction model
(Chap. 4)

model predictive trajectory adaptation

adapted motion and forces

Figure 3.7: Main parts of the model predictive trajectory adaptation. Relations to the following

chapters are given.

considerations are used in Chapter 4 to introduce a nonlinear prediction model. The
derivation of the model emphasizes a real-time application.

The IMU data is not directly used as input for the trajectory modification. Chapter 5
describes a state estimator that extracts the global trend of the motion. It increases the ro-
bustness of the overall method. The estimator reduces high frequecy oscillations caused
by structural vibrations and the local joint control. It finally acts like a low-pass filter but
with less time delay.

The prediction model is used in the trajectory adaptation presented in Chapter 6. Leg
trajectories are adapted by optimizing final values for the x, y and z position as well as the
final horizontal orientation. Further the horizontal CoG trajectories are optimized. The
optimization can be classified as online nonlinear model predictive control (Diehl et al.
2009). Figure 3.8 shows the integration of the method into the overall control system of
LOLA. The depicted control scheme also includes methods for collision avoidance which
will be described in the next section.

3.3.2 Integration with Collision Avoidance Methods

This part shows how a combination of the model predictive trajectory adaptation with
collision avoidance methods can be realized within a hierarchical control system architec-
ture. The realization on the real-time system is subject of the subsequent section. Splitting
the problem into smaller pieces that are solved one after each other allows for generating
a solution in real-time. Before the method of the combination is presented, an overview
of LOLA’s obstacle avoidance is given. One central point is that all geometries (robot as
well as obstacles) are approximated by Swept-Sphere-Volume (SSV) objects (Hildebrandt
et al. 2014; Schwienbacher 2014). There are three shape primitives (point, line and tri-
angle SSV) used to build the collision models. One main advantage is that those allow
for very efficient distance calculations and can be used for real-time collision avoidance.
The collision model of the robot is fixed concerning its structure and only updated with
the robot’s configuration while the obstacles are generated, updated and removed online
during walking by the vision system (Wahrmann et al. 2016). The environment informa-
tion is obtained from the RGB-D sensor located at the head and is represented with a 3D
point cloud. After pre-processing, the point cloud is segmented in surfaces and obsta-
cles. Each object is represented with several SSVs depending on its distance to the robot.
This way no prior knowledge of the environment in terms of color or models is required.

32 Control Framework for Robust Walking

walking commandsvision system

finite state machine

A*-based step planner &
parameter optimization

ideal motion planning

model predictive
trajectory adaptation

gl
ob

al
co

nt
ro

l

reactive collision avoidance

walking stabilization

inverse kinematics

robot (with
dezentralized joint control)

lo
ca

lc
on

tr
ol

ideal motion and forces

adap. motion and forces

mod. motion

joint target data

sensor data

(3)

	 0.1 ms

(4)

	 20 ms

(2)

	 1 ms

(1)

� event

Figure 3.8: Extended walking control system of Lola. Additional methods for flexible walk-

ing (A*-based step planner & parameter optimization, reactive collision avoidance) and robust

walking (model predictive trajectory adaptation) are included.

Figure 3.9 shows a real setup and how the environment representation of the walking
control looks like.

The obstacles are continuously sent to the real-time walking control system. First an
A*-based step planner uses this information together with walking commands to deter-
mine a collision free step sequence for the next steps. Additional parameters for the step
sequence as maximal swing leg height, CoG height, step time, etc. are also determined.
This is done once before each step of the robot. In order to limit computational time,
a simplified collision model of the robot is used (only the lower limb of the swing leg).
This allows to perform a search for the next maximal 7 steps within 400 ms (number of
steps and computing time strongly depend on the number of obstacles). The validity of
the kinematic movement and possible collisions need to be checked additionally. The pa-
rameter optimization integrates the movement of the robot’s next step using the whole
kinematic model. It takes into account the local methods for collision avoidance and,
consequently, the approximation of the robot’s whole structure for collision checking.

3.3 Control System Extensions for Robust Walking 33

Environment
representation E

Full collision model
Rcoll

Ideal step sequence

LOLA with vision sytem

Figure 3.9: Le�: real setup with Lola and obstacles. Right: collision model of the biped (blue),

obstacles in the field of view (orange) and current collision free step sequence (Hildebrandt et al.

2016).

Second, a reactive collision avoidance uses the environment information to locally
modify swing foot trajectories during execution. This is mainly because the initial pa-
rameter set and the resulting trajectoroies are not necessarily collision free since simpli-
fied models are used (see Hildebrandt et al. (2015) for further explanation). The method
is based on a projection of the cost function of the inverse kinematics (3.5) and extended
by the obstacle avoidance into taskspace. Note that this method does not modify the final
swing foot position (Hildebrandt et al. 2014).

A combination of collision avoidance methods with stabilization methods that also
modify foot step positions requires a prioritization of one goal. At the end the algorithm
has to decide whether it avoids collisions or prevents falling if an obstacle intersects with
the optimal step length from the trajectory adaptation. The proposed method chooses
collisions as main goal and places the footstep position as close as possible to the optimal
one. Such a saturation of the stabilization acts like another disturbance that has to be
compensated for in the following steps. Two general strategies will be presented in in
Chapter 6:

• Generate a collision free ideal plan, adapt the footsteps according to sensor data
and finally check versus collisions and kinematic limits. This corresponds to the
method described in Chestnutt and Takaoka (2010).

• Generate a collision free ideal plan, describe the restricted areas of the environment
by inequality constraints. Those are then directly considered in the sensor based
footstep optimization.

3.3.3 Improved Joint Feedforward Control

For LOLA’s control system there is one basic approach concerning the joint state. The
feedback to global and local control uses only data from IMU and FTS. Actual values for
all joint angles and velocities are only considered in the local joint control. Consequently,

34 Control Framework for Robust Walking

the models and control strategies in the central control assume perfect joint tracking. In
other words the joints are expected to follow planned motion ideally. One advantage
of this approach is that global stability issues of the biped are treated decoupled from
the feedback control of the joints. The following paragraph presents an improved joint
control scheme that drives the robot’s real behavior closer to above given assumption.

Figure 3.10 shows a measurement of the tracking error and the according desired joint
velocity for the right hip flexion for two physical steps. One step where the right leg is
the swing leg and a second step where it is the stance leg. The data is computed with
the incremental encoder on motor side and converted via the gear ratio (cf. Table 3.1)
to joint side quantities. From this figure it can be seen that the tracking error is directly
related to the joint velocity and mainly occurs during swing phase. This is the main
motivation for the method presented in the following to improve the joint’s positional
tracking performance.

−0.003

−0.0015

0

0.0015

0.003

3.5 4 4.5 5

t [s]

∆θhip [rad]

−0.6

−0.3

0

0.3

0.6

3.5 4 4.5 5

t [s]

θ̇hip,d [rad/s]

Figure 3.10: Position tracking error and joint velocity for the right hip flexion joint.

One way to use this knowledge is to identify an additional feedforward filter. A
transfer function Ge(s) from the desired joint velocity θ̇hip,d to the error ∆θhip = θhip,d −
θhip is used

∆θhip(s) = Ge(s)θ̇hip,d(s). (3.11)

Several pole/zero configurations were tested to determine filter coefficients. All identi-
fied transfer functions show a fit of approximately 95-96 %, a constant gain ke = 0.005
and poles pi that are at the very left complex half plane (Re(pi) � −100). Consequently
a constant gain ke is used for the transfer function

Ge(s) = ke. (3.12)

With (3.12) it is possible to compute the tracking error of the controlled joint in advance.
It can be used to improve the joint’s tracking performance by adding the filter output
to the target joint angle. In a discrete time setting this means that the tracking error of
the next time step is already known and can be used as input to the position control.
Figure 3.11 shows on the left side the corresponding control scheme. The system can be
transformed by using a filter Ĝe(s) for the overall desired velocity that is computed with

Ĝe(s) = 1 + Ge(s)Gp(s). (3.13)

3.3 Control System Extensions for Robust Walking 35

θd -
Gp(s)

-
Gv(s) . . .

Ge(s)

θ̇d

. . .

. . .θ̇

θ

⇒ θd -
Gp(s)

-
Gv(s) . . .

θ̇d Ĝe(s)

. . .

. . .θ̇

θ

Figure 3.11: Improved feedforward control: on the le� side with the identified filter Ge(s) and

on the right side the transformed control block diagram with a modified feedforward velocity.

Same procedure can be applied for the other joints which gives identical results only with
different constant gain values ke.

To enable an automatic computation of the feedforward gains a reinforcement learn-
ing (Sutton and Barto 1998) based strategy is used. This has the advantage that the op-
timal gains can be identified online when the joint control system or motor are changed.
The velocity feedforward filter Ĝe(s) = 1 + krl is added to the walking control system
with an inital value krl = 0. The robot is stepping in place and its joint tracking errors are
recorded for the learning process. A cost function is defined with the Root Mean Squared
Error (RMSE) over a time period of two steps for joint i

Jθ,i =

√√√√ 1
N

k=N−1

∑
k=0

∆θ2
i (3.14)

The simple policy is used to increase krl by 0.1 increments as long as the cost function
(3.14) decreases. This is performed for all joints simultaneously. The learning progress
for the hip joint is depicted in Figure 3.12. The algorithm finds the best gain krl = 1.3 and
can reduce the tracking error by approximately 90 %. Inserting the position controller
Gp(s) = 250 into (3.13) results for the identified Ĝe(s) = 2.25. Finally, the tracking per-
formance is evaluated in a fast walking experiment. The robot is commanded to walk
5 m with a maximum step length of 0.6 m and a step time of 0.8 s. Figure 3.13 shows
the tracking error for the hip joint without (ref.) and with the velocity feedforward gain
adaptation (opt.). It can be seen that the filter produces much better results for the exper-
iment. Results for other joints are provided in Appendix A.

3.3.4 Real–Time System

The control system is running on the real-time operating system QNX NEUTRINO 6.64

which is based on a microkernel design and has full multi-core support. The walking
control is split in three main processes running in parallel (see Figure 3.14). Process 1
includes the global control part, process 2 the local control and process 3 is responsible
for the ETHERCAT communication with sensor and target data exchange. To enable the
combination with collision avoidance methods, process 1 includes a separate thread that
calls the A*-based step planner. It computes the following nstep steps during the execution
of step k. The ideal motion planning is called before a new step starts (vertical lines in
Figure 3.14) to ensure that new target data for the ideal motion and forces is available.
The model predictive trajectory adaptation (Adapt) is performed sequentially in the main

4http://www.qnx.com/

http://www.qnx.com/

36 Control Framework for Robust Walking

−0.003

−0.0015

0

0.0015

0.003

5 10 15 20 25 30

0

0.3

0.6

0.9

1.2
∆

Θ
[r

ad
]

k
r
l

t [s]

∆Θhip krl

Figure 3.12: Tracking error and gain krl during the learning process of the hip joint.

−0.02

−0.01

0

0.01

321 324 327 330 333

∆
Θ

h
ip

[r
ad

]

t [s]

ref.

opt.

Figure 3.13: Hip flexion joint tracking performance evaluation for a fast walking experiment.

With krl = 0 (ref.) and krl = 1.3 (opt.).

process. The SSV-map of Process 1 receives updates from the vision computer (Upd.SSV)
with approx. 20 Hz. Inter-process communication is realized via shared memory. Process
1 writes new target values for the walking pattern of the next 10 time stamps into a First-
In First-Out (FIFO) buffer based shared memory object which is read from process 2.
Note that the time horizon of the buffer is half of the maximal admissible value of 20 that
comes from the update rate of the trajectory adaptation. The buffer size is chosen such
that it fits to the worst case computational time. A reduction of the size has the advantage
that an updated trajectory comes earlier to the local control and consequently to the robot.
The generated target data for current time stamp is written into the shared memory from
the local control and it is read from the ETHERCAT process (ec-driver). The ETHERCAT

bus runs with 4 kHz which is four times faster than the local control generates new target
data. For timesteps where no new target data is available it interpolates the target joint
positions and keeps the target velocities constant. The target data is finally sent to the
joint controllers. The ec-driver writes updated sensor data to the shared memory which
can be accessed from process 1 and 2.

3.4 Chapter Summary 37

. . . step k step k+1

Process 1:
A* Planner plan step (k + 1) to (k + nstep)

Ideal

Adapt

Upd.SSV 	 50 ms

Process 2:
Local control 	 1 ms

Process 3:
EC driver 	 250 µs

−→ t

Figure 3.14: Overview of the three main processes of the walking control. The A*-based step

planner runs parallel to the ideal trajectory planning and the trajectory adaptation in Process 1.

3.4 Chapter Summary

This chapter gave an overview of the mechanics, electronics and communication system
of the bipedal robot LOLA. Further, the planning and control system is described and the
integration of methods presented in this thesis are shown. This includes a short overview
of the main parts of a model predictive trajectory adaptation: the prediction model, a
state estimator and an algorithm to adapt trajectories (Figure 3.7). Finally details for
the integration with collision avoidance methods, the real-time implementation and an
improved joint feedforward control are given.

Chapter 4

Models for Real-Time Control

4.1 Introduction

Models are a mathematical description of a real system and are important to calculate
the system’s behavior. This chapter describes models that can be used in real-time con-
trol of bipedal walking. The main objectives for the models are (1) produce an accurate
prediction of the robot’s state evolution for a certain time horizon. Therefore underactu-
ation and the ideal planned motion has to be taken into account. (2) Solve this long-term
prediction in real-time. (3) Extendable by free variables to use them for trajectory opti-
mization. Due to their properties it will be shown that presented models are also suitable
for state estimation of the unactuated DoF of the robot. The classification into the model
predictive trajectory adaptation is shown in Figure 4.1.

ideal motion and forces

trajectory adaptation state estimator sensor data

prediction model

adapted motion and forces

Figure 4.1: Chapter classification into the model predictive trajectory adaptation.

At the beginning a review of models for bipedal robots is given. They are discussed
concerning their assumptions and accuracy. In the following sections the prediction
model developed and used in this work is presented. Next to the basic concept there are
two main variants are described that differ by the foot model. The models are verified
using a model order reduction technique showing that the dominating error dynamics of
a full rigid multibody model of the biped is included in the model. In addition prediction
results are compared to simulation and measurement data in order to verify the stated
model. Two model extensions are presented which introduce free inputs that can be mod-
ified with optimization methods, namely a modification of the swing foot trajectory and
a modification of the CoG trajectory. The presented models are used to formulate a state
estimator in Chapter 5 and real-time model predictive control in Chapter 6.

39

40 Models for Real-Time Control

m

rc

g

F1, T1

xc

zc

m

Ty

Figure 4.2: Le�: global forces acting on a robot. Right: the LIPM.

4.2 Related Work

A model that is often used in real-time planning and control of long-term motion for
humanoid robots with stiff position control is the LIPM. The dynamics in sagittal and
lateral direction is considered to be decoupled and the biped is modeled with a single
point mass located at the CoG. Additionally, multibody effects are neglected (Englsberger
and Ott 2012; Mayr et al. 2012) which will be explained in the following. Stating the
overall dynamics of a biped depicted in Figure 4.2, the total change of linear (ṗ) and
angular momentum (L̇CoG) about the CoG is

ṗ = maC = mg +
2

∑
i=1

F i (4.1)

L̇CoG =
2

∑
i=1

(T i − rFi ,CoG × F i) =
nbodies

∑
i=1

miri,Si × ai + I0i
i ω̇i + ωi × I0i

i ωi (4.2)

with the overall reaction force (Fi) and torque (Ti) acting on foot i. The vector from the i-th
external force to the CoG is denoted by rFi ,Cog. The right hand side of (4.2) describes the
angular momentum change due to multibody dynamics. The considered system consists
of nbodies bodies with the angular velocity ωi, rotational inertia I0i

i about the body origin
and ai the acceleration of the respective body origin (Ulbrich 1996, p.59). Assuming that
only foot 1 is in contact with the ground and inserting (4.1) into (4.2) yields for the first
two rows

L̇CoG,x = Tx −myc(z̈c + g) + mzcÿc, (4.3)
L̇CoG,y = Ty −mzc ẍc + mxc(z̈c + g). (4.4)

The FoR can be set arbitrarily and is chosen to coincide with the force acting point which
results in rF1,CoG = rc = [xc, yc, zc]T. The assumption that leads to the LIPM (4.5) is to ne-
glect change of angular momentum (L̇CoG = 0). This correlates with omitting multibody
effects (cf. (4.2)). The work presented in Kuindersma et al. (2015) includes the described
multibody dynamics in their motion planning at the expense of having no real-time so-
lution for the resulting problem.

Furusho and Masubuchi (1987) analyze in their work a five link bipedal planar model
with point feet and one passive DoF. Assuming a stiff position control they show that
the two slowest eigenvalues of the closed loop system correspond to the eigenvalues of

4.2 Related Work 41

the center of mass dynamics. These eigenvalues correspond to the dynamics of the LIPM
which represents consequently the dominant subsystem of a (stiff position controlled)
bipedal robot. Those two eigenmodes are also described in the work of Takenaka et al.
(2009a) where the pendulum dynamics is split into a convergent and a divergent part (cf.
Subsection 2.3.1). In their work, Kajita et al. (1990) apply the pendulum model to produce
potential energy conserving orbits which are used as CoG trajectories for a bipedal robot.
Kajita et al. (2001) present a combination of the LIPM as minimal model of a biped with
the existing ZMP concept. They use the ZMP as input for the pendulum and add a
model predictive control to follow a predefined ZMP reference trajectory. This is used to
plan CoG trajectories over a certain time horizon (several steps of the robot). There are
numerous works that follow this idea and use the same linear model, e.g. Englsberger
et al. (2011), Löffler et al. (2002), Morisawa et al. (2007), Stephens and Atkeson (2010), and
Wieber (2006).

There exist several publications that extend the LIPM to increase the accuracy. Ka-
jita et al. (2010) present a first order delay approximation for the controlled ZMP. This
is used to design a state feedback control law for the humanoid HRP-4C. Pratt et al.
(2006) added a flywheel with an additional rotational DoF to the LIPM including also
constraints for the rotation. This idea is also used in Takenaka et al. (2009c) to build a
two-staged feedback control of the robot. An extension that aims to increase the accu-
racy of the LIPM especially for fast walking is to use additional point masses located at
the feet (Buschmann et al. 2007; Takenaka et al. 2009a). Buschmann et al. also removes
the fixed CoG height from the trajectory planning problem. Under the premise that the
foot and CoG height trajectories are known this results in a linear but time-varying dif-
ferential equation. There exist planning methods that use the pendulum model with a
varying CoG height in their planning problem (Tajima and Suga 2006). In Kajita et al.
(2014, pp.152-153) the authors add an unactuated rotation angle to the linear pendulum
model resulting in a nonlinear model. They use the obtained model to verify the ZMP
controller concept by showing that the rotation angle can be controlled via the ZMP. This
means for the real robot that an undesired inclination error which is modelled by the
unactuated rotation angle is controllable.

The authors of Westervelt et al. (2003) and Westervelt et al. (2007) introduce planar
two to five link models with rigid bodies. The contact between the robot and the ground
is modelled with a point contact and an unactuated DoF. Impacts are assumed to be
perfectly inelastic, which results in an instantaneous double support phase. Additionally
they neglect slippage and rebound on impact. These optimistic assumptions simplify a
stability analysis of control methods. They name the resulting model with impulse effects
Hybrid Zero Dynamics. Another model that is mainly used for running or hopping robots
is the Spring Loaded Inverted Pendulum Model (SLIPM). This model has two compliant
legs and the angle of the swing leg is considered as control input. Raibert (1986) used the
model to verify their effective control heuristics on several hopping robots.

Discussion of Model Accuracy

A conclusion that can be drawn is that for online motion planning of fully actuated
bipedal robots and long term stabilization mainly the LIPM is used. In some cases it
is used with extensions. In contrast to its popularity the prediction accuracy can be quite
poor as can be seen in Figure 4.3. At time t0 the current disturbed state of the robot is
used to perform a prediction of the full MBS and the LIPM for three different disturbance
cases (state disturbances result from external pushes with a peak force of 130-160 N). The
MBS is the full multibody model of the robot with unilateral contacts and the feedback
control described in Subsection 3.2.3. The LIPM (mass m, CoG position xc and height zc)

42 Models for Real-Time Control

0

0.2

0.4

t0 1.60.8 1 1.2 1.4

ϕ
x

[r
ad

]

t [s]

160N

135N

130N

MBS

LIPM

Figure 4.3: Upper body inclination in saggital plane for three di�erent disturbance cases. Com-

parison of the state evolution for the full MBS and the LIPM. At t = t0 the pendulum state is

initialized with the measurements of ϕx(t0), ϕ̇x(t0).

is of the form

ẍc =
g
zc

xc +
1

mzc
Tid. (4.5)

The ideal desired contact moment Tid is set by trajectory generation using e.g. the LIPM
or – on LOLA – a three-mass model. It can be seen that the pendulum has a completely
different state evolution compared to the full MBS of the robot. It predicts divergence
for cases where the robot remains stable and overestimates divergence when the robot
becomes unstable. Even an additional saturated PD-type feedback control (which is nor-
mally not included in the model) increases the prediction accuracy only lightly which
will be shown in the later part of this chapter. This is the main motivation for the new
prediction model presented in this work.

4.3 Proposed Model

4.3.1 Two Degrees of Freedom Prediction Model

In the following a description of the prediction model is given based on the work origi-
nally published in Wittmann et al. (2014). The main motivation for the proposed model
is based on the observation that the LIPM does not reliably predict the robot’s behav-
ior under large disturbances (also with model extensions like flywheel, torque controller,
etc.). It is observed that the model has to include the unactuated DoFs between robot and
ground and that the unilateral and compliant contacts need to be properly accounted for.
The planned CoG and foot trajectories are assumed to be perfectly tracked in the robot’s
planning FoR which rotates with the robot but does not translate in the horizontal plane
(refer to Subsection 3.2.4 for the definition of coordinate systems). This is motivated by
the fact that stiff position controlled bipedal robots are considered in this work. It is an
adaptation of the idea in Furusho and Masubuchi (1987) to include only the slowest un-
known parts of the MBS dynamics in the prediction. In this context unknown means that
the real behavior deviates from the ideal planned motion. A model with these properties
allows to predict the slow dynamics into the future, considering the ideal trajectories. In
other words one can evaluate the system’s behavior for the current sensed state and the
planned motion and whether the state will diverge or not. Unknown disturbances that

4.3 Proposed Model 43

g

rb

ϕx
z

m f

mb, Θyy

r f 2

I x

α1
r f 1

Tz

Iz

kc, dc α2

l

OI

planning FoR
"T-system"

Figure 4.4: Prediction model for the x-z plane.

cause an inclination error of the robot can be mapped to the model as initial values. Us-
ing a two DoF model instead of the full multibody model ensures that this can be done
in real-time for a sufficient long time horizon (approx. 1-2 s).

In the following the model description is related to the x-z plane shown in Figure 4.4
and can be formulated similarly for the y-z plane. The unactuated DoFs are the inclina-
tion ϕx about the y-axis and the vertical translation z. They describe the transformation
from an inertial (index I) to a FoR rotating with the robot (index T). The translation in x
direction is neglected to reduce computational time. A vector rP written in the T-system
coordinates can then be transformed into the I-system with

IrP =
[
0 0 z

]T
+ Ay(−ϕx) TrP . (4.6)

The matrix Ay(a) describes a rotation about the y-axis with the angle a. Furthermore,
the trajectories for the robot’s body mass rb

1 and the feet r f 1, r f 2 correspond to the ideal
planned trajectories from the walking pattern generation (Figure 3.4). Based on the idea
that all joints perfectly track the ideal motion, those time-dependent vectors are given
in the robot FoR (Trb (t), T r f 1(t), Tr f 2 (t)). The mass mb is extended by a constant mean
inertia of the multibody system Θyy. Each foot has a point mass m f at its center, the foot
length l and two point contacts located at the toe and the heel. The contacts are linear
spring/damper pairs with stiffness kc and damping dc with the values identified from the
real robot’s rubber sole. They act always only in Iz direction and have to be considered
unilateral due to the properties of walking robots. Additionally this enables the model to
predict a falling behavior. In order to take the effect of the hybrid position/force control
into account, two actuated DoFs α1, α2 are added. They describe a rotation of the feet wrt.
the T-system and serve as input set by a feedback control. Consequently the prediction
also includes the stabilizing effect and is supposed to be closer to the real behavior of the
robot.

The EoM for the above described system are derived using the Lagrange’s equation
of the second kind

[
d

dt

(
∂ Ekin

∂ q̇

)
− ∂ Ekin

∂ q
+

∂ Epot

∂ q

]T

= QNC (4.7)

1
The body mass position is calculated such that it is equal to the robot’s CoG position excluding the foot masses.

44 Models for Real-Time Control

introducing the generalized coordinates q = [z, ϕx]T, the system’s kinetic and potential
energies Ekin, Epot and the non-conservative forces denoted by QNC. The two angles α =
[α1, α2] are treated in the following as time-varying but known quantities. The control
law and its integration into the mechanical system are described in Subsection 4.3.2. The
kinetic energy is composed of the sum of the proportion of all point masses and of the
rotational inertia. Defining the set of all bodies NB = {b, f 1, f 2}, it yields

Ekin =
1
2

(
∑

j∈NB

mjṙ2
j + Θyy ϕ̇2

x

)
. (4.8)

The computation of the velocity for a point mass j in the planar case uses the given time
varying vector Tr j (t) = [xj(t), 0, zj(t)]T and the relationship (4.6) to calculate the abso-
lute position

Ir j (q, t) =

xj(t) cos ϕx + zj(t) sin ϕx
0

z− xj(t) sin ϕx + zj(t) cos ϕx

 , ∀j ∈ NB (4.9)

that can be derived wrt. time. The potential energy is composed of two parts one due
to gravity and another part due to contact deformation. Note that each contact state can
be active or inactive depending on the system’s state and the contact states change over
time. The vertical deformation and relative velocity for one contact i of foot k is denoted
by

4zi(q, t) =z− x f k(t) sin ϕx + z f k(t) cos ϕx + (-1)i l
2

sin(αk + ϕx)− z0, (4.10)

4żi(q, q̇, t) =ż− ẋ f k(t) sin ϕx − x f k(t)ϕ̇x cos ϕx + ż f k(t) cos ϕx

− z f k(t)ϕ̇x sin ϕx + (-1)i l
2
(α̇k + ϕ̇x) cos(αk + ϕx)

(4.11)

with the contacts assigned according to Table 4.1 and the unstressed spring length z0.

Table 4.1: Contact assignment.

i foot variables name
1/2 x f 1, α1 right toe/right heel
3/4 x f 2, α2 left toe/left heel

The time-dependent quantities x f 1/2, z f 1/2 are the planned foot trajectories evaluated at
a certain time t. This is important as this introduces an up and down movement of the
feet during walking. This enables the model to follow state transitions that are similar
to the ones of the real robot. Additionally this introduces the possibility to evaluate a
modification of the swing foot trajectories r f s in the presence of disturbances. Naming
the set of all active contacts NC, the total potential energy of the system can be written as

Epot =
1
2 ∑

i∈NC

kci(4zi)
2 + ∑

j∈NB

mj IrT
j g. (4.12)

The non-conservative forces for all contacts are

QNC = ∑
i∈NC

(
∂4zi

∂q

)T

(−dci4żi). (4.13)

4.3 Proposed Model 45

Finally (4.7) can be evaluated with (4.8) - (4.13). Simplifying and rearranging results in
the overall EoM of the prediction model

[
m −mxcϕ −mzsϕ

−mxcϕ −mzsϕ m(x2 + z2) + Θyy

] [
z̈

ϕ̈x

]
+

[
mg + mz̈cϕ −mẍsϕ −mzϕ̇2

xcϕ

mxz̈ + mzẍ + 2mxẋϕ̇x

+mxϕ̇2
xsϕ − 2mẋϕ̇xcϕ − 2mżϕ̇xsϕ

+2mzżϕ̇x −mxgcϕ −mzgsϕ

]
= ∑

i∈NC

(
∂4zi

∂q

)T

Fzi

(4.14)

with the abbreviations

ma = ∑
j∈NB

mjaj, Fzi = −dci4żi − kci4zi, sϕ = sin ϕx, cϕ = cos ϕx.

They are written in short form

M(q, t)q̈ + h(q, q̇, t) = λ(q, q̇, t) (4.15)

where α(t) is treated as time varying parameter. The state of each unilateral contact (open
or closed) has to be resolved continuously as it depends on the system state and the time-
dependent foot trajectories. A positive deformation (wrt. the unstressed spring length
z0) or negative force result in an open contact state and otherwise in a closed state. This
check has to be done in every timestep when the model is solved numerically. This and
the integration of a force control is part of the next sections.

4.3.2 Controlled Model

To increase the prediction accuracy, the effect of the inertial stabilization and force control
has to be included in the model in an appropriate way. With the additional foot angle α
it is possible to build a similar controller as the one used for the real robot. The control
input is the inclination error ∆ϕx = ϕx,d − ϕx (ϕx,d is the desired upper body inclination)
of the upper body which is strongly related to the inclination error of the overall robot
wrt. the world. The control output is a modification of the foot orientation relative to the
robot. The control law is divided into two parts to realize that. First a modification of the
ideal contact moment Tid is calculated using a PD-type control law

Td = Tid + Kp∆ϕx + Kd∆ϕ̇x. (4.16)

This contact moment is projected to a feasible region corresponding to the location and
length of the feet, that is Td ∈ [Tmin Tmax]. In a second step the force controller modifies
the foot angles in order to control the contact torque by using a model for the interaction
between foot and ground. According to the planned load factors ρ f 1 and ρ f 2 the desired
torque for each leg is calculated. With the control gain KF, the desired reaction torque
Td,i = ρ f iTd and the currently acting torque Ti(q, q̇) for foot i, linear dynamics for the
tracking error4Ti = Td,i − Ti is chosen

4Ṫi + KF4Ti = 0 (4.17)

that fades asymptotically to zero (for KF > 0). Inserting Ṫi =
∂Ti
∂αi

α̇i and assuming Ṫd,i = 0
yields the control law uc for the foot rotations

α̇ = αλ

(
∂ T
∂ α

)−1

Kλ

[
ρ f 1Td − T1
ρ f 2Td − T2

]
+ αxKx [αd − α] = uc. (4.18)

(4.18) is extended by a second part that presents an additional position control. This

46 Models for Real-Time Control

trajectory planning

walking stabilization

inverse kinematics

position controlled
robot

prediction model

wid

wmod

qd, q̇d

Figure 4.5: Walking control system and the corresponding part that is included in the prediction

model.

is necessary since the swing foot is not in contact with its environment and it has to be
ensured that the angle αi of the swing leg returns to its desired value. The factors αλ

and αx activate the force and position control for the stance and swing leg according to
their current state. This implementation is a simplified but similar implementation of
Buschmann et al. (2009). Therefore the control gains Kp, Kd, Kλ and Kx are equal to the
ones used for the real robot. Introducing the extended state vector z = [q, q̇, α]T the
equations (4.15), (4.18) can be written as a set of differential equations of order one

ż =

q̇
M−1 [λ− h]

uc

 := f f ull(z, t). (4.19)

This system approximates the overall controlled robot with its inertial stabilization, in-
verse kinematics and the joint control including also the interaction with the environment
(cf. Figure 4.5). Additionally it includes parts of the planned trajectories and enables to
evaluate the controlled robot’s behavior for a given initial state and desired trajectories
this way. Using finite sized feet in the model extends the possibilities to use it for sev-
eral applications as well as to include terrain information in the prediction. Especially
for long-term prediction a model simplification that reduces computational time by one
third is proposed in the next section.

4.3.3 Reduced Controlled Model

The model introduced in Subsection 4.3.1 is simplified in order to increase the computa-
tion speed which is especially for an real-time MPC application necessary. The feet with
two point contacts and foot length l are replaced by point feet (cf. Figure 4.6). This re-
duces the number of contacts to two and removes the additional variables α. The force
control (4.18) is removed and the desired stabilization torque of (4.16) is applied directly
in a saturated form to the robot

Tstab =

Tmin for Tstab < Tmin

Tid + Kp4ϕx + Kd4ϕ̇x for Tmin ≤ Tstab ≤ Tmax

Tmax for Tmax < Tstab

. (4.20)

This is equal to the assumption to perfectly track the desired torques. The torque limits
Tmin, Tmax result from the geometry and position of the feet. The damping and stiffness

4.3 Proposed Model 47

g

rb

ϕxz

m f

mb, Θyy

r f 2

I x

planning FoR
"T-system"

r f 1

Tz

Iz

krc, drc

Tstab

OI

Figure 4.6: Reduced prediction model for the x-z plane.

of the reduced model krc, drc are twice of the values used in the full model in order to
preserve the overall stiffness per leg. The vertical deformation for the remaining contacts
i ∈ {1, 2} is

4zr,i(q, t) =z− x f i(t) sin ϕx + z f i(t) cos ϕx − z0 (4.21)

4żr,i(q, q̇, t) =ż− ẋ f i(t) sin ϕx − x f i(t)ϕ̇x cos ϕx + ż f i(t) cos ϕx − z f i(t)ϕ̇x sin ϕx

(4.22)

and NC,r describes the set of active contacts of the reduced model. The overall EoMs for
the reduced model are denoted by

M(q, t)q̈ + h(q, q̇, t) = ∑
i∈NC,r

(
∂4zr,i

∂q

)T

Fzr,i + [0, Tstab]
T

= λr(q, q̇, t) + Ts.

(4.23)

The EoM (4.23) can be rewritten again as a set of differential equations of order one with
the state vector zr = [q, q̇]T

żr =

[
q̇

M−1[λr + Ts − h]

]
:= f r(zr, t). (4.24)

4.3.4 Model Verification by Model Order Reduction

The previous sections introduced the prediction model using basic knowledge of the sys-
tem and performing several assumptions. In the following a verification of those as-
sumptions is shown. The Singular Value Decomposition (SVD) is used to analyze the
main components of the motion perturbations computed on a full nonlinear model (An-
toulas 2009, pp. 277ff). It will be shown that the two highest singular values of the full
MBS during a disturbance in x direction are the absolute inclination and vertical trans-
lation between robot and ground. Those are the same as the chosen passive DoFs of the
presented prediction models. The results have been presented in Wittmann and Rixen
(2016).

48 Models for Real-Time Control

A MBS simulation with joint control and imperfect joint angle tracking (qJ,d 6= qJ)
is performed with the robot walking in place and receiving a disturbance force in x di-
rection. The resulting errors in the generalized coordinates ∆q ∈ Rnq are stored as time
series data. Those coordinates include the tracking error of each joint angle ∆qJ,i and the
error of the absolute pose of the robot wrt. the world. The translation and rotation error
(∆rw,s, ∆Aw,s) between the stance foot and the world is chosen. The IMU rotation an-
gles (ϕx, ϕy, ϕz) (cf. Subsection 3.2.4) are calculated from the rotation error that produces
finally a snapshot of the state error vector at time ti

∆q(ti) = [ϕx, ϕy, ϕz, ∆xw,s, ∆yw,s, ∆zw,s, ∆qJ,1, . . . , ∆qJ,24]
T(ti). (4.25)

The overall time series data is stored during numerical integration in a matrix Y with
a discretization of 1 ms which showed to be sufficiently accurate for this purpose. An
additional matrix Qnorm is used to convert the vector ∆q into a dimensionless quantity
∆q̄ = Qnorm∆q which is nessessary due to its different measurement units

Y = [∆q̄(t0), ∆q̄(t1), . . . , ∆q̄(tn)] ∈ Rnq×m. (4.26)

In a second step, the SVD2 is applied to the matrix Y

Y = UΣV T =
[
u1 . . . unq

]

σ1
. . . O

σnq

vT
1
...

vT
nq
...

(4.27)

where the singular values σi are sorted in descending order. The vectors ui describe the
mapping from σi to the physical DoFs of the robot and vT

i determine the distribution
over all time samples. The resulting singular values are depicted in Figure 4.7. It can be
seen that the first value is significantly higher than the remaining ones. Following the
idea of model order reduction one can say that high singular values describe the most
dominant part of the underlying dynamics. In order to connect the σi with the DoF of
the robot’s model the first and second vector u1, u2 are shown in Figure 4.8. The row
number is shown on the x axis and the ordinate represents the value of each row. It can
be seen that the first two singular values mainly belong to the absolute inclination error
ϕx and vertical translation of the robot for a disturbance in x direction. The time series
result ϕx for an approximation using only the first singular value u1σ1vT

1 is shown in
Figure 4.9. It can be seen that it produces an accurate estimate for the inclination angle.
The result underlines the assumptions made for the proposed prediction model in the
former section. A similar result can be obtained for ϕy during a disturbance in y direction.
Consequently, if the aim is to predict the dominant error evolution of the robot’s state q(t)
one should consider at least the error dynamics for ϕx, ϕy, ∆zw,s together with the ideal
planned motion. Using two planar prediction models of Subsection 4.3.1 for x and y
direction fulfills this requirement.

Relation to the Linear Inverted Pendulum Model

In addition to the above stated analysis using SVD, the prediction model (4.23) can be
further simplified to receive the commonly in literature used LIPM. This is an important
property of the model, because it shows that the prediction model (a) includes the dy-
namics of the pendulum model and (b) is a refinement thereof. The EoMs of (4.23) with

2
SVD is computed with Matlab.

4.3 Proposed Model 49

0

1

2

3

1 5 10 15 20 25 30

singular values

Figure 4.7: Singular values of the multibody time series data.

−1

−0.5

0

ϕz ϕy ϕx x y z qJ,1 − qJ,24

u1
u2
u3

Figure 4.8: First, second and third vectors ui for the applied SVD.

0

0.04

0.08

0.12

3 5 7 9

ϕ
x

[r
ad

]

t [s]

ref.
u1σ1v

T
1

Figure 4.9: Comparison of reference data (ref.) and approximation with first singular value

(u1σ1vT
1) for the inclination ϕx. Only the row of the matrix u1σ1vT

1 is shown that belongs to ϕx.

50 Models for Real-Time Control

massless legs are denoted by
[

m −mxccϕ −mzcsϕ

−mxccϕ −mzcsϕ mx2
c + mz2

c + Θyy

] [
z̈

ϕ̈x

]
+

m
[

g + z̈ccϕ − ẍcsϕ − zc ϕ̇2
xcϕ + xc ϕ̇2

xsϕ − 2ẋc ϕ̇xcϕ − 2żc ϕ̇xsϕ

xc z̈c + zc ẍc + 2xc ẋc ϕ̇x + 2zc żc ϕ̇x − xcgcϕ − zcgsϕ

]
=

[
Fz
Tϕ

] (4.28)

where Fz describes the overall acting vertical force and Tϕ the overall acting torque wrt.
the defined coordinate origin OI . Neglecting the rotational inertia Θyy and setting z =
ż = z̈ = 0 simplifies the second row of (4.28) to

(x2
c + z2

c)ϕ̈ + xc z̈c + zc ẍc + 2xc ẋc ϕ̇ + 2zc żc ϕ̇− xcgcϕ − zcgsϕ =
Tϕ

m
. (4.29)

The resulting EoM are the same as the ”cart-table model with free rotating joint” presented
in Kajita et al. (2014, p.152). If the CoG height is kept constant and the DoF ϕ is removed
(ϕ = ϕ̇ = ϕ̈ = 0) the well known EoM of the LIPM arise from (4.29)

zc

g
ẍc − xc =

Tϕ

mg
⇔ ẍc =

g
zc
(xc − xcop) (4.30)

with the CoP location in x direction

xcop = − Tϕ

mg
. (4.31)

Revisiting the performed simplifications one can say that the inverted pendulum model
is extended by two passive DoF and changed the CoG motion to be predetermined (so
far). Further, the assumptions like flat foot walking on a horizontal ground resulting from
the ZMP criteria (and also approximate solutions for inclined surfaces, see Sardain and
Bessonnet (2004) for a review) are no longer necessary as the contact of the feet is consid-
ered explicitly and resolves the resulting contact forces and their effect to the dynamics
of the CoG. This is an important property as it enables the model to be easily applied to
rough terrain situations or to multi-contact problems (e.g. support with arms on a wall)
by modifying the terrain information or adding additional contact points.

4.3.5 Numerical Solution

This section deals with the numerical solution of the above stated EoM of the model.
They are nonlinear, time-variant and including changing contact states. Consequently
the numerical solution method has to account for those properties and has to provide
a sufficiently accurate solution. Sufficient means to be able to predict the trend of the
robot’s state qualitatively. For this sake the EoM (4.19) and (4.24) are solved with differ-
ent integrator setups. An explicit Runge-Kutta solver with tight tolerances is used to pro-
duce a reference solution. It is compared to the same solver with coarse tolerances and a
forward Euler integration scheme with two different but fixed integrator time steps. The
detailed setup with the corresponding abbreviation is:

• Explicit Runge-Kutta (2,3) with variable time-step (Bogacki and Shampine 1989)
using an absolute tolerance of 10−7 and a relative tolerance of 10−3 (ode23-f)

• Explicit Runge-Kutta (2,3) with variable time-step using an absolute tolerance of
2 · 10−4 and a relative tolerance of 2 · 10−2 (ode23-c)

• Explicit Euler with fixed integrator step size4te = 10−3 s (euler-f)

4.3 Proposed Model 51

0.014

0.017

0.02

0.8 1.2 1.6

z
[m

]

0.09

0.11

0.13

0.8 1.2 1.6

ϕ
[r

ad
]

ode23-f

ode23-c

euler-c

−0.03

0

0.03

0.06

0.8 1.2 1.6

ż
[m

/s
]

−0.1

0

0.1

0.2

0.8 1.2 1.6

ϕ̇
[r

ad
/s

]

Figure 4.10: State evolution for di�erent integrator setups.

0

0.01

0.02

0.03

0.8 1 1.2 1.4 1.6

4
t

[s
]

t [s]

ode23-f

ode23-c

euler-f

euler-c

Figure 4.11: Comparison of intergrator time steps4t for fine and coarse explicit Runge-Ku�a

integrators. The explicit Euler integrator time steps are shown as well.

• Explicit Euler with fixed integrator step size4te = 3 · 10−3 s (euler-c).

These four integrators solve the full model (4.19) for a given disturbed initial state z(t0)
and the results are compared to each other. Ideal trajectories for the CoG and the feet
are the same for all integrations and the foot masses are set to zero. The state evolution
for the fine and coarse explicit Runge-Kutta and the coarse explicit Euler are depicted in
Figure 4.10. It can be seen that the resulting state trajectories are similar, especially for
the fine and coarse tolerance setup of the ode23. The coarse explicit Euler shows small
deviations primarily in the state z(t). Nevertheless all solvers produce qualitatively the
same result.
To have a better comparison between the different results the ode23-f -solution is taken as

52 Models for Real-Time Control

reference and used for the other solutions to compute the RMSE

ermse =

√√√√ 1
N

N

∑
i=1

(q(ti)− qre f (ti))2 + (q̇(ti)− q̇re f (ti))2. (4.32)

Therefore all solutions are interpolated to match the euler-c discretization. The results are
listed in Table 4.2. For both models the order from best to worst RMSE is: ode23-c > euler-f
> euler-c 3. Beside to this result we analyzed the integrator step sizes 4t for the ode23’s
which are shown in Figure 4.11. The step size of both Euler integrators are included as
well. Comparing them to the adaptive time steps one can see that the ode23-f uses only
at three time instants smaller time-steps than the euler-f. The euler-c achieves almost the
same tolerances as the ode23-c.

Table 4.2: Integration errors compared to ode23-f (RMSE).

model ode23-c euler-f euler-c

full 0.000707 0.000708 0.002171

simple 0.007508 0.006175 0.025704

To conclude this analysis it can be said that all four studied numerical integrators
produce a similar result especially for the inclination ϕ(t). This is underlined by a com-
parison of the adaptive and fixed step sizes where the adaptive ones are most of the
time higher than the fixed ones. The analysis gives a good indication how to choose a
fixed step size for a given tolerance. The result is used to apply the proposed model for
real-time model predictive control where computation time is crucial. An explicit Euler
integration scheme with a time step size of 4t = 1− 3 ms produces sufficient accurate
solutions for the model. The computation time for solving the reduced model with a time
horizon of 0.8 s is approx. 80 µs4.

4.3.6 Prediction Accuracy – Results

Predicting the state into the future with either the model (4.19) or (4.24) requires an initial
value z(t0) resp. zr(t0) that corresponds to the robot’s state. Its absolute inclination and
inclination rate are used for the initial values of ϕx(t0), ϕ̇x(t0). For the final implementa-
tion, a state estimator is used, which is described in Chapter 5 to improve the initial value
quality. The values for α(t0) and the CoG and feet positions are set to current desired val-
ues. The absolute vertical translation z(t0) and its derivative can not be measured at the
real system and therefore have to be calculated. The standard approach is to set them
in such a way, that the EoM are met. It has been shown that it is sufficient to ensure
a static equilibrium which corresponds to the assumption that the robot is in an almost
upright pose and the inclination rate produces a velocity that points approximately only
in x direction. Additionally changes in the active contact set NC resp. NC,r have to be
considered in the method of finding a z(t0) for the used full model

mg = ∑
i∈NC

Fzi(t0) = ∑
i∈NC

kci∆zi(q, t0) (4.33)

or for the reduced model

mg = ∑
i∈NC,r

krci∆zr,i(q, t0). (4.34)

3
„>“ means in this context „is be�er than“

4
Computations are done with an Intel i7-3770K @3.5 GHz and 8 Gb RAM.

4.3 Proposed Model 53

Algorithm 1 Model Initialization (Reduced Model)

1: Set ϕx(t0), ϕ̇x(t0)
2: Set r f i(t0), rb(t0)

3: z(0)← z0 − mg
2krc

4: nc ← −1
5: while nc 6= nc,last do
6: nc,last ← nc
7: nc ← # active contacts (∆zri < 0?)
8: z(0)← eq. (4.34)
9: end

After the calculation of z(t0) with either (4.33) or (4.34) the number of active contacts has
to be checked. If they have changed the initial translation in z direction has to be recal-
culated until the contact states remain the same. The procedure is summarized in Algo-
rithm 1. This simplification drastically decreases computation time which is mandatory
for an application in real-time systems as described later. For most cases the algorithm
converges after 2-3 iterations.

An analysis of the prediction result is performed with the simulation data already
shown in the introductory example of this chapter. The multibody simulation with tra-
jectory planning and stabilization is executed with three different maximum disturbance
forces. The current state of the robot at time t0 is used to initialize the full prediction
model with the above prescribed procedure. Then the euler-f integrator setup is used to
solve the EoM for the defined horizon. Figure 4.12 shows the prediction results for the
full prediction model compared to the MBS output and the LIPM output. It can be seen
that the prediction model performs better than the LIPM for all three cases and is able
to produce a qualitatively similar result as the MBS. The result of the pendulum can be
improved by adding a stabilization torque which is computed by a saturated PD-type
feedback control. This however turns the model into a nonlinear one and the solution is
not as straight forward as before. The EoM can be written as follows

ẍc =
g
zc

xc +
1

mzc
Tstab , Tstab = sat

[Tmin,Tmax]
(Tid + Kp(xc,id− xc) + Kd(ẋc,id− ẋc)) (4.35)

where sat(·) describes a saturation of the feedback control output according to the lim-

0

0.2

0.4

t0 1.60.8 1 1.2 1.4

ϕ
x

[r
ad

]

t [s]

160N

135N

130N

MBS

Pred.

LIPM

Figure 4.12: Comparison of the prediction result (Pred.) with MBS and LIPM output for three

di�erent disturbance cases.

54 Models for Real-Time Control

0.08

0.1

0.12

0.14

t0 1.60.8 1 1.2 1.4

ϕ
x

[r
ad

]

t [s]

MBS

Pred.

LIPM-PD

Figure 4.13: Comparison of prediction result with the PD-controlled LIPM.

0

0.1

0.2

5 6 7

ϕ
x

[r
ad

]

t [s]

Meas. 1

Pred. 1

Meas. 2

Pred. 2

Figure 4.14: Comparison of the prediction result with measurement data of the absolute incli-

nation ϕ for two di�erent disturbance cases.

its Tmin and Tmax. One might recognize that this is just a combination of the linearized
pendulum equation (4.5) with the feedback control of the simplified prediction model
(4.20). Accordingly the same control gains and saturation limits are used. In Figure 4.13
the result of the improved LIPM is shown and compared to the other models for a peak
disturbance force of 135 N. Comparing the result with the plain pendulum model in Fig-
ure 4.12 it can be seen that the prediction accuracy is significantly improved but still
worse than the proposed prediction model. It should be mentioned that the control gains
and saturation limits in (4.35) can be tuned in order to receive a perfect match for one
single disturbance case at the expense of worse results for other situations with different
disturbances.

A verification of the prediction model with measurements is shown in Figure 4.14.
Two experiments are performed where the robot is walking in place and receives a push
in x direction. The absolute inclination and the prediction result at a certain time instant
for both cases are shown. One can see that the model can also predict the behavior of the
real robot sufficiently accurate.

Comparing the results for the reduced and the full prediction model in Figure 4.15
with the simulation output of the robot one can see that the full model performs slightly
better than the reduced one. Nevertheless both predict the right trend of the state evolu-
tion for ϕx and ϕ̇x. In order to analyze the effect of the additional leg masses, a simulation

4.3 Proposed Model 55

0.1

0.12

0.14

0.8 1.2 1.6

ϕ
x

[r
ad

]

t [s]

−0.1

0

0.1

0.2

0.8 1.2 1.6

ϕ̇
x

[r
ad

/s
]

t [s]

MBS
full
red

Figure 4.15: Comparison of the prediction result for the full and reduced prediction model with

the MBS output.

−0.03

0

0.03

0.06

5 6 7 8

ϕ
x

[r
ad

]

t [s]

MBS

without

with

Figure 4.16: Influence of foot masses for the reduced model while the robot is walking forward

and receives a disturbance (m f = 0.05m). Black crosses mark the start time t0 of the prediction.

0.07

0.09

0.11

0.8 1.2 1.6

ϕ
x

[r
ad

]

t [s]

ref.
3kc

0.3kc

0

200

400

600

0.8 1.2 1.6

F
z

[N
]

t [s]

ref. (r)
ref. (l)

soft (r)
soft (l)

Figure 4.17: Influence of contact sti�ness modification to the prediction result for the inclina-

tion ϕ (le�) and contact forces Fz (right). The contact forces are shown for the reference (ref.)

and the case with 0.3kc (so�) for the right (r) and le� (l) leg.

56 Models for Real-Time Control

is performed where the robot is walking with 0.5 m/s in x direction and receives a dis-
turbance. Figure 4.16 shows the prediction result of the reduced model for two different
time instants (they are marked with black crosses) with and without leg masses. The rel-
ative leg mass is chosen to m f = 0.05m. It can be seen that the three-mass model shows
a better result for the prediction of ϕx in both cases whereas the difference between with
and without leg masses is larger when the state of the robot is disturbed.

Next the effect of a variation of the chosen contact stiffness is discussed. For a given
initial state z(t0) the full model is solved with three different stiffness parameters using
the euler-f integration setup. One with the reference value kc = 1.5 · 105 (ref.) one with
a reduced stiffness (0.3kc) and one with a higher stiffness (3kc). Figure 4.17 shows that a
reduced stiffness modifies the prediction result more than choosing a too high stiffness.
This can be explained with the contact forces shown on the right side of Figure 4.17. For
the soft contact the swing foot hits the ground earlier (Fz for the left leg rises earlier)
which has a large effect to the inclination ϕx(t). Due to the reduced contact stiffness their
deformations are higher and this causes an early contact of the swing leg. Extending the
model with a compensation of the deformation would decrease this effect.

Overall it can be seen that the model shows a good agreement compared to the multi-
body model of the robot and also for the real robot. The two chosen passive DoF describe
the most important state error, using the right stiffness values and adding foot masses in-
creases the prediction accuracy. It was also shown, that the proposed model outperforms
the LIPM and the PD-controlled LIPM. The next part deals with model extensions which
enable e.g. the application of this model for trajectory optimization methods.

4.4 Model Motion Adaptations

The following part introduces two extensions to adapt the prediction model’s motion,
namely a swing-foot modification and a modification of the CoG trajectory. Those can
be used as free inputs to adapt the robot’s motion according to sensor data. Necessary
gradient computations for the model’s application are provided as well.

4.4.1 Swing Foot Modification

The swing foot trajectory has two influences to the state evolution of the model. For a
positive inclination error ϕ and with a swing foot trajectory that ends at a height of zero
in Tz direction the corresponding contacts will switch to active before the foot reaches its
final position. Presented trajectory modifications in Subsection 6.4.3 consider and solve
this problem. Consequently a similar mechanism has to be included in the model. The
second influence concerns the final swing foot position in Tx resp. Ty direction. Those
quantities can modify the lever of the contacts in the contact forces λ of the EoM. The
overall swing foot trajectory is illustrated in Figure 4.18 and can be written to

Tr f i = Tr f i,id + ∆ Tr f i =

x f i,id
0

z f i,id

+

∆x f i
0

∆z f i

 (4.36)

with the ideal Tr f 1,id and the modification ∆ Tr f 1 trajectory. Note that all quantities are
written in the robot fixed planning system (T-System).

The ∆x f 1 trajectory is parametrized with quintic polynomials with set points at ∆Lxi
for the final position of the corresponding swing foot of step i. Figure 4.19 shows an
example for one step with the right leg as swing foot and a second step with the left leg
being swing foot. The trajectory for each leg consists of three polynomials in order to
satisfy the restriction that a leg can only move in SS phase and it is the current swing leg.

4.4 Model Motion Adaptations 57

4r f 1

r f 1 = r f 1,id +4r f 1

Figure 4.18: Prediction model with additional footstep modification of the swing leg.

0

4Lx

0 0.4 0.8 1.2 1.6

4
T
x
f

[m
]

t [s]

DS SS DS SS

right

left

Figure 4.19: Example foot modifications in x direction. DS and SS areas are marked gray and

white.

A more detailed description concerning the timing will be given in Chapter 6. To avoid
too early or late touchdown of the swing foot the ideal planned z height is modified.
The condition is used that the absolute contact distance has to be identical to the ideal
planned one during SS phase, i.e. ∆zi = z f i,id. This leads for the reduced model with
relation (4.21) to

∆z f i(q, t) =
1

cos ϕ

{
−z + x f i(t) sin ϕ + z f i,id(t)(1− cos ϕ) for t ∈ [tds, tc]

hold value otherwise
(4.37)

where the modification is calculated according to the state of the model during swing
phase (lift off at tds and touch down at tc) and holds its current value otherwise. It can be
considered as a feedback law which is added to the model in this way. In combination
with low-pass filtering the output of (4.37), this ensures that there are no jumps in the
swing foot height and each leg changes its desired height only during the corresponding
swing phase. For the full model the procedure is similar using the relation (4.10) and tak-
ing the value of the contact with the minimum distance of the swing foot. The described
swing foot modifications parametrized by final swing foot positions can be used to write
the EoM of the model with the additional dependency

ż = f (z, t, p), żr = f r(zr, t, p) (4.38)

of the free parameter vector p = [∆Lx1, ∆Lx2, . . .]. They can be chosen heuristically or by
a parameter optimization method.

58 Models for Real-Time Control

4.4.2 Center of Gravity Modification

Another quantity of the prediction model that can be modified is the body trajectory rb.
With the foot masses being 0− 5% of the overall mass m the body trajectory has the most
significant contribution to the CoG trajectory. This is the reason why this section is called
CoG modification even though a modified foot position also changes the CoG slightly. In
Chapter 2 it was shown that rc has to be designed in such a way that conditions resulting
from unilateral contacts have to be ensured, slippage has to be avoided and kinematic
limits of the robot have to be considered. In this work it is decided to modify only the x
trajectory and keep the ideal CoG height. That way the method to calculate the modifica-
tion only has to ensure that the CoG of the robot does not diverge from the location of the
feet in order to have a kinematic feasible solution. As shown in Figure 4.20 a modification
similar to (4.36) is added to the ideal trajectory

Trb = Trb,id + ∆ Trb =

xb,id
0

zb,id

+

∆xb
0
0

 . (4.39)

In contrast to the swing foot modification ∆ Txb (t) is a freely chosen trajectory that has
to ensure continuity conditions on velocity or acceleration level. One possibility is to
discretize the CoG trajectory and use piecewise constant jerks. Defining the input ux =
d
dt ∆ẍb the trajectory is calculated by integrating this input three times

d
dt

∆xb
∆ẋb
∆ẍb

 =

0 1 0
0 0 1
0 0 0

+

0
0
1

 ux. (4.40)

This results in the same formulation as used in Kajita et al. (2003) and Wieber (2006) but
with the difference that the CoG trajectory is coupled with the LIPM in the mentioned
works and with the nonlinear model in this work. The input model (4.40) can be com-
bined with the controlled EoM (4.24) by using an extended state vector

żr,ext =
d
dt

q
q̇

∆xb
∆ẋb
∆ẍb

=

q̇
M−1[λr + Ts − h]

∆ẋb
∆ẍb
ux

= f r,ext (zr,ext, t, p, ux) . (4.41)

The index T for the CoG modification terms are omitted. For the extended first order
model several notes and properties can be given

• the mass matrix M(xb) and vector h(xb, ẋb, ẍb) have an explicit dependency of the
CoG trajectory and therefore of its modification

• the free input ux(t) is a trajectory and is in this example piecewise constant

• the system is input affine for ux.

• the previously described footstep modifications (4.36) with the free parameters p
can be included in this formulation

• the modifications can be applied to both the full and the reduced model

In order to find an appropriate trajectory for ux optimal control techniques can be used.
In Chapter 6 an indirect approach is given, and it is shown how the problem can be
extended by free parameters.

4.4 Model Motion Adaptations 59

4r f 1

r f 1 = r f 1,id +4r f 1

rb,id

rb = rb,id +4rb

Figure 4.20: Prediction model with footstep modification of the swing leg and CoG trajectory

modification.

4.4.3 Gradient Computations

Using the prediction model in a state observer or in a trajectory optimization method
requires gradients of the differential equations wrt. the state and other free variables.
This section states the computation formula for all necessary gradients while details are
given in Appendix B. Necessary gradients are the derivatives of the full and reduced
nonlinear state space models wrt. the appropriate state, footstep modification and CoG
modification. According to the idea of automatic differentiation (Griewank 2000) the
gradient computations exploit the chain rule and are divided into derivatives of smaller
parts. This prevents from stating one big formula of the overall gradient which makes the
implementation less error-prone and reduces computation time. The following equations
consider the reduced prediction model but can be easily adapted for the full model.

State Gradient

The state gradient is the derivative of the model first order differential equation (4.24)
wrt. the state zr

∇zr f r =
∂ f r
∂zr

=
∂

∂zr

q̇
M−1[λr + Ts − h]︸ ︷︷ ︸

(∗)

 =

[
0 1

∂(∗)
∂q

∂(∗)
∂q̇

]
(4.42)

where the terms ∂(∗)
∂q and ∂(∗)

∂q̇ are computed as follows

∂(∗)
∂q

=
∂M−1

∂q
[λr + Ts − h] + M−1

[
∂λr

∂q
+

∂Ts

∂q
− ∂h

∂q

]
, (4.43)

∂(∗)
∂q̇

=
∂M−1

∂q̇︸ ︷︷ ︸
=0

[λr + Ts − h] + M−1
[

∂λr

∂q̇
+

∂Ts

∂q̇
− ∂h

∂q̇

]
. (4.44)

Note that this requires the gradient of the stabilization torque Ts with the non-smooth
saturation function. Therefore it is approximated by the inverse tangent function

sat
[Tmin,Tmax]

(◦) ≈ 1
2
(Tmin + Tmax) +

1
π
(Tmax − Tmin) tan−1(κ◦) (4.45)

with the variable κ describing the slope at tan−1(0). The generalized contact force gradi-
ents are summed up over the set of all active contacts Ncr of the reduced model and are

60 Models for Real-Time Control

computed with

∂λr

∂q
=

∂

∂q ∑
i∈Ncr

(
∂∆zr,i

∂q

)T

(−krci∆zr,i − drci∆żr,i)︸ ︷︷ ︸
Fzr,i

(4.46)

= ∑
i∈Ncr

(
∂2∆zr,i

∂q2

)T

Fzr,i +

(
∂∆zr,i

∂q

)T (
−krci

∂∆zr,i

∂q
− drci

∂∆żr,i

∂q

)
(4.47)

and

∂λr

∂q̇
=

∂

∂q̇ ∑
i∈Ncr

(
∂∆zr,i

∂q

)T

(−krci∆zr,i − drci∆żr,i)︸ ︷︷ ︸
Fzr,i

= ∑
i∈Ncr

(
∂2∆zr,i

∂q∂q̇

)T

Fzr,i +

(
∂∆zr,i

∂q

)T (
−krci

∂∆zr,i

∂q̇
− drci

∂∆żr,i

∂q̇

)
.

(4.48)

Exploiting the properties that the quantities M, h, Ts do not depend on the state z and its
derivatives and the contact deformation depends only on the generalized coordinates q
saves computation time for the gradient computation.

Center of Gravity Gradient

The derivative of the system model wrt. the CoG trajectory in x direction xb(t) is for the
position, velocity and acceleration level

∇xb f r =
∂ f r
∂xb

=
∂M−1

∂xb
[λr + Ts − h]−M−1 ∂h

∂xb
, (4.49)

∇ẋb f r =
∂ f r
∂ẋb

= −M−1 ∂h
∂ẋb

, (4.50)

∇ẍb f r =
∂ f r
∂ẍb

= −M−1 ∂h
∂ẍb

. (4.51)

Gradient terms that are zero are omitted in the above stated equations.

Footstep Gradient

The last gradient shown here is the foot position gradient of the system model. Assume
that foot 1 is the current swing foot and its final position is modified with p = ∆Lx.
Utilizing that only the contact forces λr depend on the foot position the gradient is then
computed as follows

∇p f r =
∂ f r
∂p

= M−1 ∂λr

∂p

=M−1
(

∂2∆zr,1

∂q∂p

)T

Fzr,1 +

(
∂∆zr,1

∂q

)T (
−krc1

∂∆zr,1

∂p
− drc1

∂∆żr,1

∂p

)
.

(4.52)

Note that the overall gradient (4.52) remains zero until the swing foot hits the ground.
For long time horizons of multiple steps it has to be considered that at the next lift off the
gradient will become zero again.
There is the possibility to improve the gradient information by including that the state
zr of the model is influenced by the parameter p. This can be done by computing the
absolute derivative of the state space model

d f r
dp

=
∂ f r
∂p

+
∂ f r
∂zr

∂zr

∂p
. (4.53)

4.5 Three-Dimensional Model 61

The term ∂zr
∂p can be computed in a recursive way by applying a numerical integration

scheme. Suppose that an explicit Euler integrator with time step ∆t is used, the state
(and its partial derivative) propagates from time step k to k + 1 with

zr,k+1 = zr,k + ∆tżr,k | ∂()

∂p
, (4.54)

⇒∂zr,k+1

∂p
=

∂zr,k

∂p
+ ∆t

∂ f r,k

∂p
. (4.55)

The relation (4.55) is then used to compute among the state its parameter gradient during
numerical integration. The same procedure can be applied for the CoG gradients.

4.4.4 Additional Contact Points - Including Arms

Conceptually, the model can be easily extended to include additional contact points e.g.
for arms leaning against a wall. This enables to use it for solving multi-contact problems
like the one mentioned here. The following part describes the idea how to extend the
model by one arm that can interact with a detected wall (cf. Figure 4.21). The wall is
described as surface with an origin, boundary points and a normal vector ns. The position
of the arm is described by ra while the contact between hand and wall is as for the feet
an unilateral spring-damper pair (ka, da). If the contact is closed its force is assumed to
point always in direction of ns. The force resulting from the new contact yields

Fa =
ns

|ns|2
nT

s (ka(Ira − Ira,0) + daṙa) (4.56)

with Ira,0 being the neutral spring length which can be any point parallel to the surface
with a distance of the spring length in ns direction. The existing models are extended by
the new contact point with a projection of (4.56) into the direction of q

λa =
∂ Ira

∂q
Fa. (4.57)

This can be added to the EoM, e.g. for the reduced controlled model (4.23) resulting in

M(q, t)q̈ + h(q, q̇, t) = λr(q, q̇, t) + λa(q, q̇, t) + Ts (4.58)

In future work, this model could be used to plan and adapt an arm motion which is the
solution of a multi-contact problem. This might be a way to plan a walking motion with
additional arm contacts in real-time. The presented idea exploits that the model does
not use a ZMP trajectory to solve the planning problem. Nevertheless this requires a
detected surface and a walking pattern planner to determine an ideal position ra which
can be modified and/or optimized with this model. During writing this thesis both are
not finally integrated into the control-system of the robot. Another problem that has to
be solved is how to determine the contact parameter ka, da.

4.5 Three-Dimensional Model

This sections introduces a three-dimensional model which is based on the planar reduced
model (4.24) and which is extended by an additional DoF. The model in x direction is
used and extended by the inclination ϕy in y direction. The motivation for this model is
to compute the coupled prediction of the biped. This allows to use it for optimizing e.g.
step-length modifications in both directions at once. The model properties are equal to
the properties presented in Subsection 4.3.3 with the mentioned additional inclination in

62 Models for Real-Time Control

g

rb

ϕz

r f 2
r f 1

krc, drc

ra

ka, da

detected wall
(= surface)

ns

Figure 4.21: Prediction model extended by additional arms and contacts to a detected surface.

y direction. The translation in x and y direction are again neglected. Therefore the vector
of generalized coordinates is

qs = [ϕx, ϕy, z]T. (4.59)

All quantities related to the spatial model (cf. Figure 4.22) are indicated by the index s.
The two inclinations are independent variables and describe the angle between the z axis
of the T-system and the gravity vector. According to Buschmann (2010) the transforma-
tion matrix AIT = [IexT , IeyT , IezT] from the robot system (T) to the world system (I) can
be stated with the three axis of the T-system described in the I-system

IexT =

cos ϕx
0

− sin ϕx

 , IeyT =

0
cos ϕy
sin ϕy

 , IezT = IexT × IeyT . (4.60)

where ϕx is positive about the y axis and ϕy a positive rotation about x axis. The overall
matrix yields

AIT =

cos ϕx 0 sin ϕx cos ϕy
0 cos ϕy − cos ϕx sin ϕy

− sin ϕx sin ϕy cos ϕx cos ϕy

 . (4.61)

With the given foot and body trajectories Tr f 1 (t), Tr f 2 (t), Trb (t) the absolute position
for the point masses can be computed with the rotation matrix AIT(ϕx, ϕy) and the trans-
lation z. The transformation is

Ir j (qs, t) =

0
0
z

+ AIT(ϕx, ϕy) Tr j (t), ∀j ∈ NB (4.62)

and in contrast to (4.9) the vector Tr j = [xj(t), yj(t), zj(t)]T has three entries that are non-
zero. The absolute position of the three masses and the inertia about x and y axis Θxx, Θyy

4.5 Three-Dimensional Model 63

g

rb

ϕx
z

m f

mb, Θxx, Θyy

r f 2

"T-system"

r f 1

Tz

Iz

krc, drcOI

I x

Iy

Ty

ϕy

Tx

Figure 4.22: Three dimensional prediction model with three unactuated DoF.

can be then used to compute the overall kinetic energy of the system

Ekin = ∑
j∈NB

mj I ṙ2
j + TωT

TΘ Tω . (4.63)

For the rotational part the angular velocity and inertia of the robot described in the T-
system are used

Tω = AT
IT

ϕ̇x
ϕ̇y
0

T

, TΘ =

Θxx 0 0
0 Θyy 0
0 0 0

 . (4.64)

The rotational intertia is assumed to be constant and diagonal for the two inclination
directions and zero for a rotation about the z axis. The potential energy consists of two
parts from the springs (of active contacts) and gravity. Both are determined in the same
way shown in (4.12) but using the contact distances of the three DoF model

∆zi(qs, t) = eT
z Ir f i − z0 = z− x f i sin ϕx + y f i sin ϕy + z f i cos ϕx cos ϕy − z0 (4.65)

with Ir f i computed from (4.62). The vector of non-conservative forces Qs,NC of the three
DoF model is obtained by inserting (4.65) in (4.13). Evaluation of the Lagrange II formal-
ism (4.7) yields finally the EoMs for the spatial model

Ms(qs, t)q̈s + hs(qs, q̇s, t) = λs(qs, q̇s, t) + Ts. (4.66)

A stabilization torque Ts = [0, Tstab,x, Tstab,y]
T as shown in (4.20) is added for both in-

clinations. The contact force λs is computed by summing the contribution of all active
contacts. In order to set a contact active its deformation ∆zj has to be negative. The
model (4.66) can be transformed to a first order differential equation

żs =
d
dt

[
qs
q̇s

]
=

[
q̇s

M−1
s (λs + Ts − hs)

]
= f s(zs, t) (4.67)

and solved with a fixed step forward Euler integration scheme as described for the pla-
nar model. With a time discretization of ∆t = 3 ms the computational time for a 0.8 s

64 Models for Real-Time Control

0

0.04

0.08

0.12

4 5 6 7

ϕ
x

[r
ad

]

t [s]

MBS

2D Pred.

3D Pred.

Figure 4.23: Comparison of the prediction result for the two and the three dimensional model

with the full simulation model (MBS).

prediction takes approx. 150 µs. This is double the time for solving the planar model
for the same time horizon. Nevertheless the planar model has to be solved for both di-
rections and the spatial model only once, i.e. the overall computation time is almost the
same. Figure 4.23 shows prediction results of both models for the x direction at several
simulation time instants and compares the result with the full simulation model of the
robot. Contact parameter, masses and control parameter are the same for the models. It
can be seen that both model types (2D and 3D) generate similar predictions whereas the
spatial prediction model performs better in this example.

The three DoF model has the advantage that it includes the planned motion in x and
y direction. This can be exploited to find an optimal footstep location in one coupled
problem. The solution includes the interaction between a modification in sagittal and
lateral direction which has been neglected in the planar model. Another advantage of
this model is that geometric constraints are easily included. Those constraints result from
kinematic restrictions of the robot, e.g. the reachable region (maximum and minimum
step lengths) or self collision avoidance. Additionally, it will be shown that the region of
feasible modifications is modified according to detected obstacles (Section 6.6).

4.6 Chapter Summary

In this chapter dynamic models of bipedal robots are presented which consider explicitly
the underactuation and the resulting stability issues as well as the effect of the robot’s
local stabilization. It was shown, that the models produce accurate predictions of the state
evolution and are applicable in real-time. Desired leg and CoG trajectories are included
in the prediction model. In order to use it for trajectory optimization, swing foot and
CoG modifications are introduced and their integration into the model are shown. The
two applications are:

• State estimation: in the following chapter a state estimator using the prediction
model is developed. It is used to fuse IMU measurements, contact force measure-
ments and the robot’s walking control output. This is enabled because the model
explicitly considers the foot with its unilateral compliant contacts and passive DoF.

• Trajectory adaptation: it will be shown that it is possible to implement powerful
trajectory optimization methods with the help of the prediction model. Thanks to
its natural inclusion of ideal trajectories, there are different possibilities to apply
methods for trajectory adaption in a model predictive way.

Chapter 5

State Estimation

5.1 Introduction

The knowledge of the robot’s current state is a necessary requirement to evaluate and, if
necessary, adapt its planned motion. This chapter presents state estimators that produce
required quantities for the initial state of the models of Chapter 4. As described in Chap-
ter 3 the robot is equipped with an IMU which is located at the upper body incremental
encoder at each joint and an FTS at each foot. The mechanical state of the robot consists of
its joint angles, the absolute position and orientation of the robot wrt. the world and the
according velocities. The joint states can be captured accurately even when the elasticity
of the joints is considered by the joint sensors. The necessary quantities of the unactuated
DoFs are partly captured by the IMU. This sensor generates measurements of the abso-
lute upper body inclination and inclination rate as well as its acceleration in all directions.
A possible solution is, to use the inclination state (ϕm,x and ϕ̇m,x) directly for the initial
state of the prediction model. However the sensor signals for the state include high fre-
quent oscillations, e.g. from excitation of the robot’s mechanical structure. An example
measurement during an external disturbance is shown in Figure 5.2. Especially the in-
clination rate includes mentioned disturbances. The aim of the estimators is therefore to
extract the information that is related to the robot’s rigid body motion (and is included in
the prediction model) from the IMU data. Note that the presented methods are not used
for robot navigation. Consequently the absolute position is not required. The presented
estimators are based on a previously published method (Wittmann et al. 2015a) and are
extended by a nonlinear model. The classification into the model predictive trajectory
adaptation is shown in Figure 5.1. The following part gives an overview of related work.

ideal motion and forces

trajectory adaptation state estimator sensor data

prediction model

adapted motion and forces

Figure 5.1: Chapter classification into the model predictive trajectory adaptation.

65

66 State Estimation

0

0.05

0.1

204 205 206 207 208

ϕ
m

,x
[r

ad
]

−0.6
−0.3

0

0.3

0.6

204 205 206 207 208

ϕ̇
m

,x
[r

ad
/s

]

t [s]

Figure 5.2: Example IMU measurements for inclination and inclination rate in x direction during

an external disturbance.

Many methods in literature do not require the overall state of the robot but the state
of the CoG for their stabilization algorithms. There are basically two approaches to esti-
mate the CoG state of a walking robot using an IMU. The first one computes the state by
evaluating the kinematic chain of the robot including the rotation of the reference frame
e. g. Englsberger et al. (2011) and Nishiwaki et al. (2012). Measuring all joint angles en-
ables to compute the transformation from stance leg to the CoG which is then rotated
according to IMU measurements around a certain pivot point. Nishiwaki et al. (2012) use
the current measured CoP position as pivot. In the second approach, dynamic models
are used to fuse the data from different sensors and control inputs. The authors of Kwon
(2007) propose a LIPM based Kalman filter for the CoG state. They use the measured
CoP position as model input and the CoG state as model output. In Stephens (2011) a
similar method is presented which assumes point feet and computes the CoP position
only from vertical force measurements. The filter is extended by an un-modeled CoG
offset and an external force. They are included as additional state variables. Masuya and
Sugihara (2013) propose a dual stage complementary filter using the IMU accelerations
in a double integrator. In their method they estimate the point which is used as pivot for
the IMU inclination to estimate the trunk position from the robot’s kinematics. A similar
approach is proposed in Bloesch et al. (2012). In Xinjilefu et al. (2014) and Xinjilefu and
Atkeson (2012) the authors propose higher DoF models for their state estimators. This
enables the filter to estimate the overall state of the robot using the multibody dynamics.
Among others they obtain an estimate of the joint velocities.

In addition to the mentioned approaches that use data from different sensors to im-
prove the robot’s estimated state, there are many works that fuse the IMU measurement
data (acceleration and inclination rate) e.g. Nishiwaki and Kagami (2007b) and Pongsak
et al. (2002). In Subsection 3.2.2 it was stated that there are sophisticated IMU fusion al-
gorithms already available on LOLA. In the following a new method to fuse data from
sensors with a dynamic model and a Kalman filter is proposed.

5.2 Extended Kalman Filter based State Estimator 67

5.2 Extended Kalman Filter based State Estimator

The following parts present the state estimator for the model predictive trajectory adap-
tation. The extended Kalman filter is introduced briefly. Furthermore details of the plant
and the measurement model are provided.

5.2.1 Estimator Overview

State estimators are used to observe states that can not be measured directly or that in-
clude measurement errors like noise. For the later case the estimator acts like a filter
that extracts relevant data from measurements. This is the case for the presented one.
The robot is modeled with the prediction model introduced in Chapter 4. An extended
Kalman filter framework (Adamy 2009) is applied since the model is nonlinear. It fol-
lows the idea of the Kalman filter (Kalman 1960) and uses a linearization of the nonlinear
model at each time instant. As a consequence, the filter gain depends on the state and is
time varying. The computation of its filter matrix has to be done online. A brief descrip-
tion of relevant quantities and the filter update is given in the following. The process to
be observed is described by the discrete-time nonlinear prediction model

xk+1 = f (xk, uk, wk) (5.1)

with the state xk = x(tk), the control uk = u(tk) and the random variable wk = w(tk) at
time instant k. The measurement output is generated with the model

yk = h(xk, vk) (5.2)

where vk is another random variable that represents the measurement noise. The wk are
often called model noise. Both random variables vk and wk are assumed to be indepen-
dent Gaussian white noise with a normal probability distribution

p(w) ∼ N (0, Q f), p(v) ∼ N (0, R f), (5.3)

with mean zero and the covariance matrices Q f , R f . Those matrices include the variance
for every entry of wk in the diagonal and the covariance for the side entries. The lin-
ear Kalman filter computes an optimal estimate1 x̂k+1 for a linear model. The extended
Kalman filter uses the same algorithm with linearized models evaluated at the current
state and control input (xk, uk). The linearization of (5.1) is

xk+1 =
∂ f (xk, uk, 0)

∂x
xk +

∂ f (xk, uk, 0)
∂u

uk +
∂ f (xk, uk, 0)

∂w
wk

= Akxk + Bkuk + W kwk

(5.4)

and of (5.2)

yk =
∂h(xk, 0)

∂x
xk +

∂h(xk, 0)
∂v

vk = Ykxk + V kvk (5.5)

with the Jacobian abbreviations Ak, Bk, W k, Yk and V k. The filter’s optimality measure is
defined as the vector 2-norm of the squared estimation error (Isermann 2011, pp.540)

Vk = E
(
||x̂k − xk||22

)
= tr(Pk) (5.6)

at time tk. The matrix Pk describes the covariance of the estimation error. A filter that
satisfies

min
x̂k

Vk(x̂k) (5.7)

1
An estimated variable a is indicated in the following by â.

68 State Estimation

stabilization unit

position controlled robot

state estimator

ẑ

wmod IMU data

estimated state

Figure 5.3: Overview of the presented state estimator: control input, model and measurement.

produces an optimal estimate for the input uk and measurements yk+1. The algorithm
for the filter can be stated as a recursive predictor/corrector setting. With the nonlinear
model the state x̂k,pred is predicted for the next time step tk and will be corrected according
to the measurements yk. The recursive algorithm for the extended Kalman filter yields:

Prediction step:
x̂k,pred = f (x̂k−1, uk−1, 0), (5.8)

Pk,pred = AkPk AT
k + W kQ f W k, (5.9)

Correction step:

Kk = Pk,predYT
k
(
YkPk,pred + V kR f V k

)−1 , (5.10)

x̂k = x̂k,pred + Kk
(
yk − h(x̂k,pred, 0)

)
, (5.11)

Pk = (E− KkYk)Pk,pred. (5.12)

The filter matrix Kk is used to compute the final state estimate for the current time instant
tk. The algorithm differs from the linear Kalman filter by the time varying Jacobians of the
linearization and the nonlinear prediction step. Consequently the filter does not produce
an optimal estimate for the nonlinear system. For ill posed linearization points the filter
can even diverge. For a successful application the optimality criterion (5.7) should be
checked whether it diverges or not.

The estimator used in this thesis includes the dynamic prediction model (4.19) but
without its feedback control. The output of the real robot’s stabilization unit wmod is
used instead. Since the model is nonlinear an extended Kalman filter is used to fuse
measurement data with this model. The measurements are obtained from the IMU data.
Details will be given in the following sections. An overview of the estimator is shown in
Figure 5.3.

5.2.2 Prediction and Measurement Model

The prediction step of the estimator requires a model in form of (5.1). The dynamic pre-
diction model introduced in Chapter 4 will be used and extended in the following. Since
the model is planar the estimation process is performed decoupled in x and y direc-
tion. The following description refers to the x direction and can be applied the same way
for the other direction. The taskspace trajectory which is modified by the hybrid posi-

5.2 Extended Kalman Filter based State Estimator 69

tion/force control wmod(tk), ẇmod(tk), ẅmod(tk) at current time instant tk is used to calcu-
late the vectors for the feet and the upper body r f i(tk), rb(tk) and their derivatives. Note
that the taskspace also includes the foot orientation relative to the upper body which is
used to determine α(tk) and α̇(tk). Including the stabilization output of the real robot in
the prediction model is an indirect way to include the FTS data (which is the input for
the stabilization). Since disturbances have an effect to the measured forces and torques
they are indirectly included in the prediction process. With the state from previous time
step (qk, q̇k) the EoM

M(qk, tk)q̈k + h(qk, q̇k, tk) = λ(qk, q̇k, αk, α̇k, tk) +

(
∂ I ṙb (qk, q̇k, tk)

∂q̇

)T

f ext (5.13)

can be used to calculate the accelerations q̈k. The model is extended by an unknown
external force f ext acting on the upper body. The force is assumed to act only in xI-
direction, i.e. f ext = [fext,x, 0, 0]T. The Jacobian Jb = ∂ I ṙb

∂q̇ projects it to the directions of
the model’s generalized coordinates. With this additional state variable it is possible to
include unknown disturbances into the prediction process. As a consequence this state
enables the estimator to compensate for model and measurement errors, and additionally
to estimate imposed external forces. During the prediction process the force is treated as
state variable with

ḟext,x = 0. (5.14)

Defining the state of the Kalman filter x f = [q, q̇, fext,x]T and using an explicit Euler in-
tegration scheme (time step ∆t), the first order discrete prediction model of the filter is
finally

x f ,k+1 = x f ,k + ∆t

q̇
M−1 (λ + JT

b f ext − h
)

0

k

+ wk = f f (x f ,k, uk, wk). (5.15)

For the prediction step with (5.15) the model noise wk is set to zero. Some further notes
to the model are given in the following:

• The contact forces λ are due to the unilateral spring only C0-continuous. Therefore
a regularization term has to be used to ensure a continuous gradient Ak.

• The model noise is assumed to act on the state with the matrix W = E.

• The taskspace trajectories are treated as input vector uk = wmod(tk).

The output model is set to full state measurement

y f ,k = x f ,k + vk (5.16)

and direct measurement noise for y (V = E). The converted IMU orientation is used
as measurement for ϕx,m and ϕ̇x,m. For the state zm and żm the provided absolute ac-
celeration z̈m has to be numerically integrated twice. The noise included in z̈m and the
error of the numerical integration will cause a drift of the estimated vertical translation
and velocity which has to be considered in the filter. The numerical drift can be reduced
by using an explicit trapezoidal integration rule using the quantities of the filter output
(ẑk, ˙̂zk)

żm,k+1 = ˙̂zk +
∆t
2
(z̈m,k + z̈m,k−1), (5.17)

70 State Estimation

f f (x̂ f ,k, uk, 0) h(x̂ f ,pred,k, 0) Kk

∫ ∫

IMU

uk

x̂ f ,k−1 x̂ f ,pred,k ŷ f ,pred,k x̂ f ,k

z̈m,k żm,k zm,k

ϕm,k, ϕ̇m,k

y f ,m,k

Figure 5.4: Overview of the estimation process for one time step k.

zm,k+1 = ẑk +
∆t
2
(żm,k+1 + ˙̂zk). (5.18)

Note that this corresponds to an indirect filter approach which is often used in inertial
navigation systems (Maybeck 1979, p.294). The overall estimation process for one time
step k is shown in Figure 5.4. The update of the filter gain Kk is not depicted in the
scheme. It is computed with the covariance matrices that have in the final implementa-
tion only non-zero values for the variances

Q f = diag(10−3, 10−4, 2 · 10−2, 5 · 10−4, 10),

R f = diag(1 · 10−2, 5 · 10−4, 5 · 10−2, 0.25),
(5.19)

in the x and y direction. Setting all covariance entries to zero means that a state does not
influence other states. The assumption is not exact for the problem but reduces variables
that have to be determined.

5.2.3 Observability of the Nonlinear System

The local observability of general nonlinear systems can be verified with a rank condition
similar to the one for linear systems (Hermann and Krener 1977). The criterion uses the
n− 1 derivatives of the output y = h(x) where n is the dimension of the state x. For the
continuous-time system ẋ = f c(x, u) these derivatives are

ẏ =
∂h
∂x

f c = h1(x, u) (5.20)

ÿ =
∂h1

∂x
f c +

∂h1

∂u
u̇ = h2(x, u, u̇) (5.21)

...y =
∂h2

∂x
f c +

∂h2

∂u
u̇ +

∂h2

∂u̇
ü = h3(x, u, u̇, ü) (5.22)

...

The local observability condition in the region of a set point (xa, ua, u̇a, . . .) is then verified
with the rank of the matrix

rank

∂h
∂x
∂h1
∂x
...

∂hn−1
∂x

x=xa,u=ua,...

= n. (5.23)

5.3 Model Error Compensation 71

For the state q = q̇ = 0 and a static taskspace wmod for standing with both feet on the
ground, (5.23) is fulfilled. Other definitions of the output (e.g. y f = [ϕ, ϕ̇, z̈]T) would
violate the criterion and cause the filter to diverge.

5.3 Model Error Compensation

This section adopts the idea to calculate a measure of the modeling error that occurs in the
CoG planning due to the use of simplified models. It was initially proposed for motion
planning by Kajita et al. (2003) and Takenaka et al. (2009b). It was shown in Chapter 2 that
popular planning methods use the ZMP trajectory as input to determine a CoG trajectory
with the LIPM. However this produces a different ZMP trajectory when replaying the
resulting CoG motion with the full multibody model of the robot. The difference between
planned and resulting ZMP can then be used to calculate a force driving the CoG in the
right direction and reduce the discrepancy between CoG and ZMP for the full model. In
the following this idea is transferred to the state estimation problem. For a given robot
configuration q and its derivatives q̇, q̈, one can compute the inverse dynamics of the full
robot model which results in the total external forces/moments Λ and joint torques τ
acting on the robot. The resulting Λ can then be used to compute the overall force vector
Ftotal and the moment Ttotal = [Tx, Ty, Tz]T acting on the robot’s current stance foot. Note
that this computation is done for the planned motion of the robot which includes also the
planned force distribution of the legs. A comparison of the horizontal contact moments
Tx and Ty with the ideal ones (Tx,ideal , Ty,ideal) from the CoG planning produces a good
measure of the dynamics error

∆Tx = Tx,ideal − Tx, (5.24)
∆Ty = Ty,ideal − Ty. (5.25)

Figure 5.5 shows resulting dynamics error trajectories. This error can be calculated in
every time step for the desired trajectories and contact moments and fed in the state
estimator as additional input ∆Ty to the model

Mq̈ + h = λ + JT
b f ext +

[
0
1

]
∆Ty. (5.26)

In order to save computational time, the output of the inverse kinematics of the local
control is used and the accelerations q̈ are generated with a low-pass filtered derivative
(DT1-filter) of the form

GDT1(s) =
s

Ts + 1
. (5.27)

They are finally used to compute the inverse dynamics. In the next control cycle it can
be used for the estimator. However, this introduces a time delay of one control cycle in
∆Tx(t) and ∆Ty(t). It is possible to include additional information of the multibody dy-
namics that acts on acceleration level with this extended input vector. One of the main
advantages of including them in this way is that the filter’s state and EoM dimensions re-
main small. A higher number of states increases the complexity of the filter and increases
the difficulty to set appropriate entries in the covariance matrices Q f and R f .

5.4 LIPM Based State Estimator

In Chapter 2 it was shown that considering the biped’s multibody dynamics in lateral
and sagittal direction as decoupled, keeping the CoG height at a constant value and lin-
earizing, results in the well-known LIPM as an approximate model for the humanoid’s

72 State Estimation

−40

−20

0

20

40

2 4 6 8 10

T
[N

m
]

t [s]

∆Tx

∆Ty

Figure 5.5: Resulting dynamics errors in both directions while the robot accelerates from stand-

ing to walking with 0.5 m/s.

dynamics. Restating the EoM in sagittal direction yields

ẍc = ω2 (xc − xzmp
)
+

1
m

fx +
1

mh
∆Ty. (5.28)

Similar to the extended Kalman filter, the model (5.28) is extended by an external force
fx to include disturbances into the prediction process. The model error compensation
with ∆Ty is also added. It is used as input u together with the measured ZMP position.
The CoG position and velocity y = [xc, ẋc]T are the output. With the state vector zl =
[xc, ẋc, fx]T the system can be written in statespace form

żl =

0 1 0
ω2 0 1/m
0 0 0

 zl +

0 0
−ω2 −1/(mh)

0 0

 u = Alzl + Blu, (5.29)

yl =

[
1 0 0
0 1 0

]
zl = Clzl (5.30)

where the input is defined as u = [xzmp, ∆Ty]T. The system (5.29) is observable. Us-
ing the ZMP position introduces the possibility to include disturbances from measure-
ments at acceleration level in the filter. This improves the prediction and reduces a
possible time-delay. Taking into account the absolute position and orientation of the
feet, measured forces and torques are used to calculate the ZMP position of the robot

Irzmp = [xzmp, yzmp, 0]T. The calculation is done in world coordinates using the FTS in-
formation of both feet and exploiting the full kinematic model of the robot. First, the force
and torque vector of each foot (F i, T i) is transformed into the world FoR. These vectors
are then used in a second step to calculate the overall torque wrt. the planning FoR origin
O which is then used to calculate the ZMP position:

I FO =
1

∑
i=0

I F i , I TO =
1

∑
i=0

I T i + IrOi × I F i , (5.31)

O = I TO + Ir0,ZMP × I FO ⇒ IrO,ZMP . (5.32)

A plot of the ZMP y position calculated from measurements while the robot starts walk-
ing with a step size of 0.4 m and step time of 0.8 s is shown in Figure 5.7. This is different
to the method presented in Stephens (2011) that uses only measured external vertical
forces to calculate a force distribution between the two feet that are modeled as point

5.4 LIPM Based State Estimator 73

prc

a) c)

ϕx

∆rc

z

xx

z

xzmp

xc fx

∆Ty

b)

Planning FoR
World FoR

Figure 5.6: LIPM with external force and additional model error compensation ∆Ty (a). Plan-

ning and world FoR in the ideal case (b) and with an inclination error ∆ϕx (c) which results in a

CoG error ∆rc.

−0.1
0

0.1

0.2

0.3

0 2 4 6

t [s]

yzmp [m]

−0.02

0

0.02

0 2 4 6

t [s]

ϕy [rad]

Figure 5.7: Example measurement of ZMP position and inclination error in lateral direction

(unfiltered data).

contacts. This means that their computed ZMP position can not move when only one leg
is on the ground while the position computed from (5.31) and (5.32) moves continuously
and provides more information.

The filter additionally requires a measurement of yl which consists of the absolute
CoG position and velocity. These values are calculated with the kinematic assumption
that the stance foot doesn’t slip and the measured inclination errors from the IMU result
from a rotation about the middle of the stance foot. The CoG position in world coordi-
nates 0rc is obtained from the CoG position described in the planning FoR Trc and the
inclination errors ϕx, ϕy

Irc = AIT(ϕx, ϕy) Trc (qJ). (5.33)

Here, the matrix AIT denotes a rotation matrix due to ϕx, ϕy and transforms from plan-
ning to world FoR (cf. Section 4.5). The transformation is also depicted in Figure 5.6.
qJ describes the robot’s current joint configuration. The CoG velocity is calculated by
differentiating (5.33) wrt. time and using the measured inclination rates ϕ̇x, ϕ̇y

I ṙc =ȦIT Trc + AIT T ṙc (qJ , q̇J)

=

(
∂AIT

∂ϕx
ϕ̇x +

∂AIT

∂ϕy
ϕ̇y

)
Trc + AIT T ṙc (qJ , q̇J).

(5.34)

The quantities from (5.33) and (5.34) determine the measurement output yl completely.
Finally a Kalman filter with the linear state space model (5.29) and (5.30) is used to pro-
duce the state estimate ẑl . The covariance matrices are set to

Q f = diag(10−5, 2 · 10−5, 40), R f = diag(3 · 10−3, 3 · 10−2).

74 State Estimation

The resulting predicted CoG state (x̂c, ˙̂xc) is transformed back to a CoG state error ∆x̂c, ∆ ˙̂xc
which is then used to compute predicted values for the inclination and inclination rates.

5.5 Comparison and Analysis

5.5.1 Filter Performance

To show the performance of the developed nonlinear state estimator of Section 5.2, a sim-
ulation experiment is performed. The robot accelerates in this experiment to a walking
speed of 0.5 m/s and receives an external disturbance in x direction. The peak force is
100 N. Figure 5.9 shows the resulting measurement and filter output of the state. There
are basically three main characteristics that can be seen in these plots: (1) the estimated
vertical translation ẑ and its velocity do not drift. (2) the filter follows the measurement
of ˙̂z and ϕ̂x almost perfectly and (3) the trajectory of the inclination rate is smoothed. The
last point was the key goal of the proposed state estimator. A comparison of the results
with a naive implementation which uses a butterworth low-pass filter (10 Hz cutoff fre-
quency) for the inclination rate is shown in Figure 5.8. It can be seen that the estimator
filters oscillations better and has less time delay compared to the low-pass filter. Fig-
ure 5.10 shows the additionally obtained estimated external force f̂ext,x. The estimated
force continuously changes for the filter which is affected due to model errors, contact
dynamics and joint errors. Nevertheless, using this state the filter is able to compensate
for those effects. Additionally it is able to detect an unusual high error and react to it in
the right way when the external disturbance occurs (with some time delay). Note that
the focus is not to estimate the correct external force and not to use it in the controller.
The time evolution of the filter cost function (5.6) is depicted in Figure 5.10 on the right
hand side.

Figure 5.11 shows the estimation result for the example measurement of the intro-
duction. The result is a smoothed trajectory. Nevertheless, the oscillations right before
t = 206 s are unwanted. The robot has a positive inclination with almost constant mean
value in a global point of view. The local position variations cause strong oscillations of
the inclination rate. This can effect undesired behavior when the estimated state is used
to adapt the robot’s motion.

−0.2

−0.1

0

0.1

0.2

4 4.5 5 5.5 6

ϕ̇
x
[r
ad

/s
]

t [s]

meas

filter

butter

Figure 5.8: Estimator result in simulation: comparison of estimated inclination rate ϕ̇x (filter)

and low-pass filter result (bu�er).

5.5 Comparison and Analysis 75

0.004

0.008

0.012

0.016

2 4 6 8 10

z [m]

0

0.02

0.04

0.06

2 4 6 8 10

ϕx [rad]

meas.

filter

−0.4

−0.2

0

0.2

2 4 6 8 10

t [s]

ż [m/s]

−0.2

−0.1

0

0.1

0.2

2 4 6 8 10

t [s]

ϕ̇x [rad/s]

Figure 5.9: Estimation result in simulation: state measurement (meas) and filter output (filter).

−40

−20

0

20

0 2 4 6 8 10

t [s]

f̂ext,x [N]

0

2000

4000

6000

0 2 4 6 8 10

t [s]

tr(Pk) [-]

Figure 5.10: Estimation result in simulation: predicted external force (le�) and trace of the

estimation error covariance (right).

76 State Estimation

0

0.05

0.1

204 205 206 207 208

ϕ
x
[r
ad

]
meas

filter

−0.6
−0.3

0

0.3

0.6

204 205 206 207 208

ϕ̇
x
[r
ad

/s
]

t [s]

Figure 5.11: Estimator result for measurement data: inclination measurement (meas) and filter

output (filter).

5.5.2 Error Analysis

Several different simulation scenarios are performed to analyze proposed state estima-
tors. The different setups include cases for model errors and unknown disturbances.
All filters are implemented in the walking control system of LOLA and are executed with
1 kHz. They are the presented extended Kalman filter without model error compensation
(Ext.) and with model error compensation (Ext.Model) as well as the LIPM based filter
(LIPM). The results are additionally compared with a simple implementation which uses
a butterworth low-pass filter (10 Hz cutoff frequency, second order) for the inclination
rates ϕ̇x, ϕ̇y (Simple). All simulation tests are done with the multibody simulation of
LOLA which considers compliant unilateral contacts and the motor dynamics combined
with the joint control loop. Adequate sensor models enable a realistic simulation behav-
ior. The robot is walking with a step length of 0.4 m and a step time of 0.8 s in all cases
(except the last one). The following setups have been analyzed:

• walking undisturbed without errors (std)

• disturbance with a push in the x direction and a maximum force of 70 N that corre-
sponds to an 10 Ns impulse at t = 5.8 s (fx = 70)

• disturbance with a push in the y direction and a maximum force of 70 N that corre-
sponds to an 10 Ns impulse at t = 5.8 s (fy = 70)

• robot steps on an unknown board that is 0.04 m high (board)

• filter model mass error of 5% (∆m)

• walking with a maximum step length of 0.6 m.

Figure 5.12 shows the RMSE of the four different filter methods within these simulations.
The butterworth filter is outperformed in every scenario for the x direction whereas the
LIPM based and the extended Kalman filter with model error compensation perform
similarly. For the y direction there is no clear preference visible. For the unknown push
in y direction and the board scenario the low-pass filter is worse than the Kalman filters

5.6 Chapter Summary 77

0

0.01

0.02

0.03

std. fx = 70 fy = 70 board ∆m fast

rm
se

(ϕ̇
x
)

[r
ad

/s
]

0

0.01

0.02

std. fx = 70 fy = 70 board ∆m fast

rm
se

(ϕ̇
y
)

[r
ad

/s
]

Simple LIPM Ext. Ext.Model

Figure 5.12: RMSE of the estimated inclination rates for di�erent disturbance cases and di�er-

ent filters.

while for other cases it seems to be the best choice. However this is also related to the
tuning of the covariance matrices Q f and R f . For final experiments the extended Kalman
filter with model error compensation will be used.

5.6 Chapter Summary

The outcome of this chapter are different state estimation methods for humanoid robots.
They aim to extract information of the robot’s global trend from IMU data and desired
motion. The main goal is to remove high frequent oscillations that occur in the inclination
rates of the upper body. A filter based on the extended Kalman filter is presented. It
uses the model of Chapter 4 and extends it by an unknown external force acting at the
robot’s CoG. This external force is regarded as a “trash” variable for unknown errors. It
was shown that the filter outperforms a low-pass filter in terms of smoothing and while
maintaining a small time delay.

A second filter is presented and compared to the nonlinear one which is based on
the LIPM. It shows equivalent results for the presented simulation cases. However the
nonlinear filter provides an additional estimate for the absolute vertical translation of the
robot. Even though it is not used so far, it might be useful for example for an adaptive
contact model. The final state estimate for the inclination and inclination rate is the input
for trajectory adaptation methods of the following chapter.

Chapter 6

Model Predictive Trajectory Adaptation

6.1 Introduction

This chapter covers the usage of sensor data in trajectory generation. It is an established
way in robotic systems to react to unknown situations when acting in a dynamic environ-
ment. Adapting the overall trajectories requires a predictive behavior since they describe
future motion. Examples for necessary situations are newly detected environment infor-
mation obtained from a vision system or the current (disturbed) state of the robot. A
disturbed state of the robot means that it does not match the ideal planned motion which
is caused by e.g. an external disturbance. The trajectory generation methods in this chap-
ter consider the later problem. One important property of such situations is that they can
occur spontaneously and the robotic system has to react to within a defined time. This
means that trajectories have to be recalculated in real-time. The planning system has to
provide updated trajectories with a certain frequency for a given time horizon. In the case
of unknown disturbances this introduces the following challenges for suitable planning
methods:

• The computation time of the trajectory planning method has to be sufficiently fast
in order to meet the real-time requirement.

• The usage of disturbed states as initial values often introduces discontinuities in the
commanded trajectories that can produce problems.

The chapter’s classification into the model predictive trajectory adaptation is shown in
Figure 6.1.

ideal motion and forces

trajectory adaptation state estimator sensor data

prediction model

adapted motion and forces

Figure 6.1: Chapter classification into the model predictive trajectory adaptation.

79

80 Model Predictive Trajectory Adaptation

6.2 Related Work

For a literature overview of general online trajectory generation the reader is referred
to Kröger (2010). Depending on the complexity of the used model, state and control
constraints and the planning time horizon, the real-time requirement is a critical point.
In the case of humanoid robots, the model has about 20-40 DoFs, switching contact states
and constraints for contact forces. A common planning horizon is between 1-2 s while
the available time to solve the planning problem is in the magnitude of milliseconds.
Subsection 2.2.2 presented some basic approaches in the field of humanoid robots.

In many cases the trajectory planning problem is formulated as optimization where
the robot’s motion is designed such that a predefined cost function (optimization cri-
terion) is minimized. Nishiwaki and Kagami (2006) state the CoG trajectory planning
problem for the LIPM with the current measured state as optimal control problem. They
generated a parameter database of the solution for all possible model parameters (they
use different CoG heights). This database is then used during online trajectory generation
with a moderate frequency of 50 Hz for the current measured CoG state as initial value.
This rather pragmatic solution showed very promising results in experiments with the
robot HRP2. The method presented in Wieber (2006) solves the optimal control problem
for the CoG trajectory and next foot positions with a direct approach. In simulations they
show that a continuous recomputation of the trajectories with the current state as initial
value increases the stability of the robot while it receives an external disturbance.

The work in Dimitrov et al. (2008) discusses implementation details for such a method
and how state constraints are considered in the online trajectory planning method. Re-
cently, Naveau et al. (2017) published a method to extend this walking controller by tak-
ing into account convex obstacles as additional constraints. The robot HRP2 can adjust
footholds locally to avoid circular obstacles in experiments using this controller. They
also proved their concept in simulation to reject disturbances. To the best of the author’s
knowledge, the combination of perturbations and obstacles has not been shown. Integra-
tion into a whole planning framework including a footstep planner is pending. Another
approach is presented by Tassa et al. (2012) where the nonlinear optimal control problem
for a multibody-model of a bipedal robot is solved almost in real-time. They solve their
trajectory optimization with a Differential Dynamic Programming (DDP) like method (Li
et al. 2004) that they call iLGQ and uses a simplified Hessian approximation. Their algo-
rithm is similar to gradient methods for trajectory optimization (Graichen and Käpernick
2011) with the difference that they use second order derivative information. Neverthe-
less, the time to compute second-order derivatives increases drastically the overall com-
putation time for the method. This can be avoided by using conjugate gradient search
directions (Lasdon et al. 1967). They try to improve the quality of first-order gradient
methods while the computation time is almost the same as for steepest descent methods.
A comparison of mentioned indirect trajectory optimization methods can be found in
Bryson (1969).

In contrast to above mentioned online-methods there is also a huge variety of offline
trajectory optimization methods. In the following only a few concepts that were applied
to humanoid robots are mentioned. Buschmann et al. (2005) presents a nonlinear param-
eter optimization method to calculate a walking pattern for bipedal robots. Two differ-
ent optimization criteria for minimal taskspace accelerations and minimal joint torques
are presented. They use the overall controlled multibody model of the biped JOHNNIE.
The authors of Bessonnet (2004) formulate the walking pattern generation problem as
dynamic trajectory optimization with a planar multibody model. Using Pontryagin’s
Minimum Principle they obtain a two-point BVP which they solve under several state
and control constraints. There is also the possibility to consider only the overall linear

6.3 Problem Description 81

and angular momentum of the biped (Kuindersma et al. 2015) in order to calculate a
feasible set of CoG motion and contact forces. The method has the advantage that multi-
body effects are included while the decision variables are kept small. Unfortunately this
requires to solve the inverse kinematics problem of the overall biped and rises the com-
putation time drastically. A complex trajectory optimization that focuses on the solution
for the right contact states is presented in Posa et al. (2013). Some research groups try to
tackle the problem of too high computation times by database concepts (Koch et al. 2015).
The walking parameters are discretized by few values and an optimal control problem
for minimal torque motion is solved. Movement primitives are computed with machine
learning techniques from this training data and are afterwards used to interpolate for
walking parameters in between the discretization. To this date and the author’s knowl-
edge only forward walking is considered. The problem of the increasing database size
which will be necessary to cover all walking situations is not yet discussed in detail.

The concepts presented in this chapter do not try to solve the overall motion genera-
tion in one huge problem. Instead simplified models are used which allow to solve the
optimization problem in real-time.

6.3 Problem Description

The main goal of the presented methods is to take the robot’s current state into account
when trajectories are planned. This has to be done with special consideration to the
stability of the system, i.e. falling of the robot is avoided. Underactuation and constraints
for the contact forces have to be considered in order to obtain a feasible motion that
stabilizes the robot. The input is the estimated current state of the robot, namely the
absolute inclination and inclination rate (see Chapter 5). To obtain a stabilizing effect
one has to choose parts of the robot’s motion that will be adapted. As one can see in
(2.1) the unactuated DoFs qT are mainly controlled via the contact forces which can be
modified by changing the motion of the joints qJ . Next to the existing force control that
modifies the stance foot’s orientation and vertical position, a modification of future stance
foot horizontal positions (∆L = [∆Lx, ∆Ly]T) and a modification of the overall planned
horizontal CoG trajectories (∆xb(t), ∆yb(t)) will be added. A modification of next footstep
positions changes the lever arm of the contact forces and shifts consequently the limits
for feasible forces. Moving it in the right way can be used to stabilize the robot even if it
rotates around one edge of the foot. The CoG trajectories directly influence the magnitude
of the contact forces Λ which can be also used to control qT. In order to compensate for
inclination errors and avoid too early or late contacts of the feet three additional variables
are introduced. Those are the final swing foot height ∆zsw and orientation ∆cϕx , ∆cϕy .
They are determined using geometric considerations. An overview of the introduced
trajectory modifications is shown in Figure 6.2.

The models presented in Chapter 4 allow to produce a prediction for the inclinations.
This enables to formulate the trajectory generation such that the absolute inclination error
of the robot is minimized for a defined time horizon. The minimization is done wrt. an
ideal pose. Following this approach all disturbances are treated as initial inclination er-
rors. As a consequence this allows to stabilize only disturbances that cause a deviation of
this feedback variable. For rough terrain locomotion and external pushes this showed to
be sufficient information. In situations that would require more information a resolution
of the foot contacts or an estimation of the remaining part of qT could be added.

Two different problems are defined where the first includes only modifications of
foot trajectories while the second one extends it by the CoG modification. This results
finally in two mathematical problems that are described in the following. They are solved
decoupled for x and y direction with planar models and can be easily applied for the x

82 Model Predictive Trajectory Adaptation

4L4z

4cϕ

4xb

Figure 6.2: Overview of introduced trajectory modifications. On the right hand side all swing

foot trajectory variables and the CoG modification are shown in the planning FoR.

and y directions by using the according indices.

6.3.1 Problem A

Problem A includes the next horizontal position where the swing foot will land as free
variable p = ∆L. The free variables for the final swing foot height ∆zsw and orientation
∆cϕx , ∆cϕy are also included. The state prediction zr(t) is calculated with the reduced
prediction model (6.2). The goal of the variable p is the minimization of a quadratic cost
function JA(p, zr). It depends on the state prediction for a given time horizon [ta, te] and
has the (positive definite) weighting matrices Sz, Sp, Q. Those matrizes are chosen such,
that the inclination errors ϕ are mainly penalized. The initial value zr(ta) is given and
the final state value is not fixed but included via final costs in JA. End conditions are
omitted in the formulation due to the fact that the problem has to be kept small to satisfy
real–time requirements. Another reason is that a desired final value can not be specified
easily since it is not mandatory or possible to come back to an undisturbed state after
only one step. If this is the case and the robot can not come back to an undisturbed state
after only one step, next footsteps will be modified until the robot reaches the ideal state.
The variables are bounded to kinematically feasible values described by the set P . The
determination of this set is part of Section 6.6. The resulting optimization problem states
as follows:

min
p

JA(zr, p) = min
p

[
1
2

zT
r (te)Szzr(te) +

1
2

pTSp p
︸ ︷︷ ︸

s̄(zr(te),p)

+

te∫

ta

1
2

zT
r Qzr

︸ ︷︷ ︸
h̄(zr ,p,t)

dt
]

(6.1)

s.t. żr = f r(zr, p, t) , (6.2)
zr(ta) = zr,a , (6.3)
p ∈ P . (6.4)

6.3.2 Problem B

Problem B includes the next horizontal position where the swing foot will land (p = ∆L)
as well as the CoG modification trajectory ∆xb(t) = f (u(t)). The free variables for the
final swing foot height ∆zsw and orientation ∆cϕx , ∆cϕy are included as well. The state pre-
diction zr,ext(t) is calculated with the reduced prediction model that includes the trajec-

6.4 Foot Trajectory Modifications 83

tory u (6.7). The goal of p and u(t) is to minimize a quadratic cost function JB(p, zr,ext, u)
that depends on the state prediction for a given time horizon [ta, te] and has the (positive
definite) weighting matrices Sz, Q, R. The cost function is chosen such, that it mainly pe-
nalizes the inclination errors ϕ. The initial value zr,ext(ta) is given and the final state value
is free but it is included via final costs in J. The variables and trajectory u are bounded to
kinematically feasible values described by P and U . The resulting dynamic optimization
problem yields:

min
p,u

JB(zr,ext, p, u) = min
p,u

[
1
2

∆zT
r,ext(te)Sz∆zr,ext(te)

︸ ︷︷ ︸
s(zr,ext(te),p)

+

te∫

ta

1
2

∆zT
r,extQ∆zr,ext +

1
2

uTRu
︸ ︷︷ ︸

h(zr,ext,p,u,t)

dt
]

(6.5)

s.t. żr,ext = f r,ext(zr,ext, p, u, t) , (6.6)

zr,ext(ta) = zr,ext,a , (6.7)
p ∈ P , (6.8)
u ∈ U . (6.9)

6.4 Foot Trajectory Modifications

This section discusses an approach to solve problem A for the bipedal robot LOLA and
is based on Wittmann et al. (2015b). A solution for the foot position p is presented as
well as the determination of the remaining swing foot height and orientation. A contin-
uous replanning of the modification trajectories with the resulting parameters is finally
described.

6.4.1 Foot Position Optimization

A solution for the foot position p of the optimization problem (6.1) to (6.4) is computed
with a direct shooting method (Betts 1998). It is a widely used and easy to implement
method which can be an effective procedure for problems that have only few optimiza-
tion variables. There are many successful implementations in space applications like
launch and orbit transfer problems. The direct shooting optimization uses the follow-
ing procedure: The initial value problem (6.2) and (6.3) is solved for an initial guess of p0.
This has to be done by numerical integration of the first order Ordinary Differential Equa-
tion (ODE) as described in Subsection 4.3.5. The resulting trajectory zr(t, p0) can then be
used to compute the cost function JA(zr(t, p0), p0). This way problem A is converted into
the static optimization problem

min
p∈P

JA(p) (6.10)

which is unconstrained as long as the variable p remains inside the allowable set P .
The minimum can be recursively computed with nonlinear programming methods like
steepest descent or Newton’s method (Nocedal and Wright 2004). In this work Newton’s
method will be used to find the optimal p for (6.10). In the unconstrained case the update
rule is

pk+1 = pk −
(
∇2

p JA(pk)
)−1
∇p JA(pk) = pk + ∆pk (6.11)

84 Model Predictive Trajectory Adaptation

where ∇p JA(pk) and ∇2
p JA(pk) describe the gradient and Hessian of the cost function.

In the following the search direction of optimization iteration k is abbreviated with ∆pk.
To compute pk, first and second order derivative information is required. The problem
is formulated in Lagrange form (the cost function involves an integral) and the system
equation includes discontinuous dynamics. Hence numerical derivatives with the central
difference formula are used:

∇p JA(pk) ≈ JA(pk + δ)− JA(pk − δ)

2δ
, (6.12)

∇2
p JA(pk) ≈ JA(pk + δ)− 2JA(pk) + JA(pk − δ)

δ2 . (6.13)

This requires three integrations of (6.2) and (6.3) for each iteration of the shooting method.
To reduce the computation time, the ideal trajectories rb(t), r f 1(t), r f 2(t) are evaluated at
the time steps for the prediction horizon in advance and are stored into an array which
is then used in the integration of the prediction model. Those are known prior to the
optimization because an integration scheme with fixed time steps is used. Note that
positive definiteness of the hessian has to be ensured in each iteration. The term 1

2 pTSp p
has a positive influence to this restriction since its second derivative is Sp which is a
positive definite matrix.

To ensure sufficient decrease and no increase of the cost function the computed search
direction ∆pk is multiplied with a scalar factor αk. This factor is determined in a one-
dimensional line-search algorithm that tries to fulfill the Wolfe condition (Nocedal and
Wright 2004, pp.33ff)

JA(pk + αk∆pk) ≤ JA(pk) + cαk
(
∇p JA(pk)

)T
∆pk (6.14)

with the contraction factor c ∈ [0, 1]. In combination with Newton’s method one popular
algorithm to find a feasible αk for (6.14) is the Backtracking line-search. Starting with
αk = αinit it is decreased with a factor ρ ∈ [0, 1] until (6.14) is fulfilled or a maximum
number of iterations is reached (cf. Algorithm 2). This is essential as every iteration
requires an additional integration of the system in order to evaluate the cost function.
The adapted update rule for the variable p is

pk+1 = pk + αk∆pk. (6.15)

The above described procedure requires a maximum of six evaluations of the prediction
model (6.15) over the time horizon [ta, te] for each iteration. This underlines the impor-
tance of a good initial solution p0 if the maximum number of optimization iterations has
to be kept small to limit the computational time.

Algorithm Initialization

The initialization tackles the mentioned issue first by providing a good initial value p0

and second by shortening the time horizon [ta, te] as much as possible. Supposing that a
chang of the swing foot trajectory has little influence to the prediction model’s state zr un-
til it touches the ground it is possible to neglect this deviations during one optimization.
Current implementation integrates the model with the ideal foot trajectory from current
time t0 until the end of the actual step t1 and uses the predicted state zr(t1) as initial value
of the optimization problem, i.e. ta = t1 and zr(ta) = zr(t1). The final time te is set to the
end of next step (t2). This way, one obtains a constant time horizon of the optimization
and considers only the part with the modified stance foot on the ground. The predicted
state at t1 is additionally used to calculate an initial solution ∆p0. The initial step length is

6.4 Foot Trajectory Modifications 85

Algorithm 2 Backtracking Line-Search

1: function BACKTRACKING(J(p), ∆p, ∇p J(p), c, ρ)
2: j← 0
3: initialize αj = αinit
4: repeat
5: solve zr(p + αj∆p)
6: evaluate J(p + αj∆p)

7: converged←
(

J(p + αj∆p) < J(p) + cαj
(
∇p J(p)

)T ∆p
)

8: if (converged = false) then
9: αj+1 ← ραj

10: j← j + 1
11: until (converged = true or j > max iterations)
12: return αj

computed using the predicted error of the absolute CoG position ∆ I xc (t1) and velocity
∆ I ẋc (t1) in a linear heuristic

p0 = kstep,a

(
∆ I xc (t1) +

1
ω

∆ I ẋc (t1)

)
(6.16)

with a manually tuned factor kstep,a ∈ [0, 1]. The CoG errors are determined with the
relation (4.9) for all three masses

∆ I xc (t1) =
cϕ(t1)− 1

m ∑
j∈NB

mj Txj (t1) +
sϕ(t1)

m ∑
j∈NB

mj Tzj (t1), (6.17)

∆ I ẋc (t1) =
cϕ(t1)− 1

m ∑
j∈NB

mj T ẋj (t1)−
(sϕ(t1)ϕ̇x

m ∑
j∈NB

mj Txj (t1)

+
sϕ(t1)

m ∑
j∈NB

mj T żj (t1) +
cϕ(t1)ϕ̇x

m ∑
j∈NB

mj Tzj (t1).
(6.18)

This heuristic is motivated by the unstable respectively divergent solution of the LIPM
(Matsumoto et al. 2004). It is computed with the idea presented in Subsection 2.3.3 to
use the predicted value q(t1) at the end of current step which is additionally scaled with
kstep,a in order to account for the stabilizing effect of the local walking control. The diver-
gent solution is obtained from the LIPM without a feedback control. Consequently the
predicted value is too conservative for the real robot’s behavior.

Example Optimization

This part presents details of an optimization example to illustrate the optimization and its
procedure. A case is chosen in which the robot is walking in place while it is pushed by
an external force. Figure 6.3 shows at one time instant the resulting footstep modification
∆Lx for 4 iterations and the evaluated cost function for these values. For visualization
the cost landscape is sampled for discrete values of ∆Lx with the cost function weights
shown in Table 6.1. As one can see, the optimization is able to converge almost to the
minimum of JA in these iterations. The predicted evolution of the absolute inclination ϕx
for the corresponding iterations is shown in Figure 6.4. As mentioned before, an initial
integration is performed from t0 to t1 and the optimization considers the time interval
[ta, te] = [t1, t2]. The predicted inclination approaches its stable and desired value with
increasing iteration number. Nevertheless it is clear that without an imposed terminal

86 Model Predictive Trajectory Adaptation

constraint, it will never reach exactly zero (which could be also not the best solution in
terms of stability). Increasing the time horizon for the optimization could reduce the
state error but the cost gradients are much steeper. This can cause numerical problems.
The progress of the initial and the corresponding optimized costs is shown in Figure 6.5.
In this example the robot is walking in place while it is pushed from behind with the
force trajectory Fpush shown in Figure 6.5. There are two characteristics observable: in
the undisturbed case initial and optimized costs are close to zero, while the costs are
significantly reduced by the optimization right after the disturbance.

Table 6.1: Parameter values for example optimization of next footstep position.

parameter value
Sz 0
Sp 1.3
Q diag(0.001, 3, 0.001, 0.1)

kstep,a 0.5
δ 0.01

αinit 1.0
c 0.01
ρ 0.2

6.4.2 Coupled 2D Foot Position Optimization

The foot position in the x and y direction can be optimized in one coupled problem using
the spatial model introduced in Section 4.5. This can be necessary for situations where the
interaction between the two directions is not negligible. The resulting problem is similar
to problem A but with the optimization variable p = [∆Lx, ∆Ly]T and using the three
DoF state equations

min
p

J(zs, p) = min
p

[
1
2

pTSs,p p +

te∫

ta

1
2

zT
s Qszsdt

]
, (6.19)

s.t. żs = f s(zs, p, t) , (6.20)
zs(ta) = zs,a , (6.21)
p ∈ P . (6.22)

Additional quintic polynomials for both horizontal foot position modifications are added
to the prediction model. The values of p are used as final values of the swing leg. The op-
timization (6.19) to (6.22) is solved as the scalar problem with the direct shooting method.
The solution of the initial value problem zs(p, t) with a given parameter vector p can be
used to transform the dynamic optimization problem into the static one

min
p∈P

J(p). (6.23)

The minimum of (6.23) is approximately solved by using Newton’s method. Computing
the gradient vector and Hessian matrix with finite differences increases the number of
numerical integrations drastically. The Hessian for J(pk) with central difference approx-
imation yields

∇2
p J(pk) =

[1
δ2

(
Jx+,y − 2Jx,y + Jx−,y

) 1
4δ2

(
Jx+,y+ + Jx−,y− − Jx+,y− − Jx−,y+

)

sym. 1
δ2

(
Jx,y+ − 2Jx,y + Jx,y−

)
]

(6.24)

6.4 Foot Trajectory Modifications 87

0

0.5

1

0 0.1 0.2 0.3 0.4

J
[-]

4Lx [m]

J(4Lx)

opt.
0

1 2 3 4

Figure 6.3: Optimization results: Initial costs (0) and four iterations (1-4).

0

0.3

0.6

0.9

t0 ta = 4.8 te=5.64.6 5 5.2 5.4

ϕ
x

[r
ad

]

t [s]

iter. 0
iter. 1
iter. 2
iter. 3
iter. 4

Figure 6.4: Optimization results: predicted trajectory for the inclination error ϕx for the first

four optimization iterations.

0

0.1

0.2

0.3

4 4.5 5 5.5 6

0

50

100

150

J
[−

]

F
p
u
s
h

[N
]

t [s]

init. costs opt. costs Disturbance

Figure 6.5: Optimization results: initial and optimized costs at di�erent robot simulation time

instants a�er an external disturbance.

88 Model Predictive Trajectory Adaptation

where

Jx±,y = J(∆Lx ± δ, ∆Ly), Jx,y± = J(∆Lx, ∆Ly ± δ),

Jx±,y± = J(∆Lx ± δ, ∆Ly ± δ), Jx,y = J(∆Lx, ∆Ly).

Each optimization update requires nine solutions of the initial value problem. The overall
time for one optimization iteration is more than 2 ms with 1-3 additional evaluations
due to the backtracking method and a computation time of 150 µs for one evaluation.
The computation time can be reduced by using quasi-Newton methods like the BFGS
formula (Nocedal and Wright 2004, pp.136). They also avoid that the Hessian might
be not positive definite which is a necessary requirement for the method. In current
implementation the steepest descent is used for such cases. The iterative computation of
the parameter vector

pk+1 = pk − αk
(
∇2

p J(pk)
)−1
∇p J(pk) (6.25)

also uses the scaling factor αk which is computed with the backtracking method (Algo-
rithm 2). The initial value p0 is provided by the heuristic of the planar case (6.16) in both
directions. The error of the absolute CoG of the model is computed with:

∆ Irc (t1) =
[
AIT(ϕx(t1), ϕy(t1))− E

] 1
m ∑

j∈NB

mj Tr j (t1). (6.26)

Here AIT is the transformation matrix shown in (4.61) which uses the inclination of the
model at t1 and E is the identity matrix. The velocity error is obtained by differentiating
(6.26) wrt. time.

Example Optimization

The following part shows results from one exemplary optimization. The model is initial-
ized with the robot’s state right after a disturbance. Figure 6.6 shows the landscape of
the cost function which is obtained with the cost function parameter of Table 6.2. It also
shows the initial solution and the optimization result for three iterations. It can be seen
that the minimum is almost reached within these iterations. Nevertheless one problem is
that the cost function is very flat in the region around the minimum.

Table 6.2: Cost function weights for optimizing footstep positions with the spatial model.

parameter value
Sz 0
Sp diag(1.5, 1.5)
Q diag(0.001, 3, 3, 0.001, 0.01, 0.01)

6.4.3 Predictive Inclination Compensation

The aim of the inclination compensation is to avoid early or late contact of the swing foot.
The basic idea is adopted from the methods presented in Buschmann et al. (2011) and
Nishiwaki and Kagami (2007b). The definition of the planning FoR in Subsection 3.2.4
says that it rotates with the upper body of the robot. All taskspace trajectories are written
in this FoR including the swing foot motion. Consequently a non-zero inclination error
of the upper body at ground contact of the swing foot leads to a posture and position

6.4 Foot Trajectory Modifications 89

iter. 0
iter. 1
iter. 2
iter. 3

−0.4
−0.2

0

4Lx [m]−0.1
0

0.1
0.2

4Ly [m]

0

1

2

3

Jk [-]

Figure 6.6: Optimization results for the coupled problem: Initial solution (0) and three itera-

tions.

error of the foot wrt. the world. For flat ground walking this means that the swing foot
is not aligned horizontally and will end above or below ground level. The compensation
method modifies final swing foot horizontal orientation (∆cϕx , ∆cϕy) and vertical position
∆zsw in order to avoid those issues (cf. Figure 6.7).

In contrast to Nishiwaki and Kagami (2007b) the proposed method does not use cur-
rent posture error of the robot but the predicted error at the end of current step t1. The
inclination errors are already available due to the initial integration of the prediction
models in the x and y direction from t0 to t1 for the optimization initialization. The rota-
tion matrix from world to planning FoR ATI(ϕ̂(t1)) can be computed with the predicted
values ϕ̂(t1) = [ϕ̂x(t1), ϕ̂y(t1)]

T. The posture error is obtained by a multiplication with
the ideal planned rotation matrix AIT,id(ϕid) of the robot

∆A = AIT,id ATI(ϕ̂(t1)). (6.27)

The overall swing foot modification parameters are then determined with the ideal step
lengths Lx,id, Ly,id and the optimization results ∆Lx, ∆Ly as follows

∆cϕx = eT
z ∆Aex, (6.28)

∆cϕy = eT
z ∆Aey, (6.29)

∆zst =

{
0 if ∆zsw,last < ∆zmin

0.5∆zsw,last else
, (6.30)

∆zsw = eT
z ∆A

Lx,id + ∆Lx
Ly,id + ∆Ly

0

+ ∆zst. (6.31)

During the stance phase, the modified foot rotation is kept constant while the modified
final stance foot height ∆zst is planned back to zero if ∆zsw,last < ∆zmin and otherwise
to half of its value ∆zsw,last. This value has to be added to the final swing foot height.
Changing the stance foot height trajectory changes the effective CoG height which may
cause problems with the ideal generated horizontal CoG trajectories. Nevertheless this
is necessary to bring the commanded configuration back towards the ideal values and
avoid the effect of “the robot running into the ground” or “stretched knees”.

90 Model Predictive Trajectory Adaptation

4z

4cϕx

Tz

Tx

Tz

Ty

4cϕy

Figure 6.7: taskspace modifications to compensate for upper body inclination errors in x and y

direction.

6.4.4 Continuous Trajectory Replanning

The final step of the method is the generation of continuous trajectories from the above
calculated variables. All mentioned variables can be summarized in the vector

Γ = [∆Lx, ∆Ly, ∆cϕx , ∆cϕy , ∆zsw, ∆zst] (6.32)

which is used to calculate a set of fifth-order polynomials for the taskspace modifications
of the legs

4wlegs(t) = f (t, Γ). (6.33)

This has to be done continuously every time new values Γ are generated. In order to
ensure C2-continuity of the commanded motion, values from last time step for position
∆wlegs(tk−1), velocity ∆ẇlegs(tk−1) and acceleration ∆ẅlegs(tk−1) are used as initial values
for the fifth order polynomials. This is important because there may be non-zero values if
the trajectories are updated during swing phase. Γ are set as final position values for the
polynomials with zero velocity and acceleration. Additionally the horizontal swing leg
motion ends at an earlier time tlead,h than the other values with tlead. Figure 6.8 visualizes
example trajectories for x and z direction. If the current time is during DS phase (where
the feet should not move) a constant polynomial is added until the end of the DS phase
tds.

The calculation of compensating motions is controlled by the finite state machine of
the pattern generator. Note that the method is also triggered by the early contact event
which is part of the sensor feedback of the finite state machine. If the detected contact
state of the current swing leg switches to closed before the planned step time is passed,
the next double support phase is initiated. When this event occurs, the motion of the
current swing leg is stopped in a few timesteps. The connection to the early contact
event is an important feature because there are cases in which the predicted final state
may differ from the real state of the robot. Then the desired motion has to adapt to this
unexpected event in order to stabilize the overall system. The final adapted taskspace
position for a time instant tk is computed via

wd(tk) = wid(tk) +

[
∆wlegs(tk)

O

]
= wid(tk) +4w(tk) (6.34)

and analogous for the taskspace velocity ẇd(tk). The overall method is summarized in
Figure 6.9. The state observer determines estimates for current inclination and inclination

6.5 Center of Gravity Modification 91

0

∆Lx

tds tlead,h

0

∆zsw

tds tlead

Figure 6.8: Example modification trajectories in x and z direction.

foot position
optimization

initial
integration

state
observer

predictive inclination
compensation

continuous trajectory
replanning

ϕm,ϕ̇m

λm

ϕ̂0, ˙̂ϕ0zr,x/y(t1)

∆L0

ϕ̂(t1)

∆L

Γ

∆w
wid

wmod

wid

Figure 6.9: Overview of the sensor feedback framework for problem A. The state observer, initial

integration and foot position optimization are performed in x and y direction independently.

rate ϕ̂0, ˙̂ϕ0 and provides these to the initial integration. The resulting initial state at time
t1 in x and y direction zr,x/y(t1) and initial parameter ∆L0 is used in the foot position
optimization. These steps are performed decoupled for both walking directions. The
resulting ∆L and ϕ̂(t1) are finally used to recalculate the remaining foot parameters and
the corresponding trajectories.

6.5 Center of Gravity Modification

This section discusses an approach to optimize the CoG trajectory and solves problem B
for the bipedal robot LOLA. It is based on the paper Wittmann et al. (2016). Two different
methods are presented: the first one solves the CoG optimization and uses an heuris-
tics for the footstep position. The second one solves both quantities in one optimization
problem.

92 Model Predictive Trajectory Adaptation

6.5.1 Center of Gravity Trajectory Optimization

The problem to compute an optimal CoG trajectory for the humanoid robot is solved
with an indirect approach. This section does not treat the whole problem defined in
Subsection 6.3.2 but a slightly simplified version where the parameter p is determined
in advance via a heuristic. The prediction model with footstep and CoG modification
presented in Subsection 4.4.2 is used. The only difference is the definition of the input
u(t) = d

dt ∆ẋb(t) which is then integrated twice in order to obtain the trajectory ∆xb(t).
In optimization runs it showed that the acceleration input performs better than the jerk
input. However C1-continuity is achieved for ∆xb(t). The overall model with the inte-
gration of the input yields

żr,e =
d
dt

q
q̇
4xb
4ẋb

 =

q̇
M−1[λr + Ts − h]

4ẋb
u

 = f r,e (zr,e, t, p, u) . (6.35)

For a given initial value zr,e,a, parameter p and control trajectory u(t) the first order dif-
ferential equation (6.35) can be solved to obtain zr,e(t, p, u(t)). In problem B it was stated
that the goal is to find u(t) ∈ U such that the cost function

JB(u(t)) =
1
2

∆zT
r,e(te)Sz∆zr,e(te)

︸ ︷︷ ︸
s(zr,e(te))

+

te∫

ta

1
2

∆zT
r,eQ∆zr,e +

1
2

uRu
︸ ︷︷ ︸

h(zr,e,u,t)

dt (6.36)

is minimized. The control trajectory and the parameter are restricted to the valid regions
P and U . The state error ∆zr,e is defined as follows

∆zr,e = zr,e − [0, 0, 0, 0, p, 0]T (6.37)

which has the effect that a modification of the CoG position is penalized only wrt. the
footstep modification. This creates a behavior where only the difference ∆xb(tk)− p is pe-
nalized. It is a consequential definition because solutions where the footstep is modified
by 10 cm and the final CoG position shows the same final modification is preferable and
should produce no costs. For a given p, given initial value zr,e(ta) and fixed final time te
with free final state zr,e(te), the optimality conditions from Pontryagin’s minimum prin-
ciple (Geering 2007) are well known. Introducing the costate ψ(t) and the Hamiltonian
H(zr,e, ψ, u, t) = h(zr,e, u, t) + ψT f r,e(zr,e, u, t), the optimality conditions for the dynamic
problem (6.35) and (6.36) are

ψ̇ = −
(

∂H
∂zr,e

)T

= −
(

∂h
∂zr,e

)T

−
(

∂ f r,e

∂zr,e

)T

ψ, (6.38)

żr,e =

(
∂H
∂ψ

)T

= f r,e, (6.39)

ψ(te) =

(
∂s

∂zr,e

∣∣∣∣
te

)T

, (6.40)

zr,e,a = zr,e(ta) (6.41)

where the Hamiltonian has a global minimum wrt. u ∈ U :

u = arg min
u∈U

H(zr,e, ψ, u, t). (6.42)

6.5 Center of Gravity Modification 93

zr,e(ta) zr,e(te)

ψ(ta) ψ(te)

u(t)

Update u(t)

zr,e,a

żr,e = f r,e

ψ(te) =

(
∂s

∂zr,e

∣∣∣∣
te

)T

ψ̇ = −
(

∂ H
∂zr,e

)T

Figure 6.10: Graphical overview of the iterative gradient algorithm.

If u is not on the boundary of U , relation (6.42) reduces to the first order necessary condi-
tion

∂H
∂u

=
∂h
∂u

+ ψT ∂ f r,e

∂u
= 0. (6.43)

The resulting BVP has decoupled boundary conditions where the left one is for the state
zr,e(ta) while the right one restricts the costate ψ(te). The gradient method exploits this
property to iteratively compute the solution for (6.38) to (6.42). For a given u(t) the state
zr,e is integrated forward with (6.39) from ta → te and ψ(te) can be computed with (6.40).
Afterwards ψ is integrated with (6.38) backward in time. The obtained trajectories zr,e(t)
and ψ(t) are than used to compute an update for the input trajectory with (6.42) resp.
(6.43). The procedure is visualized in Figure 6.10. The gradient method with steepest
descent is known for its slow convergence. Therefore the conjugate gradient is used in
this work as proposed in Lasdon et al. (1967) and Schuetz et al. (2014). The iterative
calculation of the input trajectory can be stated to

uk+1 = uk + αksk
u, sk

u(t) = −gk
u(t) + βk

usk−1
u (t),

gk
u(t) =

∂H(zk
r,e, ψk, uk, t)

∂u

(6.44)

with the abbreviations zk
r,e = zr,e(uk) and ψk = ψ(uk). The factor βu is determined with

the Fletcher-Reeves method

βk
u =

(
gk

u, gk
u
)

(
gk−1

u , gk−1
u

) where
(

gk
u, gk

u

)
:=
∫

gk
u(t)gk

u(t)dt. (6.45)

The step size αk is computed in an underlying line-search problem with the goal to
achieve sufficient decrease of the cost function (6.36) in each iteration. It is obtained by
solving the one-dimensional optimization

αk = arg min
α>0

JB

(
zr,e(uk + αsk

u), uk + αsk
u

)
(6.46)

approximately. This is solved in an analogous manner as for the foot position optimiza-
tion with the backtracking method (Algorithm 2).

At the beginning of this paragraph it was assumed that the parameter p for the foot
position is determined in advance. The same linear heuristic as for the initial value of
the footstep optimization is used. During the first iteration’s numerical integration of
zr,e(t)0 the absolute CoG position and velocity error at t1 is stored and used to calculate
the parameter

p = kstep,b(∆ I xc(t1) +
1
ω

∆ I ẋc(t1)) (6.47)

94 Model Predictive Trajectory Adaptation

with the scalar factor kstep,b ∈ [0, 1]. This approximate solution for problem B works
well even though the parameter is not the optimal one. A reason is that the foot has to
be particularly modified in the right direction. By penalizing only the difference to the
modified CoG position in the cost function, the method produces the desired behavior.
During an external disturbance e.g. an impulse in walking direction, the robot steps
forward and comes to rest somewhere in this direction. This is also visible regarding the
chosen weights for (∆xb − p) in Q and Sz.

Table 6.3: Cost function weights and heuristic factor for the CoG trajectory optimization.

Q =

1 0 0 0 0 0
0 1000 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 2500 0
0 0 0 0 0 3000

, Sz =

1 0 0 0 0 0
0 1500 0 0 0 0
0 0 1 0 0 0
0 0 0 1000 0 0
0 0 0 0 2500 0
0 0 0 0 0 5000

,

R = 1, kstep,b = 0.75.

Example Optimization

In the following an exemplary optimization with the chosen weights of Table 6.3 is dis-
cussed. The model in x direction is initialized with an inclination error ∆ϕx(ta) = 0.15 rad
and inclination rate error ∆ϕ̇x(ta) = 0.35 rad/s. The initial value for zr,e(ta) is computed
with Algorithm 1 while the initial CoG modification and the control trajectory u0(t) are
set to zero. The optimization horizon is set to the step time te − ta = Tstep which is 0.8 s in
this example. The time discretization for numerical integration is ∆t = 4 ms. Figure 6.11
shows the costs JB(uk(t)) for 15 iterations. The optimization was performed once with
the steepest descent search direction and once with the conjugate gradient search direc-
tion. It can be seen that except for the first iteration the conjugate gradient method is
superior. It reaches the optimum in about 6 iterations. Figure 6.12 shows the resulting
control trajectories uk(t) and Figure 6.13 the evolution of the inclination error and the
CoG modification for the conjugate gradient method. The parameter value was set to
p = 0.255 m in iteration 0. Note that the modification ∆xb is performed in the FoR of the
model rotated by ϕx.

6.5.2 Pontryagin’s Minimum Principle with Additional Parameters

This section derives an algorithm to optimize a trajectory u(t) and additional free pa-
rameters at the same time with an indirect shooting method. It is based on a conjugate
gradient algorithm from trajectory generation with an additional update law for the pa-
rameter, see Boček (1980). There are two different ways to derive the optimality condi-
tions, one that transforms the problem to an ordinary trajectory optimization problem
and one that derives Pontryagin’s Minimum Principle directly. The first way is described
in this section while the second one is included in Appendix C.

The transformation is performed as follows: the unknown parameter will be treated
as additional state with a static behavior ṗ = 0 and unknown initial value p(ta). Problem
B can be rewritten with the augmented state vector ξ = [zT

r,e, p]T as follows

min
p,u

JB(ξ, u) = min
p,u

[
s(ξ(te)) +

te∫

ta

h(ξ, u, t)dt
]

(6.48)

6.5 Center of Gravity Modification 95

150

250

350

450

0 5 10 15

J
k

[-]

iteration k [-]

descent
conjugate

Figure 6.11: Example optimization with the gradient method: Cost over iterations for steepest

descent and conjugate gradient search direction.

−1.5

−1

−0.5

0

0.5

1

0 0.2 0.4 0.6 0.8

u
(t
)

[m
/s

2
]

τ [s]

iter. 0
iter. 1
iter. 5

iter. 10
iter. 15

Figure 6.12: Example optimization with the conjugate gradient method: Input trajectories

uk(t).

0.1

0.2

0.3

0 0.2 0.4 0.6 0.8

ϕ
x

[r
ad

]

τ [s]

0

0.05

0.1

0 0.2 0.4 0.6 0.8

∆
x
b

[m
]

τ [s]

iter. 0
iter. 1
iter. 5

iter. 10
iter. 15

Figure 6.13: Example optimization with the conjugate gradient method: Predicted inclination

error ϕx(t) and CoG modification trajectory ∆xb(t).

96 Model Predictive Trajectory Adaptation

s.t. ξ̇ =

[
żr,e
ṗ

]
=

[
f r,e(ξ, u, t)

0

]
= f ξ(ξ, u, t) , (6.49)

zr,e(ta) = zr,e,a , (6.50)
p ∈ P , (6.51)
u ∈ U . (6.52)

Note that the BVP will be no longer decoupled as it is the case for fixed initial and free
final state due to the partly unknown initial value.

The derivation of the optimality conditions for the present problem will be done sim-
ilar to Geering (2007). The constraints can be adjoined to the cost function by introducing
the Lagrange multipliers ψz,a and ψ(t) = [ψT

z (t), ψp(t)]T with the same dimension as the
augmented state ξ. The resulting augmented cost function is

J̄ = s(ξ(te)) + ψT
z,a [zr,e(ta)− zr,e,a] +

te∫

ta

h(ξ, u, t) + ψT(t)
[

f ξ(ξ, u, t)− ξ̇
]

dt

= s(ξ(te)) + ψT
z,a [zr,e(ta)− zr,e,a] +

te∫

ta

H(ξ, u, ψ, t)−ψT(t)ξ̇dt

(6.53)

with the Hamiltonian H(ξ, u, ψ, t) = h(ξ, u, t) + ψT(t) f ξ(ξ, u, t). Omitting all function
dependencies the first variation of (6.53) around the optimal solution ξ∗, u∗ can be written

δ J̄ =
∂s
∂ξ

∣∣∣∣
te

δξ(te) + δψT
z,a [zr,e(ta)− zr,e,a]

+

te∫

ta

∂H
∂ξ

δξ +
∂H
∂u

δu +
∂H
∂ψ

δψ− δψT ξ̇ −ψTδξ̇dt.
(6.54)

Integration by parts of the term
∫

ψTδξ̇dt and rearranging yields

δ J̄ =
∂s
∂ξ

∣∣∣∣
te

δξ(te) + δψT
z,a [zr,e(ta)− zr,e,a]−ψT(te)δξ(te) + ψT(ta)δξ(ta)

+

te∫

ta

(
∂H
∂ξ

+ ψ̇
T
)

δξ +

(
∂H
∂ψ
− ξ̇

T
)

δψ +
∂H
∂u

δudt.
(6.55)

The not completely known initial state ξ(ta) causes the product ψT(ta)δξ(ta) to not com-
pletely vanish. It can be simplified by splitting the augmented state and the according
Lagrange multipliers

ψT(ta)δξ(ta) =
[
ψT

z (ta)ψp(ta)
] [δzr,e(ta)

δp(ta)

]
=
���

���
��:0

ψT
z (ta)δzr,e(ta) + ψp(ta)δp(ta). (6.56)

The variation of zr,e at time ta is equal to zero because its initial value is included in the
constraints. The variation of p is arbitrary in contrast. The optimal solution of (6.55) has
to fulfill δ J̄ = 0 for any variation δξ, δψz,a, δξ, δu. This delivers the known optimality con-
ditions for problems with free final state and fixed final time extended by one additional
condition for ψp(ta)

ψ̇ = −
(

∂H
∂ξ

)T

, (6.57)

6.5 Center of Gravity Modification 97

ξ̇ = f ξ , (6.58)

ψ(te) =

(
∂s
∂ξ

∣∣∣∣
te

)T

, (6.59)

ψp(ta) = 0, (6.60)
u∗ = arg min

u
H(ψ∗, ξ∗, u, t). (6.61)

Condition (6.60) can be rewritten when the solution of the costate is evaluated by using
the given final value at te and integrating (6.57) backward in time

ψ(t) =
∂s
∂ξ

∣∣∣∣
te

+

te∫

t

∂H
∂ξ

dt. (6.62)

The last row of (6.62) evaluated at t = ta results in the condition

ψp(ta) =
∂s
∂p

∣∣∣∣
te

+

te∫

ta

∂H
∂p

dt !
= 0. (6.63)

The result represents the interpretation of the costate (or adjoint variables) ψ(t) that they
are a measure of the sensitivity of the cost function concerning variations in the state ξ(t)
(Graichen 2015, p.100). Consequently the residual of (6.63) can be used to modify the
initial value p(ta) in order to improve the solution. This can be added to the gradient
method for dynamic trajectory optimization to include additional parameters. The iter-
ative update laws for the control trajectory and the parameter are in the unconstrained
case with steepest descent

uk+1 = uk − αk ∂H
∂u

= uk − αkgk
u (6.64)

pk+1 = pk − αk

 ∂s

∂p

∣∣∣∣
te

+

te∫

ta

∂H
∂p

dt

 = pk − αkgk

p (6.65)

where αk can be determined by some step-length selection algorithm, e.g. backtracking
or quadratic interpolation method (Nocedal and Wright 2004). Those methods solve the
one-dimensional problem

αk = min
α

JB(uk + αgk
u, pk + αgk

p) (6.66)

approximately. Note that the factor αk is the same for both update laws (6.64) and (6.65)
which correlates with the condition that the u and p have to be chosen such that the cost
function JB(zr,e, p, u) has a minimum.

The search directions determined by steepest descents su = −gu and sp = −gp can be
replaced by conjugate gradients in order to improve the overall convergence rate of the
algorithm, e.g. using again the Fletcher-Reeves adaptation

sk
u(t) = −gk

u(t) + βk
usk−1

u (t), βk
u =

(
gk

u, gk
u
)

(
gk−1

u , gk−1
u

) , (6.67)

sk
p = −gk

p + βk
psk−1

p , βk
p =

gk
pgk

p

gk−1
p gk−1

p
. (6.68)

The overall procedure of the gradient method for trajectory optimization with additional
parameters is summarized in Algorithm 3. The unknown initial value is replaced with
the unknown parameter p for sake of clarity.

98 Model Predictive Trajectory Adaptation

Algorithm 3 Gradient Method with Parameter

1: Determine ẑr,e,a
2: initialize p0

3: initialize u0(t)← u∗previous(t)
4: k← 0
5: repeat
6: solve ξk(uk, t) from (6.58)
7: solve ψk(uk, ξ̂

k
, t) from (6.57)

8: compute sk
u, sk

p e.g. with (6.67) and (6.68)
9: αk ← solve line search problem (6.66)

10: update uk+1, pk+1

11: k← k + 1
12: until (converged or k > max iterations)
13: end

Optimization Example

This paragraph presents an optimization example with a simple optimization problem to
show the behavior of Algorithm 3. The following scalar linear problem is considered

min
p,u(t)

J = min
p,u(t)

1
2

sp p2 +
1
2

sxx2(T) +
1
2

T∫

0

ru2(t)dt, (6.69)

s.t. ẋ = p + u(t), (6.70)
x(0) = x0 (6.71)

with the state x(t), its given initial value x0 and the unknown control trajectory u(t) and
parameter p. The optimization horizon is t ∈ [0, T]. The optimality conditions are

[
ẋ
ṗ

]
=

[
p + u

0

]
, ψ̇ =

[
0
−ψ1

]
, ψ(T) =

[
sxx(T)

sp p

]
,

∂H
∂u

= ru + ψ1 = 0 (6.72)

with the costate ψ = [ψ1, ψ2]T, the Hamiltonian H = 1
2 ru2 + ψ1(p + u) and the boundary

conditions at t = 0

x(0) = x0, ψ2(0) = 0. (6.73)

The analytic solution for this example yields

p∗ =
−sxx0

sp
T +

sxsp
r + sxT

, (6.74)

u∗(t) =
sp p
Tr

, (6.75)

x∗(t) =
(

p +
sp p
Tr

)
t + x0 . (6.76)

This solution is used as reference for comparison with the numerical optimization.
Algorithm 3 is used once with normal gradient information and once with conjugate
gradient information to solve (6.69) to (6.71) numerically. The results for 30 iterations are
depicted in Figure 6.14 where the values of Table 6.4 are used. The solution for the input
trajectory u(t) is constant which is the reason that the figure shows only the resulting
value. The scaling factor for the search directions is set to the fixed value of α = 0.15

6.5 Center of Gravity Modification 99

0

0.1

0.2

0.3

0.4

0 10 20 30

iter.

u

0

0.1

0.2

0 10 20 30

iter.

p

analytical
gradient

con.gradient 0.1

0.15

0.2

0.25

0 10 20 30

iter.

J

Figure 6.14: Comparison of optimization results for 30 iterations.

for both cases (gradient, conjugate gradient). It was determined manually such that the
optimizations do not diverge. State and costate trajectories are solved with an explicit
Euler integration scheme with the time discretization ∆t. Both variants of Algorithm 3
converge to the analytical solution but as supposed the convergence of the conjugate
gradient is faster. The overshooting of the parameter value p may be caused by the fact
that a constant factor α for the line-search is used.

Table 6.4: Parameter values for example optimization (6.69) to (6.71).

parameter value parameter value
sp 1.0 x0 −1.0
sx 0.5 pinit 0.0
r 0.5 uinit(t) 0.0
T 1.0 ∆t 0.005

6.5.3 Center of Gravity and Footstep Optimization

The algorithm presented above is applied for solving Problem B in this section. It uses
the augmented state as introduced in the problem statement (6.48) to (6.51). Therefore
the cost function (6.5) defined at the beginning has to be transformed to fit to the new
state vector definition ξ = [zT

r,e, p]T:

JB(ξ, u) = s(ξ(te)) +

te∫

ta

h(ξ, u, t)dt =
1
2

ξT(te)Sξξ(te) +
1
2

te∫

ta

ξTQξξ + Ru2dt

!
=

1
2

∆zT
r,e(te)Sz∆zr,e(te) +

1
2

te∫

ta

∆zr,erTQ∆zr,e + Ru2dt.

(6.77)

To obtain the same optimization criterion the cost function matrices are set to

Qξ =

1 0 0 0 0 0 0
0 1000 0 0 0 0 0
0 0 1 0 0 0 0
0 0 0 1 0 0 0
0 0 0 0 2500 0 −2500
0 0 0 0 0 3000 0
0 0 0 0 −2500 0 2500

, (6.78)

100 Model Predictive Trajectory Adaptation

Sξ =

1 0 0 0 0 0 0
0 1500 0 0 0 0 0
0 0 1 0 0 0 0
0 0 0 1000 0 0 0
0 0 0 0 2500 0 −2500
0 0 0 0 0 5000 0
0 0 0 0 −2500 0 2500

. (6.79)

In simulation it showed that the search direction for the parameter has to be im-
proved. Using only the residual of the condition (6.63) gave bad optimization results.
A revised algorithm is developed that solves condition (6.63) via linearization (Newton’s
method). The parameter update ∆pk consequently yields

∆pk = −
(

∂ψp

∂p
(ta)

)−1

ψk
p(ta) (6.80)

with the gradient of the costate ψp(ta) approximately determined by finite differences.
An example optimization is considered with the same setup as presented on page 94.
This includes also the initial solution for u0(t) and the parameter p0. The results can be
seen in Figures 6.15 and 6.16. The cost function evaluation over the iteration is compared
for the CoG optimization with and without step position optimization. Both methods use
the same heuristic (6.47) for the initial solution of p0. The additional step optimization
shows little improvement of the overall cost evaluation. The residual of the additional
optimality condition in Figure 6.16 is not zero. During the optimization it even increases.
Reasons are that an update for u has an influence to ψp in the optimization and ψp is
not directly included in the cost function. In simulation the overall method performed
similar compared to only optimizing the CoG trajectory. The additional evaluations for
determining the search direction of ψp with finite differences increase the computational
time. Therefore, the final implementation uses only the heuristic for the footstep modi-
fication. However the overall time for both directions is still within the admissible max-
imal value (20 ms) and can be compensated for by an increased FIFO buffer size (see
Subsection 3.3.4).

6.5.4 System Integration Details

This paragraph provides further details to the real-time implementation of the CoG mod-
ification and its integration into the overall walking control system of LOLA. One impor-
tant point is the initial solution for the control trajectory u0 which uses the solution from
previous optimization uprevious. It is generated following the model predictive control
principle (Diehl et al. 2009) and by using a moving horizon Th = te − ta. The control
initialization is

u0(τ) = uprevious(τ + ∆tmpc) where τ ∈ [0, Th − ∆tmpc], t = τ + ta (6.81)

with ∆tmpc being the time between two successive optimization runs. The new part of
the time horizon τ ∈ [Th − ∆tmpc, Th] is filled with zeros.

Another strategy could be a linear function from u0(Th − ∆tmpc) to zero during the
new time horizon. Figure 6.17 visualizes the initialization between two consecutive op-
timization runs. Former results for the predicted trajectories zr,e(t), ψ(t) and the conju-
gate gradient information su are discarded for a new optimization run. This showed the
best results for experiments because the predicted state trajectory and consequently the
costate trajectory can change during ∆tmpc drastically.

6.5 Center of Gravity Modification 101

250

350

450

0 5 10 15 20 25 30

J
k

[-]
ref opt

step opt

190

200

210

0 5 10 15 20 25 30

J
k

[-]

iteration k [-]

(zoom)
ref opt

step opt

Figure 6.15: Optimization results for CoG optimization without step optimization (ref opt) and

with step optimization (step opt). On the bo�om a zoomed plot is shown.

−1000

0

1000

2000

3000

4000

0 10 20 30

ψ
p
(t

a
)

iteration k [-]

0.254

0.2545

0.255

0.2555

0 10 20 30

∆
L
x

[m
]

iteration k [-]

ref opt step opt

Figure 6.16: Evolution of the residual and optimized parameter.

uprevious

u0

∆tmpc

ta
τ = 0

te
τ = Th

Figure 6.17: Control trajectory initialization with previous solution.

102 Model Predictive Trajectory Adaptation

0

0.025

0.05

4.5 4.8 5.1

4
x
b

[m
]

t [s]
t+ 0∆tmpc t+ 1∆tmpc

−0.2

0

0.2

0.4

4.5 4.8 5.1

u
x

[m
/
s2

]

t [s]
t+ 2∆tmpc t+ 3∆tmpc

Figure 6.18: Resulting trajectories from four optimization runs: continuous CoG trajectory ∆xb
and discontinuous input trajectory ux.

Each ∆tmpc the optimization is called and performs three iterations. The resulting
computational time of the algorithm is maximal 3.5 ms for one direction. Consequently
the implementation fulfills the real-time requirement that the overall computational time
is below ∆tmpc between two consecutive optimization runs. A low limit for the number
of iterations produces a suboptimal solution. Nevertheless the method can converge to
the optimum by using the solution from previous optimization as initial guess.

The resulting ux(t) and uy(t) are applied to the robot’s motion until an updated trajec-
tory is available. Only ux(t), uy(t) are used and numerically integrated separately to ob-
tain the trajectory ∆xb(t), ∆yb(t). The overall modification of the CoG motion ∆ẇcog(tk)
and ∆wcog(tk) at time tk is computed via

∆ẇcog(tk) =

[
∆ẋb(tk)
∆ẏb(tk)

]
=

[
∆ẋb(tk−1) + tcux(tk − ta)
∆ẏb(tk−1) + tcuy(tk − ta)

]
, (6.82)

∆wcog(tk) =

[
∆xb(tk)
∆yb(tk)

]
=

[
∆xb(tk−1) + tc∆ẋb(tk)
∆yb(tk−1) + tc∆ẏb(tk)

]
. (6.83)

The problem of generating discontinuous desired trajectories (cf. Figure 6.18) is avoided
by using only the computed accelerations. The values for the parameter in the x and
y direction px and py are directly used as footstep modification values ∆Lx and ∆Ly re-
spectively. The predictive inclination compensation (Subsection 6.4.3) and the continuous
replanning of the foot trajectories (Subsection 6.4.4) can be used in the same way as it was
shown for problem A. The final adapted taskspace position for a time instant tk yields

wd(tk) = wid(tk) +

∆wlegs(tk)
∆wcog(tk)

0

 (6.84)

and analogous for the taskspace velocity ẇd(tk). The overall method is summarized
in Figure 6.19. State observer, initial integration and CoG trajectory optimization are
performed in the x and y direction independently.

6.6 Constraints from Obstacle Avoidance

The methods presented above have to be combined with collision avoidance methods
to obtain flexible and robust walking simultaneously. The following paragraph is sub-
mitted in Hildebrandt et al. (2017) and developed methods result from joint work with
Arne-Christoph Hildebrandt. In keeping with the hierarchical control system structure,

6.6 Constraints from Obstacle Avoidance 103

CoG trajectory
optimization

initial
integration

state
observer

predictive inclination
compensation

continuous trajectory
replanning

ϕm,ϕ̇m

Λm

ϕ̂0, ˙̂ϕ0ϕ̂0, ˙̂ϕ0

∆L

ϕ̂(t1), ∆L

Γ

u(t)

4w
wid

wmod

wid

Figure 6.19: Overview of the sensor feedback framework for problem B.

a collision free motion that is then adapted for disturbance rejection based on sensor data
is determined first. Possible solutions of (6.10) are restricted to reachable and obstacle
free regions. Figure 6.20 shows a sample situation that is treated in the following. Start-
ing point is a valid final swing foot location Lid, determined by the step planner. The
trajectory adaptation then modifies this position by ∆L = [∆Lx, ∆Ly]T to stabilize the
robot. The resulting final foothold position would cause a collision. The main question
is how such constraints can be described and accounted for in a real-time optimization
procedure. Short computation time is crucial since the method is used with sensor feed-
back and it has to react instantaneously to unknown disturbances. The desired output is
a modified yet collision free foot position

L∗m = Lid + ∆L∗. (6.85)

with the feasible modification ∆L∗. A summary of the method is shown in Figure 6.21.
In Subsection 3.3.2 two approaches to handle such situations were stated: the first is
to determine an optimal step length modification without constraints and project the
final solution onto the cone of the feasible set (which is determined by the constraints).
The second accounts for the constraints during optimization: however, this requires an
optimization for the step length modifications in both directions since the feasible set is at
least two-dimensional and the boundaries for ∆Lx and ∆Ly are coupled. For this reason
the spatial prediction model with the 2D footstep optimization is used. The problem
description is summarized as follows:

• efficient calculation time (� 1 ms)

• several arbitrary shaped obstacles

• over-stepping of obstacles should be possible

• kinematic limits have to be included

• solution must be generated reliably.

104 Model Predictive Trajectory Adaptation

stance foot

obstacle

final swing footinitial swing foot

Lid

∆L

Figure 6.20: Example for problem description of constraints from obstacle avoidance. Ideal

collision free final swing foot position and the modified invalid position.

The physical constraints and the mathematical description for such situations are given
below. Projection of an invalid point onto a feasible region is discussed in the subsequent
part. This projection method is then applied to the stated problem and the two solution
strategies are presented.

model predictive
trajectory adaptation

step sequence

(Lid)
SSV-map

(Obstacles)

sensor data
(ϕm,ϕ̇m)

L∗m

Figure 6.21: Overview of the main input and output data for the sensor based trajectory adap-

tation with additional obstacle avoidance.

6.6.1 Geometric Constraints

The key point when taking into account the geometrical constraints imposed on walking
stabilization, namely kinematic constraints and obstacles, is their consistent and compact
representation. To allow fast calculations convex polytopes are chosen to represent both
kinematic constraints and obstacles. They allow a fast projection to a feasible region. The
resulting neq linear inequalities for a vector x are described by

ceq,j := {x ∈ R2|aT
j x > bj}. (6.86)

A set of nCI linear inequalities describes one convex polytope, CI , which is an invalid
region. In total, the invalid area ĀS consists of np polytopes and is defined as follows:

ĀS :=
np⋃

i=1

CIi . (6.87)

The corresponding valid area, AS, is formally defined as

AS := A− ĀS, (6.88)

based on the total search area A. The determination of ĀS is composed of the following
parts:

6.6 Constraints from Obstacle Avoidance 105

• Kinematic Limits: Starting with the current stance foot the kinematically reachable
area is approximated by the polytope as depicted in Figure 6.22a. The unreachable
area results in the system of inequalities

CI,kin =
{

x|∃i ∈ {1, ..., nkin} : aT
kin,ix > bkin,i

}
. (6.89)

• Obstacles: As described in Subsection 3.3.2, 3D segments approximate obstacles and
areas of the environment the robot can not step onto. The former consist of nSSV
convex SSV-objects to allow for a detailed approximation of detected objects. The
SSV-objects are reduced to 2D polytopes to comply with the hard timing constraints
(cf. Figure 6.22b). First, the SSV-objects are projected on the ground, and then
the three types of SSV-Objects (sphere, line and triangle SSV) are represented as
polytopes. Each object j results in a convex hull:

CI,SSV,j =
{

x|∃i ∈ {1, ..., neq,SSV,j} : aT
SSV,j,ix > bSSV,j,i

}
. (6.90)

The valid area for a step is already restricted by kinematic limits, therefore only
obstacles within this kinematically reachable area are considered. This approach
highly reduces the computational costs for the inequality constraints.

• Foot Geometry: The sophisticated 3D representation of the foot and lower leg ge-
ometry used in the step planner helps to give a better approximation of the robot’s
whole kinematic movement. The obstacles are enlarged by the foot geometry as
shown in Figure 6.22c taking into account the desired foot rotation α. Thus only
one point, which describes the foothold position, can be used to analyze the geo-
metric constraints.

• Large Obstacles: Considering the robot’s whole kinematic movement, obstacle-free
regions are not necessarily steppable or kinematically reachable. Large obstacles,
which the robot can not over-step, make adjacent obstacle-free regions inaccessi-
ble due to kinematic constraints. These large obstacles are already considered in
the environment representation to avoid repeated checks for obstacle-free regions
and inaccessible regions. Instead of introducing a polytope for the inaccessible re-
gion, the obstacle’s representation is enlarged (compare Figure 6.22d). That way
the obstacle approximation as well as the representation of the inaccessible region
remains convex.

6.6.2 Finding Safe Regions

In the following the question initially posed, is answered: how can the valid foothold
position closest to a given modified but invalid one be determined (cf. Figure 6.20)?
There are several methods to compute a solution. They can be basically divided into two
different approaches. The first starts with an initially invalid solution Lm and tries to
find a valid point L∗m. Variants are sampling based methods or geometric testing of all
boundaries.

Instead of finding the closest valid point, the problem can be inverted and AS is di-
vided into a set of convex valid regions CV . In each of these valid and convex regions,
the closest point to the invalid point Lm can be determined separately and, because of the
regions’ convexity, very efficiently. In contrast to the geometric testing method, intersec-
tions of the valid convex regions do not pose a problem, because the search is applied on
a set of valid regions. The solutions are consequently independent of each other. The best
one is chosen based on the calculated set of closest points. This procedure of searching

106 Model Predictive Trajectory Adaptation

α

stance foot

kinem.
reachable
region

large
obstacle

inaccessible regionPoint SSV Line SSV

obstacleswing foot

enlarged obstacle

a) c)

d)b)

Figure 6.22: Geometric constraints: a) kinematic limits, b) obstacle representations, c) enlarge-

ment by foot geometry and d) large obstacle modification.

valid convex regions instead of only considering the invalid regions is largely inspired by
Chestnutt and Takaoka (2010). They presented a method to calculate a valid convex area
around a valid starting point. The algorithm starts with a convex area. It iterates around
the starting point and it removes invalid parts of the initial convex area. A drawback of
the implementation is that only one convex area around the starting point is found. Deits
and Tedrake (2015) presented a powerful open-source tool, called IRIS, which has already
been applied to step planning (Deits and Tedrake 2014). IRIS uses the corner points of
invalid convex regions as input and calculates the corresponding inequalities. It also de-
termines the largest valid convex region which is closest to a starting point. Although it
seems to be well suited for the present problem, it exhibits some shortcomings. Those
are the requirement of a predetermined search area, the computation of only one convex
area and stability issues. Liu et al. (2010) and Sarmiento et al. (2005) present methods to
divide arbitrary areas in convex regions. On the one hand, neither method is restricted
to convex invalid regions; however, neither benefits from reduced computational costs
for convex problems. In this application, only convex invalid regions are used, to gain
the benefit in calculation times. Similar to (Liu et al. 2010; Sarmiento et al. 2005), the
valid area is tried to cover by multiple convex regions, which may intersect each other.
To meet timing limitation, the following characteristics of this mathematical problem are
exploited:

• CI,i are all convex.

• The starting point of the algorithm, which is the ideal step location calculated by
the step planner Lid, lies always inside AS.

• A is limited due to the kinematic constraints.

The algorithm follows an iterative approach. It is started with a grid of seed points over
A. The seed points, which lie in AS are successively becoming the starting points for
searching a convex region around it. Once the convex region around a seed point is de-
termined, it is removed from the remaining valid area to avoid repetitive searches. As
a first seed point the ideal footstep location is used, since it is valid per definition. This

6.6 Constraints from Obstacle Avoidance 107

Algorithm 4 Dividing AS in convex regions

1: function FIND-CONVEX-REGIONS(AS, ĀS)
2: initialize set of seed points PS
3: CV = {}
4: for all pk ∈ PS do
5: verify pk valid?
6: j← 0
7: repeat
8: Calculate closest boundary line lj of ĀS
9: Add lj as inequality to boundaries of CVk

10: Remove all inactive boundaries of ĀS
11: j← j + 1
12: until no more active boundaries
13: remove CVk from AS
14: update CV = CV ∪ CVk

15: Output: CV

helps to reduce the computational costs. For one seed point the search for a valid convex
region can be summarized as follows: The closest boundaries to the seed point are deter-
mined iteratively. The boundaries are therefore considered to be line segments with start
and end points. Once the closest boundary, lj, is found, it is added as a linear inequality
to the valid region CVk . Here, the convexity of the invalid region is used to efficiently find
the closest boundaries. All boundaries outside CVk are skipped and considered inactive
for the following steps. The search stops when there are no active boundaries left. The
algorithm is summarized in Algorithm 4. The calculation of CV has to be done only once
before each of the robot’s physical steps. The kinematically reachable area lies outside the
camera’s field of view. Therefore, the representation of the environment does not change
during execution of one step.

6.6.3 Footstep Modification with Geometric Constraints

This section finally describes how the algorithm for finding a point in the safe regions
can be combined with the optimization of next footsteps for stabilizing the robot.

Restrict Optimization Result

One straight forward solution for considering safe regions is to project the optimized
quantities ∆L = [∆Lx, ∆Ly]T onto the safe regions. This way optimization for the step
length modifications can be done separately in the x and y directions. The optimization
results are projected onto the set P = AS. Two different criteria are tested to find the
point that is closest to the optimal solution: the geometric distance between ∆L and ∆L∗

and the point with the best (lowest) costs determined using (6.1). For the second criteria
several candidate points are generated all lying on the cone of AS. Nevertheless this
requires additional time consuming evaluations of the EoM (6.2) and the cost function.
Both methods perform similar and consequently the closest distance criteria is chosen.

Optimization with inequality constraints

The mathematically correct way includes the inequality constraints in the optimization.
This can be realized with hard constraints or using a penalty function. The later has the
advantage that the problem is again unrestricted and exhibits better computational time.

108 Model Predictive Trajectory Adaptation

The cost function for the coupled optimization (6.19) is rewritten for the spatial model
(6.20) as

Js = zT
s Szzs + ∆LTSp∆L +

t f∫

t0

zT
s Qzsdt + h(∆L) (6.91)

and extended by an additional penalty term

h(∆L) =

{
β
(

Lm − Lp
)2 Lm ∈ ĀS

0 Lm ∈ AS
(6.92)

that includes the distance to the closest valid point Lp at the cone of AS. The additional
weight β is set to a value higher than all other weighting matrix entries. The optimiza-
tion result obtained from (6.91) is not necessarily valid since invalid solutions are pe-
nalized but not completely avoided. Nonetheless, the solution is at least close to AS.
Consequently the optimization result Lm will be verified whether it is valid or not and if
necessary projected onto AS as described in Subsection 6.6.3. In simulation experiments
this strategy shows the ability to find solutions that require over-stepping of obstacles to
maintain the robot’s balance. This is one common advantage with the method to restrict
the optimization result and is possible because a set of safe regions is used.

6.6.4 Implementation Details

The following paragraph provides details about the implementation and real-time real-
ization of the presented framework. After the A*-search and before a new step k begins
the ideal motion is planned (Ideal) and the set of valid regions AS is computed from the
SSV-map. The map is continuously updated with data from the vision-system (Upd.SSV).
As is computed only once before a new physical step. This is sufficient since obstacles
that are within the kinematic limit of one step are not visible with the vision system
mounted on the head. Reactive collision avoidance prevents collisions between the swing
foot and the obstacle that a footstep adaptation might cause. This may occur since only
the final position is checked and the swing foot height is adapted via a heuristic.

Table 6.5: Computational time summary for maximal 4 obstacles. Runtimes are obtained from

the real-time QNX computer.

method avg. [µs] max. [µs]

Comp.AS 600 2000

Find closest point 4 250

Adapt (total) 1000 2500

6.7 Chapter Summary

In this chapter different methods to include sensor feedback in trajectory generation were
presented. The methods utilize the former introduced dynamic prediction model to-
gether with the state estimate. According to this state foot trajectories and the CoG tra-
jectories are adapted. Two different optimization algorithms are developed. The first
determines next horizontal footstep position with a direct shooting algorithm. The sec-
ond solves the dynamic trajectory planning problem for the CoG trajectory by a conjugate
gradient algorithm. Finally an algorithm to combine both optimizations is presented.

6.7 Chapter Summary 109

All variants include an inclination compensation. Based on geometric considerations,
height and orientation of the feet are adapted. The aim is preventing early or late contacts
of the feet. The last part of the chapter covers methods to combine trajectory modifica-
tions due to unknown disturbances with collision avoidance methods. The basic idea
preserves the hierarchical structure and obstacles are included as additional inequality
constraints for the foot position adaptation. That way flexible and robust walking is en-
abled. All presented methods include implementation details since they are applied to a
real robot. The next chapter presents experimental results of the bipedal robot LOLA and
the performance of the overall model predictive trajectory adaptation will be discussed.

Chapter 7

Experimental Results

This chapter presents selected experimental results with the bipedal robot LOLA. The
robot is subjected to unknown disturbances in different situations to show its increased
robustness by the model predictive trajectory adaptation. The following parts present
different situations with the developed methods running on the real robot. A compari-
son of the walking performance without the new presented methods is not shown since
creating the same push at the same relative time is almost impossible.

7.1 Walking on the Spot with Disturbances

7.1.1 Footstep Optimization (Experiment 1a)

In the first experiment the robot is walking on the spot while it receives pushes at the up-
per body in arbitrary directions. The step time is chosen to Tstep = 0.8 s. The sensor based
trajectory adaptation with decoupled footstep optimization is used in this experiment.
The robot is pushed with a bar which is equipped with a force transducer (model HBM
U9B, 1 kN nominal rated force) in order to measure the transferred impulse. The analog
signal is read with the GPIO/AD-slave. The force acts at heights between 1.0-1.5 m from
the ground. The measured force and the resulting inclination errors are shown in Fig-
ure 7.1. The control system stabilizes the robot with the modifications of Figure 7.2. This
is realized among others by the filtered inclination rates (Figure 7.3). Using the raw data
would cause a decrease of the effectiveness of the method.

0

0.1

0.2

201 204 207 210 213

0

100

200

ϕ
[r

ad
]

F
[N

]

t [s]

Dist.

ϕx

ϕy

Figure 7.1: Experiment 1a: Disturbance force measurement and resulting inclination errors.

111

112 Experimental Results

−0.04

0

0.04

0.08

0.12

201 204 207 210 213

4
x

[m
]

0

0.04

0.08

0.12

201 204 207 210 213

4
y

[m
]

0

0.02

0.04

201 204 207 210 213

4
z

[m
]

−0.12

−0.08

−0.04

0

201 204 207 210 213

4
c ϕ

x
[-]

t [s]

−0.16

−0.12

−0.08

−0.04

0

201 204 207 210 213

4
c ϕ

y
[-]

t [s]

left leg

right leg

Figure 7.2: Experiment 1a: Resulting foot position and orientation trajectory modifications.

7.1 Walking on the Spot with Disturbances 113

−0.3

−0.15

0

0.15

0.3

201 202 203 204

ϕ̇
[r
ad

/s
]

t [s]
ϕ̇m,x (meas) ϕ̇m,x (filter)

−0.6

−0.3

0

0.3

0.6

201 202 203 204

t [s]
ϕ̇m,y (meas) ϕ̇m,y (filter)

Figure 7.3: Experiment 1a: Filtered inclination rates during an external disturbance.

7.1.2 Center of Gravity Optimization (Experiment 1b)

The same experiment as described above is performed but with the optimization of the
CoG. Footstep modifications are determined by the heuristic. The measured force and
the resulting inclination errors are shown in Figure 7.4. The control system stabilizes
the robot with the modifications depicted in Figure 7.6. Only foot modifications in the x
and y direction are shown. A sequence of photographs of the robot for the second push
(t ≈ 27.5 s) can be seen in Figure 7.5. In the first picture it is pushed at the left arm, in the
next step its motion is adapted according to the disturbed state (robot is inclined to the
right) and the third picture shows it again in an upright posture. The according control
trajectories ux and uy (Figure 7.7) are discontinuous. Note that they are limited to the
interval [−3, 3].

−0.2

−0.1

0

0.1

0.2

26 28 30 32

0

100

ϕ
[r

ad
]

F
[N

]

t [s]

Dist.

ϕx

ϕy

Figure 7.4: Experiment 1b: Resulting inclination errors and disturbance force measurement.

114 Experimental Results

1 2 3

Figure 7.5: Experiment 1b: robot stabilizing a�er a disturbance.

0

0.05

0.1

0.15

26 28 30 32

4
x

[m
]

left leg

right leg

CoG

−0.5

−0.25

0

26 28 30 32

4
y

[m
]

t [s]

left leg

right leg

CoG

Figure 7.6: Experiment 1b: Foot and CoG position trajectory modifications.

−0.4

−0.2

0

0.2

0.4

26 28 30 32

u
x

[m
]

t [s]

−3

−1.5

0

1.5

3

26 28 30 32

u
y

[m
]

t [s]

Figure 7.7: Experiment 1b: control trajectories from conjugate gradient algorithm.

7.2 Forward Walking with Disturbances (Experiment 2) 115

7.2 Forward Walking with Disturbances (Experiment 2)

The following experiment is conducted with the decoupled footstep optimization method
presented in Section 6.4. The results are already presented in Wittmann et al. (2015b). The
humanoid is commanded to walk with a step length of 0.4 m and a step time of 0.8 s for-
ward for 4.5 m. The robot is pushed twice during walking. The corresponding external
forces are shown in Figure 7.10. The ideal and the modified step length for this experi-
ment are depicted in Figure 7.8. The approximate moments when the pushes occur are
visualized with red arrows. The corresponding trajectory modifications for the foot po-
sitions are shown in Figure 7.11, modification of the orientation of the feet is omitted.
Photographs of the experiment are shown in Figure 7.9.

−0.3

−0.15

0

0 1 2 3 4

disturbance

y
[m

]

x [m]
right leg left leg reference

Figure 7.8: Experiment 2: Ideal and modified foot steps of the robot. It is walking with approx.

0.5 m/s while it is pushed twice (adopted from Wi�mann et al. (2015b)).

1 2 3 4

Figure 7.9: Experiment 2: The robot is pushed in the first picture and stabilizes itself (adopted

from Wi�mann et al. (2015b)).

116 Experimental Results

−0.1

0

0.1

0 4 8 12 16

0

100

ϕ
[r

ad
]

F
[N

]

t [s]

Dist. ϕx ϕy

Figure 7.10: Experiment 2: Upper body inclination errors and disturbance force measurement

(with external device, adopted from Wi�mann et al. (2015b)).

0

0.02

0.04

0 4 8 12 16

4
x

[m
]

−0.08

−0.04

0

0.04

0 4 8 12 16

4
y

[m
]

0

0.03

0.06

0 4 8 12 16

4
z

[m
]

t [s]

right leg
left leg

Figure 7.11: Experiment 2: Foot position trajectory modifications (adopted from Wi�mann et

al. (2015b)).

7.3 Rough Terrain Walking (Experiment 3) 117

7.3 Rough Terrain Walking (Experiment 3)

This experiment shows results from walking over unknown rough terrain that is not
sensed by an vision system. The scene is depicted in Figure 7.12. The robot is commanded
to walk with 30 cm steps and a step time of 0.8 s forward. The method for decoupled
footstep optimization is used in this experiment. Figure 7.14 shows the resulting upper
body inclinations and Figure 7.13 the trajectory modifications for the foot positions. Foot
orientation modifications are not shown. It can be observed that the modifications are
quite small. A reason is that the force control compensates for most of the disturbances
and the prediction model accounts for this effect.

Figure 7.12: Experiment 3: scene of the unknown terrain for the walking experiment.

0

0.02

0.04

0 5 10 15 20

4
x

[m
] left leg

right leg

−0.05

−0.025

0

0.025

0 5 10 15 20

4
y

[m
]

t [s]

left leg

right leg

Figure 7.13: Experiment 3: Foot position trajectory modifications.

118 Experimental Results

−0.08

−0.04

0

0.04

0.08

0 5 10 15 20

ϕ
[r

ad
]

t [s]

ϕx

ϕy

Figure 7.14: Experiment 3: Upper body inclination errors.

7.4 Disturbances with Obstacles

Two experiments will be presented to show the footstep modification with additional
constraints due to obstacles under real-world conditions.

7.4.1 Synthetic Case (Experiment 4a)

In the first experiment, the humanoid is commanded to walk in place while subjected to
a disturbance force in its walking direction (x-direction). One obstacle is placed close to
the robot to limit feasible footstep modifications. It is sent manually to the robot without
vision system. The vision system is not used for two reasons: (1) According to the de-
scribed setup, the obstacle is not in the system’s camera field of view. (2) This experiment
should examine only the procedure for the method to consider obstacles during distur-
bance rejection without having the uncertainties of a running vision system. Figure 7.16
shows the resulting inclination errors for the decoupled method. The robot is still able to
stabilize itself with the limited foot positions (Figure 7.17). A snapshot at each physical
step of the robot and the 2D-polytopes is shown in Figure 7.15.

Obstacle left foot right foot

Figure 7.15: Experiment 4a: Snapshots at di�erent time instants from robot and polytopes

(adopted from Hildebrandt et al. (2017)).

7.4 Disturbances with Obstacles 119

−0.1

0

0.1

0.2

0.3

591 594 597 600

ϕ
[r

ad
]

t [s]

ϕx

ϕy

Figure 7.16: Experiment 4a: Resulting inclination errors (adopted from Hildebrandt et al.

(2017)).

0

0.1

0.2

591 594 597 600

4
x
f
i

[m
]

t [s]

left leg

right leg

Figure 7.17: Experiment 4a: foot modification trajectories (adopted from Hildebrandt et al.

(2017)).

−0.1

0

0.1

0.2

0.3

596 597 598 599

∆
L
x

[m
]

t [s]

∆Lx

∆L∗
x

Figure 7.18: Experiment 4a: optimization result before and a�er evaluation of the constraints

for the x direction (adopted from Hildebrandt et al. (2017)).

120 Experimental Results

7.4.2 Forward Walking with Vision System (Experiment 4b)

This experiment also includes the vision system. The setup is presented in Figure 7.21.
The robot is commanded to walk forward with 30 cm steps. While walking the robot’s
walking control receives the online detected obstacles. The module A*-based step planner
& parameter optimization calculates in real-time an ideal step sequence and parameter set
that ensure collision-free movements. The ideal motion is modified based on the robot’s
state. The robot is pushed several times during the experiment and recovers from the dis-
turbances. The overall ideal step sequence and modified footholds calculated are shown
in Figure 7.20. The resulting inclination errors are shown in Figure 7.19.

−0.1

0

0.1

0 4 8 12 16 20

ϕ
[r

ad
]

t [s]

ϕx

ϕy

Figure 7.19: Experiment 4b: Inclination errors of the upper body.

−0.5

0

0.5

1

0 1 2 3 4

y
[m

]

x [m]
obstacles right leg left leg reference

Figure 7.20: Experiment 4b: Ideal and modified foot steps of the robot walking while it is pushed

several times.

7.4 Disturbances with Obstacles 121

1 2 3

54 6

Figure 7.21: Experiment 4b: The robot is pushed several times and stabilizes itself.

Chapter 8

Conclusions

This thesis described methods to increase the robustness of bipedal robots in unknown
environments. The following chapter summarizes the methods, discusses the results and
finally describes directions for future work.

8.1 Summary and Discussion

Creating stabilization methods for humanoid robots requires to understand the under-
lying dynamics. Chapter 2 gives an overview of the mechanics of bipedal locomotion.
Unilateral contacts constrain the robot’s possible motions while the underactuated dy-
namics cause that the robot’s full state can not be controlled directly. Existing motion
planning and stabilization methods of bipedal robots are reviewed. The methods are dis-
cussed considering the choice of input and output. Special effort is put on the design
of overall feedback frameworks. Many walking control systems in literature consist of
several feedback mechanisms. Outer feedback loops have to consider the effect of the in-
ner ones and should show a lower dynamics. A consistent consideration of these design
concepts is essential for a powerful walking controller.

The experimental platform LOLA is described in Chapter 3. Its hardware and overall
walking control system is summarized. The control system has a hierarchical architec-
ture. Walking commands that were sent from a human operator are used to generate
online a walking pattern in the global control. The local control adapts this ideal motion
locally and generates joint target data that is finally sent to the decentralized joint con-
trols. Based on the existing system architecture a sensor based trajectory adaptation is
introduced. It is located in the global control and adapts the ideal planned trajectories
according to sensor data. It consists of a nonlinear prediction model, a state estimator
and a trajectory adaptation, see Figure 8.1. The input is the upper body inclination state
obtained from the IMU. Adapted foot and CoG trajectories are the method’s output. Ad-
ditionally, a learning based feedforward adaptation of the joint target data is presented
that improves the tracking performance of all joints by more than 90 %.

The prediction models proposed in Chapter 4 are motivated by the observation that
the popular LIPM produces poor prediction results for disturbed states. The planar mod-
els are designed to produce a better prediction result of the absolute inclination of the
robot. This corresponds directly to its absolute CoG state. It is achieved by adding two
passive DoFs which make the model underactuated and by adding unilateral contacts.
This way the model maintains two important properties of bipedal robots. The robot is
approximated by three point masses that are assumed to perfectly follow planned tra-
jectories in a FoR that rotates with the robot. It is shown that the model can predict fast
and accurately the robot’s behavior. Trajectory modifications for the feet and the CoG are
added to the model to enable the determination and evaluation of stabilizing motions.

123

124 Conclusions

ideal motion and forces

trajectory adaptation state estimator sensor data

prediction model

adapted motion and forces

Figure 8.1: Summary of the model predictive trajectory adaptation.

A state estimator is developed in Chapter 5 that extracts the main trend of the robot’s
motion from the IMU data. Undesired oscillations are removed. This is realized by using
the previously introduced prediction model. A state estimator is introduced that is based
on an extended Kalman filter. It is extended by an external force state to compensate for
unknown disturbances. Additionally model errors are taken into account. It is shown
that the estimator produces smoothed inclination rates with less time delay compared to
conventional low pass filters. The estimator provides initial values that are used in the
trajectory modifications.

Chapter 6 presents methods to modify the robot’s ideal planned motion by using the
prediction model and the estimated current state. The first part presents an algorithm
to adapt the overall foot trajectories. It uses a parameter optimization to determine the
next horizontal footstep position. The optimization mainly penalizes the predicted upper
body inclination and is solved by a direct shooting method. Final swing foot height and
orientations are determined by geometric considerations. The aim is the prevention of
early or late touch down of the swing foot which is caused by inclination errors. These
parameters are updated continuously and are used to calculate a set of modification tra-
jectories. The second part extends the motion that is adapted by the horizontal CoG
trajectory. The resulting problem is stated as optimization problem. A conjugate gradi-
ent method is used to determine the unknown trajectory. The algorithm is extended to
include additional variables in the optimization. The third part discusses the integration
of trajectory adaptation techniques with collision avoidance methods. The main idea pre-
serves the hierarchical structure of the walking control system to first generate a collision
free ideal motion that is then adapted when unknown disturbances occur. Consequently
obstacles constrain the trajectory adaption. A method is developed that generates a set
of geometric constraints which is used to compute safe convex regions for the feet. These
regions are used to find a safe foot position as close as possible to the adapted one during
a disturbance. The overall framework is designed such that is runs in parallel to collision
avoidance methods on the real-time system of the robot.

Experimental results from several walking experiments are presented in Chapter 7.
They show how presented methods perform under real world conditions with the bipedal
robot LOLA. The following situations are investigated: stepping in place and walking
forward with external pushes from arbitrary directions, walking over unknown rough
terrain and walking with detected obstacles while the robot is pushed. Especially the
last experiment generates a challenging situation since environment recognition, colli-
sion avoidance and stabilization methods have to run and interact at the same time online
with real sensor data.

8.2 Recommendations for Future Work 125

The capability to adapt the robot’s future motion according to its disturbed state is
a very powerful approach. The results show that the walking control system can sta-
bilize the robot for moderate disturbances such as pushes. However by increasing the
impulse of the pushes the robot can still be destabilized. The formulated optimization
problems use hand-tuned cost functions which may not be the best choice for every situ-
ation. Another limiting factor is that up to now only the motion of the feet and the CoG
is modified. Since the methods use a dynamic model of the biped further investigations
should consider to adapt the model parameters if necessary. Failures in the real-time sys-
tem, its communication system or the hardware are also related to the robustness of the
robot. Examples are rare cabling issues, sensor errors or crashing processes. However,
the new ETHERCAT-based communication system and appropriate safety checks reduced
such crashes of the overall system.

8.2 Recommendations for Future Work

From the experience gained through the work of the last years and the discussion of the
results above, several suggestions for future research can be made:

• Model based approach combined with learning:
The presented approach uses the knowledge of robot models to predict the behav-
ior. However for control approaches there often remain few tuning parameters that
are chosen only with experience. Those parameters could be determined similar to
the reinforcement learning of the joint feedforward gains. This would combine the
knowledge of the robot’s mechanics with learning of very few parameters. There-
fore investigations are suggested to identify such learning parameters and identify
criteria to evaluate the robot’s overall performance.

• Adaptive model parameters:
Model prediction accuracy can be improved in situations where the model param-
eters vary. An example is walking on terrain that is compliant. This changes the
contact model between foot and ground. Adding an online parameter estimator for
critical values could improve the system’s behavior.

• Using the arms for stabilization:
While the proposed model predictive trajectory adaptation for the feet and the CoG
works well, very large disturbances can still cause the robot to fall. One possibil-
ity beside tuning the method’s parameters is to extend the adaptation strategy to
the arms. Using the arms for stabilization could improve the overall robustness.
For the prediction model it was shown how the additional contact points from the
arms could be integrated into the existing framework. With a faster onboard com-
puter and efficient optimization methods the adaptation of the overall motion can
be solved in real-time.

• Adapt step time:
A parameter that has large influence to the bipeds motion is the step time. Increas-
ing robustness could be achieved by adding this parameter to the optimization.
The reduction of time until the next foot touches the ground shortens the time until
a modified step position becomes active. However the coupling with the biped’s
dynamics is nonlinear.

• State estimation and error handling:
This suggestion is not related to the development of new stabilization methods but
has to be considered when the overall walking performance and robustness has

126 Conclusions

to be increased. The developed ETHERCAT-based communication system together
with the motor controls from ELMO increased the robustness of the hardware and
communication system and reduced errors. Future work should improve the error
handling for the remaining failures. A possible solution is a comprehensive state
estimator that monitors the robot’s overall “health state” and a state machine that
triggers an appropriate recovery or if necessary safe shutdown behavior.

Appendix A

Joint Tracking Performance

The following part contains results from the reinforcement learning process. Addition-
ally measurements of the joint tracking performance and the commanded joint velocities
are shown for an experiment with a maximal mean walking speed 0.75 m/s. Only mea-
surements of the pelvis and the right leg joints are shown.

The measurement data is computed from the incremental encoders (motor side) and
is converted to link side quantities using the gear ratio of each joint.

Table A.1: Result of the reinforcement learning process.

joint value (krl)

pelvis rotation 1.0

pelvis adduction 1.0

hip rotation left/right 1.0

hip adduction left/right 1.0

hip flexion left/right 1.3

knee flexion left/right 1.0

ankle flexion left/right 0.8

ankle adduction left/right 0.8

toe flexion left/right 0.6

shoulder flexion left/right 0.8

shoulder adduction left/right 0.8

elbow flexion left/right 0.8

127

128 Joint Tracking Performance

−0.006

−0.004

−0.002

0

0.002

0.004

0.006

5 10 15 20 25 30

∆
Θ

k
n
e
e

[r
ad

]

t [s]

−0.003

−0.0015

0

0.0015

0.003

5 10 15 20 25 30

∆
Θ

a
n
k
le
,f

le
x

[r
ad

]

t [s]

−0.003

−0.0015

0

0.0015

0.003

5 10 15 20 25 30

∆
Θ

a
n
k
le
,a
d
d

[r
ad

]

t [s]

Figure A.1: Reinforcement learning results for knee and ankle joints.

129

−0.001

−0.0005

0

0.0005

0.001

0 3 6 9 12

∆
Θ

p
e
lv
is
,a
d
d
u
c
ti
o
n

[r
ad

]

t [s]

−1

−0.5

0

0.5

1

0 3 6 9 12

Θ̇
p
e
lv
is
,a
d
d
u
c
ti
o
n

[r
ad

/s
]

t [s]

−0.001

−0.0005

0

0.0005

0.001

0 3 6 9 12

∆
Θ

p
e
lv
is
,r
o
ta

ti
o
n

[r
ad

]

t [s]

−1

−0.5

0

0.5

1

0 3 6 9 12

Θ̇
p
e
lv
is
,r
o
ta

ti
o
n

[r
ad

/s
]

t [s]

−0.001

−0.0005

0

0.0005

0.001

0 3 6 9 12

∆
Θ

h
ip
,a
d
d
u
c
ti
o
n

[r
ad

]

t [s]

−1

−0.5

0

0.5

1

0 3 6 9 12

Θ̇
h
ip
,a
d
d
u
c
ti
o
n

[r
ad

/s
]

t [s]

−0.001

−0.0005

0

0.0005

0.001

0 3 6 9 12

∆
Θ

h
ip
,r
o
ta

ti
o
n

[r
ad

]

t [s]

−1

−0.5

0

0.5

1

0 3 6 9 12

Θ̇
h
ip
,r
o
ta

ti
o
n

[r
ad

/s
]

t [s]

Figure A.2: Joint tracking error and desired velocity while walking with 0.75 m/s.

130 Joint Tracking Performance

−0.003

−0.0015

0

0.0015

0.003

0 3 6 9 12

∆
Θ

h
ip
,f

le
x
io
n

[r
ad

]

t [s]

−6

−4

−2

0

2

0 3 6 9 12

Θ̇
h
ip
,f

le
x
io
n

[r
ad

/s
]

t [s]

−0.003

−0.0015

0

0.0015

0.003

0 3 6 9 12

∆
Θ

k
n
e
e
,f

le
x
io
n

[r
ad

]

t [s]

−6

−4

−2

0

2

4

6

0 3 6 9 12

Θ̇
k
n
e
e
,f

le
x
io
n

[r
ad

/s
]

t [s]

−0.003

−0.0015

0

0.0015

0.003

0 3 6 9 12

∆
Θ

a
n
k
le
,a
d
d
u
c
ti
o
n

[r
ad

]

t [s]

−3

−2

−1

0

1

2

3

0 3 6 9 12

Θ̇
a
n
k
le
,a
d
d
u
c
ti
o
n

[r
ad

/s
]

t [s]

−0.003

−0.0015

0

0.0015

0.003

0 3 6 9 12

∆
Θ

a
n
k
le
,f

le
x
io
n

[r
ad

]

t [s]

−2

−1

0

1

2

0 3 6 9 12

Θ̇
a
n
k
le
,f

le
x
io
n

[r
ad

/s
]

t [s]

Figure A.3: Joint tracking error and desired velocity while walking with 0.75 m/s.

Appendix B

Prediction Model Gradient Computation

State gradients for the reduced prediction model:

1. Inverse mass matrix M−1:

∂M−1

∂z
= 0

∂M−1

∂ϕ
= −∂ det(M)

∂ϕ

1
det(M)2 M̂−1

+
1

det(M)

∂M̂−1

∂ϕ

with

M−1 =
1

det(M)
M̂−1

=
1

det(M)

[
mx2 + z2 + Θyy mxcϕ + mzsϕ

mxcϕ + mzsϕ m

]

det(M) = m(mx2 + z2 + Θyy) + (mxcϕ + mzsϕ)
2

∂ det(M)

∂ϕ
= 2(mxcϕ + mzsϕ)(−mxsϕ + mzcϕ)

∂M̂−1

∂ϕ
=

[
0 −mxsϕ + mzcϕ

−mxsϕ + mzcϕ 0

]

2. Vector h:

∂h
∂q

=

[
0 −mz̈sϕ −mẍcϕ + mzϕ̇2

xsϕ + mxϕ̇2
xcϕ + 2mẋϕ̇xsϕ − 2mżϕ̇xcϕ

0 mxgsϕ −mzgcϕ

]

∂h
∂q̇

=

[
0 −2mzϕ̇xcϕ + 2mxϕ̇xsϕ − 2mẋcϕ − 2mżsϕ

0 2mxẋ + 2mzż

]

3. Contact deformation ∆zr,i:

∂∆zr,i

∂q
=
[
1 −x f i(t) cos ϕx − z f i(t) sin ϕx

]

∂∆żr,i

∂q
=
[
0 −ẋ f i(t) cos ϕx + x f i(t)ϕ̇x sin ϕx − ż f i(t) sin ϕx − z f i(t)ϕ̇x cos ϕx

]

∂2∆zr,i

∂q2 =

[
0 0
0 x f i(t) sin ϕx − z f i(t) cos ϕx

]

∂2∆zr,i

∂q∂q̇
=

∂∆zr,i

∂q̇
= 0

131

132 Prediction Model Gradient Computation

Modification gradients for ∆Lx = p:

∂∆zr,i

∂p
= − sin ϕx

∂∆żr,i

∂p
= −ϕ̇x cos ϕx

∂2∆zr,i

∂q∂p
=
[
0 − cos ϕx

]

Modification gradients for xb(t) and its derivatives:

∂M−1

∂xb
= −∂ det(M)

∂xb

1
det(M)2 M̂−1

+
1

det(M)

∂M̂−1

∂xb

∂ det(M)

∂xb
= 2m2

bxb + 2(mxcϕ + mzsϕ)mbcϕ

∂M̂
∂xb

=

[
2mbxb mbcϕ

mbcϕ 0

]

∂h
∂xb

=

[
mb ϕ̇2

xsϕ

mb z̈b + 2mb ẋb ϕ̇x −mbgcϕ

]

∂h
∂ẋb

=

[−2mb ϕ̇xcϕ

2mbxb ϕ̇x

]

∂h
∂ẍb

=

[−mbsϕ

mbzb

]

Appendix C

Alternative Derivation of Pontryagin’s Mini-

mum Principle for Problem B

This part gives an alternative derivation of Pontryagin’s Minimum Principle for problem
B. It can be derived by stating the augmented cost function for the original problem (6.5)
and (6.9)

J̄ =s(zr,ext(te), p) +
te∫

ta

h(zr,ext, p, u, t) + ψT(f (zr,ext, p, u, t)− żr,ext)dt

+ ψT
a (zr,ext,a − zr,ext(ta))

with the Lagrange multipliers ψ(t) and ψa. Using the Hamiltonian H(zr,ext, p, u, t, ψ) =
h(zr,ext, p, u, t) + ψT f (zr,ext, p, u, t) the first variation is

δ J̄ =
∂s

∂zr,ext

∣∣∣∣
te

δzr,ext(te) +
∂s
∂p

∣∣∣∣
te

δp + δψT
a (zr,ext,a − zr,ext(ta)) + ψa · 0

+

te∫

ta

∂H
∂zr,ext

δz +
∂H
∂p

δp +
∂H
∂u

δu +
∂H
∂ψ

δψ− δψT ẏ−ψTδẏ dt.

Integrating
∫

ψTδẏ by parts and rearranging leads to

δ J̄ =

(
∂s

∂zr,ext

∣∣∣∣
te

−ψ(te)
T

)
δzr,ext(te) + δψT

0 (zr,ext,a − zr,ext(ta))

+

te∫

ta

(
∂H

∂zr,ext
+ ψ̇

T
)

δzr,ext +

(
∂H
∂ψ
− ẏT

)
δψ +

∂H
∂u

δu dt

+
∂s
∂p

∣∣∣∣
te

δp +

te∫

ta

∂H
∂p

δp dt

The variation of the parameter δp in the last term can be extracted from the integrand
because it is constant over time. The conditions for the optimal solution are finally

∂s
∂zr,ext

∣∣∣∣
te

−ψ(te)
T = 0 zr,ext,a − zr,ext(ta) = 0 (C.1)

∂H
∂zr,ext

+ ψ̇
T
= 0

∂H
∂ψ
− żT

r,ext = 0 (C.2)

∂H
∂u

δu = 0 (C.3)

133

134 Alternative Derivation of Pontryagin’s Minimum Principle for Problem B

 ∂s

∂p

∣∣∣∣
te

+

te∫

ta

∂H
∂p

dt

 δp = 0. (C.4)

These are the same conditions as for an optimal control problem with free final state and
fixed final time with the additional condition (C.4) for the free parameters p.

Appendix D

Supervised Student Theses

Within the scope of this thesis a number of student theses were supervised by the author
at the chair of applied mechanics. They result with the scientific, technical and content
guidance of the author of the present work. Various issues were investigated concerning
robust bipedal walking. Some parts of those supervised theses may have been incorpo-
rated into the present thesis. The author would like to express his sincere gratitude to all
formerly supervised students for their commitment supporting this research project. The
following list chronologically summarizes student theses related to the topic:

• TOBIAS BERNINGER:
Dezentrale Gelenkregelung für humanoide Roboter. Master thesis 2016.
Parts of the thesis influenced the presented method in Subsection 3.3.3.

• LISA JESCHEK:
Robustes Gehen unter geometrischen Beschränkungen. Master thesis 2016.
Methods and results of the thesis are the base for Section 6.6.

• STEFANIE ZIMMERMANN:
Modellbasierte Optimierung für robustes zweibeiniges Laufen. Bachelor thesis 2016.
Initial implementation of the spatial model of Section 4.5 and its application in Sub-
section 6.4.2 was done in this work.

• MARC ANDREAS KLESER:
Modellprädiktive Trajektorienoptimierung für robustes zweibeiniges Laufen. Diploma
thesis 2016.
The method presented in Section 6.5 is based on the algorithm of the thesis.

• FELIX ELLENSOHN:
Entwicklung einer Kollokationsmethode zur Online-Trajektorienoptimierung für
Humanoide Roboter. Master thesis 2016.

• PHILIPP SEIWALD:
Entwicklung eines Zustandsschätzers für zweibeinige Laufroboter. Semester thesis
2015.
The experience with this thesis helped to develop the state estimator in Section 5.2.

• ANNA-KAARINA SEPPÄLÄ:
Integration of kinematic information into the state estimator of a humanoid robot.
Master thesis 2015.

135

Bibliography

Adamy, J. (2009). Nichtlineare Regelungen. Berlin, Heidelberg: Springer Berlin Heidelberg.

Aftab, Z., T. Robert, and P.-B. Wieber (2012). “Predicting multiple step placements for
human balance recovery tasks.” In: Journal of biomechanics 45.16.

Antoulas, A. C. (2009). Approximation of Large-Scale Dynamical Systems. Advances in De-
sign and Control. Society for Industrial and Applied Mathematics.

Aubin, J.-P. (1991). Viability theory. Springer Science & Business Media.

Bessonnet, G. (2004). “Optimal Gait Synthesis of a Seven-Link Planar Biped”. In: The In-
ternational Journal of Robotics Research 23.10-11, pp. 1059–1073.

Betts, J. T. (1998). “Survey of Numerical Methods for Trajectory Optimization”. In: Survey
of numerical methods for trajectory optimization 21.2, pp. 193–207.

Bloesch, M., M. Hutter, M. A. Hoepflinger, S. Leutenegger, C. Gehring, C. D. Remy, and
R. Siegwart (2012). “State Estimation for Legged Robots - Consistent Fusion of Leg
Kinematics and IMU”. In: Proceedings of Robotics: Science and Systems.

Boček, M. (1980). “Conjugate gradient algorithm for optimal control problems with pa-
rameters”. In: Kybernetika 16.5, pp. 454–461.

Bogacki, P. and L. Shampine (1989). “A 3(2) Pair of Runge-Kutta Formulas”. In: Appl Math
Lett 2.4, pp. 321–325.

Bryson, A. E. (1969). Applied optimal control: optimization, estimation and control. CRC Press.

Buschmann, T., S. Lohmeier, H. Ulbrich, and F. Pfeiffer (2005). “Optimization based gait
pattern generation for a biped robot”. In: IEEE/RAS International Conference on Hu-
manoid Robots. IEEE, pp. 98–103.

Buschmann, T. (2010). “Simulation and Control of Biped Walking Robots”. PhD thesis.

Buschmann, T., A. Ewald, H. Ulbrich, and A. Buschges (2012). “Event-based walking
control - From neurobiology to biped robots”. In: IEEE/RSJ International Conference on
Intelligent Robots and Systems. IEEE, pp. 1793–1800.

Buschmann, T., V. Favot, S. Lohmeier, M. Schwienbacher, and H. Ulbrich (2011). “Exper-
iments in fast biped walking”. In: IEEE International Conference on Mechatronics. IEEE,
pp. 863–868.

Buschmann, T., S. Lohmeier, M. Bachmayer, H. Ulbrich, and F. Pfeiffer (2007). “A collo-
cation method for real-time walking pattern generation”. In: IEEE/RAS International
Conference on Humanoid Robots. IEEE, pp. 1–6.

Buschmann, T., S. Lohmeier, and H. Ulbrich (2009). “Biped walking control based on hy-
brid position/force control”. In: IEEE/RSJ International Conference on Intelligent Robots
and Systems. IEEE, pp. 3019–3024.

Chestnutt, J. and Y. Takaoka (2010). “Safe adjustment regions for legged locomotion paths”.
In: IEEE International Conference on Humanoid Robotics. IEEE, pp. 224–229.

137

138 BIBLIOGRAPHY

Chevallereau, C., D. Djoudi, and J. Grizzle (2008). “Stable Bipedal Walking With Foot
Rotation Through Direct Regulation of the Zero Moment Point”. In: IEEE Transactions
on Robotics 24.2, pp. 390–401.

Deits, R. and R. Tedrake (2014). “Footstep planning on uneven terrain with mixed-integer
convex optimization”. In: 2014 IEEE-RAS International Conference on Humanoid Robots.
Vol. 2015-Febru. IEEE, pp. 279–286.

— (2015). “Computing large convex regions of obstacle-free space through semidefinite
programming”. In: Springer Tracts in Advanced Robotics 107, pp. 109–124.

Diedam, H., D. Dimitrov, P.-B. Wieber, K. Mombaur, and M. Diehl (2008). “Online walk-
ing gait generation with adaptive foot positioning through Linear Model Predictive
control”. In: IEEE/RSJ International Conference on Intelligent Robots and Systems. IEEE,
pp. 1121–1126.

Diehl, M., H. Ferreau, and N. Haverbeke (2009). “Efficient numerical methods for non-
linear MPC and moving horizon estimation”. In: Nonlinear Model Predictive Control,
pp. 391–417.

Dimitrov, D., P.-B. Wieber, H. J. Ferreau, and M. Diehl (2008). “On the implementation
of model predictive control for on-line walking pattern generation”. In: IEEE Interna-
tional Conference on Robotics and Automation. IEEE, pp. 2685–2690.

Englsberger, J., C. Ott, M. a. Roa, A. Albu-Schaffer, and G. Hirzinger (2011). “Bipedal
walking control based on Capture Point dynamics”. In: IEEE/RSJ International Confer-
ence on Intelligent Robots and System. IEEE, pp. 4420–4427.

Englsberger, J. and C. Ott (2012). “Integration of vertical COM motion and angular mo-
mentum in an extended Capture Point tracking controller for bipedal walking”. In:
IEEE-RAS International Conference on Humanoid Robots, pp. 183–189.

Feng, S., E. Whitman, X. Xinjilefu, and C. G. Atkeson (2014). “Optimization based full
body control for the atlas robot”. In: 14th IEEE-RAS International Conference on Hu-
manoid Robots (Humanoids). IEEE, pp. 120–127.

Fujimoto, Y., S. Obata, and A. Kawamura (1998). “Robust biped walking with active inter-
action control between foot and ground”. In: IEEE International Conference on Robotics
and Automation. Vol. 3. May. IEEE, pp. 2030–2035.

Furusho, J. and M. Masubuchi (1987). “A theoretically motivated reduced order model
for the control of dynamic biped locomotion”. In: Journal of Dynamic Systems, Measure-
ment, and Control 109.2, pp. 155–163.

Geering, H. (2007). Optimal control with engineering applications.

Goswami, A. (1999). “Foot rotation indicator (FRI) point: a new gait planning tool to
evaluate postural stability of biped robots”. In: Proceedings 1999 IEEE International
Conference on Robotics and Automation. Vol. 1. May, pp. 47–52.

Goswami, A. and V. Kallem (2004). “Rate of change of angular momentum and balance
maintenance of biped robots”. In: IEEE International Conference on Robotics and Automa-
tion. IEEE, 3785–3790 Vol.4.

Graichen, K. (2015). Methoden der optimierung und optimalen steuerung.

Graichen, K. and B. Käpernick (2011). “A Real-Time Gradient Method for Nonlinear
Model Predictive Control”. In: Frontiers of Model Predictive Control 2010, pp. 9–28.

Griewank, A. (2000). Evaluating derivatives : principles and techniques of algorithmic differen-
tiation. 19. Siam.

BIBLIOGRAPHY 139

Grizzle, J., E. Westervelt, and C. Canudas-de-Wit (2003). “Event-based PI control of an
underactuated biped walker”. In: 42nd IEEE International Conference on Decision and
Control. Vol. 3. December. IEEE, pp. 3091–3096.

Harada, K., S. Kajita, K. Kaneko, and H. Hirukawa (2004). “An analytical method on
real-time gait planning for a humanoid robot”. In: IEEE/RAS International Conference
on Humanoid Robots. Vol. 2. IEEE, pp. 640–655.

Hashimoto, K., H.-j. Kang, M. Nakamura, E. Falotico, H.-o. Lim, A. Takanishi, C. Laschi,
P. Dario, and A. Berthoz (2012). “Realization of biped walking on soft ground with
stabilization control based on gait analysis”. In: IEEE/RSJ International Conference on
Intelligent Robots and Systems. 2. IEEE, pp. 2064–2069.

Hermann, R. and A. Krener (1977). “Nonlinear controllability and observability”. In: IEEE
Transactions on Automatic Control 22.5, pp. 728–740.

Hildebrandt, A.-C., R. Wittmann, D. Wahrmann, A. Ewald, and T. Buschmann (2014).
“Real-time 3D collision avoidance for biped robots”. In: IEEE/RSJ International Confer-
ence on Intelligent Robots and Systems. IEEE, pp. 4184–4190.

Hildebrandt, A.-C., M. Demmeler, R. Wittmann, D. Wahrmann, F. Sygulla, D. Rixen, and
T. Buschmann (2016). “Real-Time Predictive Kinematic Evaluation and Optimization
for Biped Robots”. In: IEEE/RSJ International Conference on Intelligent Robots and Sys-
tems. Ed. by IEEE.

Hildebrandt, A.-C., D. Wahrmann, R. Wittmann, D. Rixen, and T. Buschmann (2015).
“Real-Time Pattern Generation Among Obstacles for Biped Robots”. In: IEEE/RSJ In-
ternational Conference on Intelligent Robots and Systems. IEEE, pp. 2780–2786.

Hildebrandt, A.-C., R. Wittmann, D. Wahrmann, F. Sygulla, D. Rixen, and T. Buschmann
(2017). “Versatile and Robust Bipedal Walking in Unknown Environments”. In: IEEE
Transactions on Robotics (submitted).

Hirai, K., M. Hirose, Y. Haikawa, and T. Takenaka (1998). “The development of Honda
humanoid robot”. In: IEEE International Conference on Robotics and Automation. Vol. 2.
IEEE, pp. 1321–1326.

Hirose, M. and K. Ogawa (2007). “Honda humanoid robots development.” In: Philo-
sophical transactions. Series A, Mathematical, physical, and engineering sciences 365.1850,
pp. 11–19.

Hobbelen, D. G. E. and M. Wisse (2009). “Active Lateral Foot Placement for 3D Stabiliza-
tion of a Limit Cycle Walker Prototype”. In: International Journal of Humanoid Robotics
06.01, pp. 93–116.

Hodgins, J. and M. Raibert (1991). “Adjusting step length for rough terrain locomotion”.
In: IEEE Transactions on Robotics and Automation 7.3, pp. 289–298.

Huang, A.-C., Y.-F. Chen, and C.-Y. Kai (2015). Adaptive Control of Underactuated Mechani-
cal Systems. River Edge, NJ, USA: World Scientific Publishing Co., Inc.

Huang, Q. H. Q., S. Kajita, N. Koyachi, K. Kaneko, K. Yokoi, H. Arai, K. Komoriya, and K.
Tanie (1999). “A high stability, smooth walking pattern for a biped robot”. In: Proceed-
ings 1999 IEEE International Conference on Robotics and Automation. Vol. 1. May, pp. 65–
71.

Isermann, R. (2011). Identification of Dynamic Systems. Springer Berlin.

Kajita, S., H. Hirukawa, K. Harada, and K. Yokoi (2014). Introduction to Humanoid Robotics.
Springer Tracts in Advanced Robotics. Springer Berlin Heidelberg.

140 BIBLIOGRAPHY

Kajita, S., F. Kanehiro, K. Kaneko, K. Fujiwara, K. Harada, K. Yokoi, and H. Hirukawa
(2003). “Biped walking pattern generation by using preview control of zero-moment
point”. In: IEEE International Conference on Robotics and Automation. IEEE, pp. 1620–
1626.

Kajita, S., M. Morisawa, K. Miura, S. Nakaoka, K. Harada, K. Kaneko, F. Kanehiro, and
K. Yokoi (2010). “Biped walking stabilization based on linear inverted pendulum
tracking”. In: IEEE/RSJ International Conference on Intelligent Robots and Systems. IEEE,
pp. 4489–4496.

Kajita, S. and K. Tani (1995). “Experimental study of biped dynamic walking in the lin-
ear inverted pendulum mode”. In: Proceedings of 1995 IEEE International Conference on
Robotics and Automation. Vol. 3, pp. 2885–2891.

Kajita, S., F. Kanehiro, K. Kando, K. Yokoi, and H. Hirukawa (2001). “The 3D Linear In-
verted Pendulum Mode: A simple modeling for a biped walking pattern generation”.
In: IEEE/RSJ International Conference on Intelligent Robots and Systems. IEEE, pp. 239–
246.

Kajita, S., A. Kobayashit, and K. Tani (1990). “Dynamic walking control of a biped robot
along a potential energy conserving orbit”. In: IEEE/RSJ International Conference on
Intelligent Robots and Systems. IEEE, pp. 789–794.

Kalman, R. (1960). “A new approach to linear filtering and prediction problems”. In: Jour-
nal of basic Engineering 82.Series D, pp. 35–45.

Kaneko, K., F. Kanehiro, S. Kajita, H. Hirukawa, T. Kawasaki, M. Hirata, K. Akachi, and T.
Isozumi (2004). “Humanoid robot HRP-2”. In: IEEE International Conference on Robotics
and Automation. April. IEEE, 1083–1090 Vol.2.

Khalil, H. K. and J. W. Grizzle (2002). Nonlinear systems. Vol. 3. Prentice hall Upper Saddle
River.

Koch, K. H., D. Clever, K. Mombaur, and D. M. Endres (2015). “Learning Movement
Primitives from Optimal and Dynamically Feasible Trajectories for Humanoid Walk-
ing”. In: IEEE/RAS International Conference on Humanoid Robots (Humanoids 2015), pp. 866–
873.

Koolen, T., T. de Boer, J. Rebula, A. Goswami, and J. Pratt (2012). “Capturability-based
analysis and control of legged locomotion, Part 1: Theory and application to three
simple gait models”. In: The International Journal of Robotics Research 31.9, pp. 1094–
1113.

Kröger, T. (2010). On-Line Trajectory Generation in Robotic Systems: Basic Concepts for Instan-
taneous Reactions to Unforeseen (Sensor) Events. Vol. 58. Springer.

Kuindersma, S., R. Deits, M. F. Andr, H. Dai, F. Permenter, K. Pat, and M. Russ (2015).
“Optimization-based Locomotion Planning , Estimation , and Control Design for the
Atlas Humanoid Robot”. In: Autonomous Robots 40.3, pp. 1–27.

Kuindersma, S., F. Permenter, and R. Tedrake (2014). “An efficiently solvable quadratic
program for stabilizing dynamic locomotion”. In: IEEE International Conference on
Robotics and Automation. IEEE, pp. 2589–2594.

Kwon, S. (2007). “Estimation of the center of mass of humanoid robot”. In: International
Conference on Control, Automation and Systems. IEEE, pp. 2705–2709.

Lanari, L. and S. Hutchinson (2015). “Inversion-based gait generation for humanoid robots”.
In: 2015 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). 1.
IEEE, pp. 1592–1598.

BIBLIOGRAPHY 141

Lasdon, L., S. Mitter, and A. Waren (1967). “The conjugate gradient method for optimal
control problems”. In: IEEE Transactions on Automatic Control 12.2, pp. 132–138.

Leine, R. I. and H. Nijmeijer (2004). Dynamics and Bifurcations of Non-Smooth Mechanical
Systems. Vol. 18. Lecture Notes in Applied and Computational Mechanics. Berlin, Hei-
delberg: Springer Berlin Heidelberg.

Li, W., L. Jolla, and E. Todorov (2004). “Iterative Linear Quadratic Regulator Design for
Nonlinear Biological Movement Systems”. In: International Conference on Informatics in
Control, Automation and Robotics, pp. 222–229.

Liégeois, A. (1977). “Automatic Supervisory Control of the Configuration and Behavior of
Multibody Mechanisms”. In: IEEE Transactions on Systems, Man, and Cybernetics 7.12,
pp. 868–871.

Liu, H., W. Liu, and L. J. Latecki (2010). “Convex shape decomposition”. In: Proceedings of
the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 97–
104.

Löffler, K., M. Gienger, and F. Pfeiffer (2002). “Model based control of a biped robot”. In:
7th International Workshop on Advanced Motion Control. IEEE, pp. 443–448.

Löffler, K. (2006). “Dynamik und Regelung einer zweibeinigen Laufmaschine”. PhD the-
sis.

Lohmeier, S. (2009). “System design and control of anthropomorphic walking robot LOLA”.
In: IEEE/ASME Transactions on Mechatronics 14.6, pp. 658–666.

— (2010). “Design and Realization of a Humanoid Robot for Fast and Autonomous
Bipedal Locomotion”. PhD thesis.

Masuya, K. and T. Sugihara (2013). “A Dual-stage Complementary Filter for Dead Reck-
oning of a Biped Robot via Estimated Contact Point”. In: IEEE/RAS International Con-
ference on Humanoid Robots. IEEE.

Matsumoto, T., T. Takenaka, and T. Yoshiike (2004). Gait generation device for legged mobile
robot.

Maybeck, P. S. (1979). Stochastic models, estimation, and control. Vol. 141. Mathematics in
Science and Engineering.

Mayr, J., H. Gattringer, and H. Bremer (2012). “A Bipedal Walking Pattern Generator that
Considers Multi-Body Dynamics by Angular Momentum Estimation”. In: pp. 177–
182.

M’Closkey, R. T. and J. W. Burdick (1993). “Periodic Motions of a Hopping Robot With
Vertical and Forward Motion”. In: The International Journal of Robotics Research 12.3,
pp. 197–218.

Missura, M. and S. Behnke (2015). “Gradient-Driven Online Learning of Bipedal Push Re-
covery”. In: IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 387–
392.

Morisawa, M., K. Harada, and S. Kajita (2007). “Experimentation of humanoid walking
allowing immediate modification of foot place based on analytical solution”. In: IEEE
International Conference on Robotics and Automation. April. IEEE, pp. 10–14.

Morisawa, M., S. Kajita, F. Kanehiro, K. Kaneko, K. Miura, and K. Yokoi (2012). “Balance
control based on Capture Point error compensation for biped walking on uneven ter-
rain”. In: IEEE/RAS International Conference on Humanoid Robots. IEEE, pp. 734–740.

142 BIBLIOGRAPHY

Naveau, M., M. Kudruss, O. Stasse, C. Kirches, K. Mombaur, and P. Souères (2017). “A
ReactiveWalking Pattern Generator Based on Nonlinear Model Predictive Control”.
In: IEEE Robotics and Automation Letters 2.1, pp. 10–17.

Nelson, G., A. Saunders, N. Neville, B. Swilling, J. Bondaryk, D. Billings, C. Lee, R.
Playter, and M. Raibert (2012). “PETMAN: A Humanoid Robot for Testing Chemi-
cal Protective Clothing”. In: Journal of the Robotics Society of Japan 30.4, pp. 372–377.

Nishiwaki, K., J. Chestnutt, and S. Kagami (2012). “Autonomous Navigation of a Hu-
manoid Robot over Unknown Rough Terrain using a Laser Range Sensor”. In: The
International Journal of Robotics Research.

Nishiwaki, K. and S. Kagami (2009a). “Online Walking Control System for Humanoids
with Short Cycle Pattern Generation”. In: The International Journal of Robotics Research
28.6, pp. 729–742.

Nishiwaki, K. and S. Kagami (2006). “High frequency walking pattern generation based
on preview control of ZMP”. In: IEEE/RAS International Conference on Humanoid Robots.
May. IEEE, pp. 2667–2672.

— (2007a). “Sensor feedback modification methods that are suitable for the short cycle
pattern generation of humanoid walking”. In: IEEE/RSJ International Conference on In-
telligent Robots and System. IEEE, pp. 4214–4220.

— (2007b). “Walking control on uneven terrain with short cycle pattern generation”. In:
IEEE/RAS International Conference on Humanoid Robots. IEEE, pp. 447–453.

— (2009b). “Frequent walking pattern generation that uses estimated actual posture for
robust walking control”. In: IEEE/RAS International Conference on Humanoid Robots.
IEEE, pp. 535–541.

Nocedal, J. and S. J. Wright (2004). “Numerical Optimization”. In: pp. 1–651.

Ott, C., R. Mukherjee, and Y. Nakamura (2010). “Unified Impedance and Admittance
Control”. In: Robotics and Automation (ICRA), 2010 IEEE International Conference on,
pp. 554–561.

Ott, C., M. a. Roa, and G. Hirzinger (2011). “Posture and balance control for biped robots
based on contact force optimization”. In: IEEE/RAS International Conference on Hu-
manoid Robots. IEEE, pp. 26–33.

Park, I.-w., J.-y. Kim, J. Lee, and J.-h. Oh (2005). “Mechanical design of humanoid robot
platform KHR-3 (KAIST humanoid robot - 3: HUBO)”. In: IEEE/RAS International Con-
ference on Humanoid Robots. Vol. 3. IEEE, pp. 321–326.

Pongsak, L., O. Masafumi, and Y. Nakamura (2002). “Optimal filtering for humanoid
robot state estimators”. In: Proceedings of SICE System Integration Division Annual Con-
ference. 4, pp. 5–6.

Posa, M., C. Cantu, and R. Tedrake (2013). “A direct method for trajectory optimization
of rigid bodies through contact”. In: The International Journal of Robotics Research 33.1,
pp. 69–81.

Pratt, J. (2001). “Virtual Model Control: An Intuitive Approach for Bipedal Locomotion”.
In: The International Journal of Robotics Research 20.2, pp. 129–143.

Pratt, J., T. Koolen, T. de Boer, J. Rebula, S. Cotton, J. Carff, M. Johnson, and P. Neuhaus
(2012). “Capturability-based analysis and control of legged locomotion, Part 2: Ap-
plication to M2V2, a lower-body humanoid”. In: The International Journal of Robotics
Research 31.10, pp. 1117–1133.

BIBLIOGRAPHY 143

Pratt, J. and R. Tedrake (2006). “Velocity-based stability margins for fast bipedal walk-
ing”. In: Fast Motions in Biomechanics and Robotics, pp. 1–27.

Pratt, J., J. Carff, S. Drakunov, and A. Goswami (2006). “Capture Point: A Step toward
Humanoid Push Recovery”. In: IEEE/RAS International Conference on Humanoid Robots.
IEEE, pp. 200–207.

Raibert, M. (1986). Legged Robots that Balance. Cambridge, Massachusetts: The MIT Press
series in artificial intelligence.

Ramos, O. E., M. García, N. Mansard, O. Stasse, J.-B. Hayet, and P. Souères (2014). “To-
ward Reactive Vision-Guided Walking on Rough Terrain: An Inverse-Dynamics Based
Approach”. In: International Journal of Humanoid Robotics 11.02, p. 1441004.

Rebula, J., F. Canas, J. Pratt, and A. Goswami (2007). “Learning Capture Points for hu-
manoid push recovery”. In: IEEE/RAS International Conference on Humanoid Robots.
IEEE, pp. 65–72.

Renjewski, D., A. Sprowitz, A. Peekema, M. Jones, and J. Hurst (2015). “Exciting Engi-
neered Passive Dynamics in a Bipedal Robot”. In: IEEE Transactions on Robotics 31.5,
pp. 1244–1251.

Romano, F., D. Pucci, and F. Nori (2014). “Collocated Adaptive Control of Underactuated
Mechanical Systems”. In: 31.6, pp. 1527–1536.

Sardain, P. and G. Bessonnet (2004). “Forces Acting on a Biped Robot. Center of Pressure
- Zero Moment Point”. In: IEEE Transactions on Systems, Man, and Cybernetics - Part A:
Systems and Humans 34.5, pp. 630–637.

Sarmiento, A., R. Murrieta-Cid, and S. Hutchinson (2005). “A sample-based convex cover
for rapidly finding an object in a 3-D environment”. In: Proceedings - IEEE International
Conference on Robotics and Automation. Vol. 2005. April, pp. 3486–3491.

Schuetz, C., T. Buschmann, J. Baur, J. Pfaff, and H. Ulbrich (2014). “Predictive Online
Inverse Kinematics for Redundant Manipulators”. In: IEEE International Conference on
Robotics and Automation. IEEE, pp. 5056–5061.

Schwienbacher, M. (2014). “Efficient Algorithms for Biped Robots”. PhD thesis.

Schwienbacher, M., T. Buschmann, S. Lohmeier, V. Favot, and H. Ulbrich (2011). “Self-
collision avoidance and angular momentum compensation for a biped humanoid
robot”. In: IEEE International Conference on Robotics and Automation. IEEE, pp. 581–586.

Sherikov, A., D. Dimitrov, and P.-b. Wieber (2014). “Whole body motion controller with
long-term balance constraints”. In: IEEE/RAS International Conference on Humanoid
Robots. IEEE, pp. 444–450.

Siciliano, B., L. Sciavicco, and L. Villani (2009). Robotics: modelling, planning and control.
Ed. by And. Springer.

Stephens, B. J. (2011). “State estimation for force-controlled humanoid balance using sim-
ple models in the presence of modeling error”. In: IEEE International Conference on
Robotics and Automation. IEEE, pp. 3994–3999.

Stephens, B. J. and C. G. Atkeson (2010). “Push Recovery by stepping for humanoid
robots with force controlled joints”. In: IEEE/RAS International Conference on Humanoid
Robots. IEEE, pp. 52–59.

Sugihara, T. and Y. Nakamura (2005). “A Fast Online Gait Planning with Boundary Con-
dition Relaxation for Humanoid Robots”. In: IEEE International Conference on Robotics
and Automation. April. IEEE, pp. 305–310.

144 BIBLIOGRAPHY

Sutton, R. S. and A. G. Barto (1998). Reinforcement learning: An introduction. Cambridge:
MIT press.

Tajima, R., D. Honda, and K. Suga (2009). “Fast running experiments involving a hu-
manoid robot”. In: IEEE International Conference on Robotics and Automation. IEEE,
pp. 1571–1576.

Tajima, R. and K. Suga (2006). “Motion having a Flight Phase: Experiments Involving
a One-legged Robot”. In: IEEE/RSJ International Conference on Intelligent Robots and
Systems. IEEE, pp. 1726–1731.

Takenaka, T., T. Matsumoto, and T. Yoshiike (2009a). “Real time motion generation and
control for biped robot - 1st report: Walking gait pattern generation-”. In: IEEE/RSJ
International Conference on Intelligent Robots and Systems. IEEE, pp. 1084–1091.

— (2009b). “Real time motion generation and control for biped robot - 3rd report: Dy-
namics error compensation-”. In: IEEE/RSJ International Conference on Intelligent Robots
and Systems. IEEE, pp. 1594–1600.

Takenaka, T., T. Matsumoto, T. Yoshiike, T. Hasegawa, S. Shirokura, H. Kaneko, and A.
Orita (2009c). “Real time motion generation and control for biped robot -4th report:
Integrated balance control”. In: IEEE/RSJ International Conference on Intelligent Robots
and Systems. IEEE, pp. 1601–1608.

Tassa, Y., T. Erez, and E. Todorov (2012). “Synthesis and stabilization of complex behav-
iors through online trajectory optimization”. In: 2012 IEEE/RSJ International Conference
on Intelligent Robots and Systems, pp. 4906–4913.

Ulbrich, H. (1996). Maschinendynamik. Teubner Verlag.

Urata, J., Y. Nakanishi, K. Okada, and M. Inaba (2010). “Design of High Torque and High
Speed Leg Module”. In: IEEE International Conference on Intelligent Robots and Systems.
IEEE, pp. 4497–4502.

Urata, J., K. Nishiwaki, Y. Nakanishi, K. Okada, S. Kagami, and M. Inaba (2011). “On-
line decision of foot placement using singular LQ preview regulation”. In: IEEE-RAS
International Conference on Humanoid Robots. IEEE, pp. 13–18.

Vukobratovic, M. and B. Borovac (2004). “Zero-moment point - thirty five years of its
life”. In: International Journal of Humanoid Robotics 1.1, pp. 157–173.

Vukobratovic, M. and J. Stepanenko (1972). “On The Stability of Anthropomorphic Sys-
tems”. In: Mathematical Bioscience 15, pp. 1–37.

Wahrmann, D., A.-C. Hildebrandt, R. Wittmann, D. Rixen, and T. Buschmann (2016).
“Fast Object Approximation for Real-Time 3D Obstacle Avoidance with Biped Robots
(submitted)”. In: IEEE International Conference on Advanced Intelligent Mechatronics.

Westervelt, E., J. Grizzle, and D. Koditschek (2003). “Hybrid zero dynamics of planar
biped walkers”. In: IEEE Transactions on Automatic Control 48.1, pp. 42–56.

Westervelt, E., C. Chevallereau, B. Morris, J. Grizzle, and J. Ho Choi (2007). Feedback Con-
trol of Dynamic Bipedal Robot Locomotion. Vol. 26. Automation and Control Engineering.
CRC Press.

Wieber, P.-B. (2002). “On the stability of walking systems”. In: Proceedings of the Third
IARP International Workshop on Humanoid and Human Friendly Robotics, pp. 1–7.

Wieber, P.-B. (2006). “Trajectory Free Linear Model Predictive Control for Stable Walk-
ing in the Presence of Strong Perturbations”. In: IEEE-RAS International Conference on
Humanoid Robots. IEEE, pp. 137–142.

BIBLIOGRAPHY 145

— (2008). “Viability and predictive control for safe locomotion”. In: IEEE/RSJ Interna-
tional Conference on Intelligent Robots and Systems. IEEE, pp. 1103–1108.

Wight, D. L., E. G. Kubica, and D. W. L. Wang (2008). “Introduction of the Foot Place-
ment Estimator: A Dynamic Measure of Balance for Bipedal Robotics”. In: Journal of
Computational and Nonlinear Dynamics 3.1, p. 011009.

Wittmann, R., A.-C. Hildebrandt, A. Ewald, and T. Buschmann (2014). “An Estimation
Model for Footstep Modifications of Biped Robots”. In: IEEE/RSJ International Confer-
ence on Intelligent Robots and Systems. IEEE, pp. 2572–2578.

Wittmann, R., A.-C. Hildebrandt, D. Wahrmann, T. Buschmann, and D. Rixen (2015a).
“State Estimation for Biped Robots Using Multibody Dynamics”. In: IEEE/RSJ Inter-
national Conference on Intelligent Robots and Systems. IEEE, pp. 2166–2172.

Wittmann, R., A.-C. Hildebrandt, D. Wahrmann, F. Sygulla, D. Rixen, and T. Buschmann
(2016). “Model-Based Predictive Bipedal Walking Stabilization”. In: IEEE-RAS Inter-
national Conference on Humanoid Robots.

Wittmann, R., A.-C. Hildebrandt, D. Wahrmann, D. Rixen, and T. Buschmann (2015b).
“Real-Time Nonlinear Model Predictive Footstep Optimization for Biped Robots”. In:
IEEE-RAS International Conference on Humanoid Robots, pp. 711–717.

Wittmann, R. and D. Rixen (2016). “A Prediction Model for State Observation and Model
Predictive Control of Biped Robots”. In: Proc. Appl. Math. Mech. Vol. 16. 1. Wiley-
Blackwell, pp. 65–66.

Xinjilefu, X., S. Feng, and C. G. Atkeson (2014). “Dynamic State Estimation using Quadratic
Programming”. In: IEEE/RSJ International Conference on Intelligent Robots and Systems.
1. IEEE.

Xinjilefu and C. G. Atkeson (2012). “State estimation of a walking humanoid robot”. In:
IEEE/RSJ International Conference on Intelligent Robots and Systems. IEEE, pp. 3693–3699.

Yamaguchi, J. and A. Takanishi (1996). “Multisensor foot mechanism with shock absorb-
ing material for dynamic biped walking adapting to unknown uneven surfaces”. In:
IEEE/SICE/RSJ International Conference on Multisensor Fusion and Integration for Intelli-
gent Systems. IEEE.

	Titlepage
	Table of Contents
	List of Abbreviations
	Introduction
	Problem Statement
	Related Work
	Contributions of this Thesis

	Feasibility and Stability of Bipedal Robots
	Dynamics of Bipedal Locomotion
	Feasibility in Bipedal Locomotion
	Constraints – The Zero Moment Point
	Center of Gravity Trajectory Planning Concepts

	Stability in Bipedal Locomotion
	Stability Criteria
	Feedback Control in Bipedal Walking
	State Dependent Foot Placement

	Chapter Summary

	Control Framework for Robust Walking
	Introduction
	The Bipedal Robot Lola – System Overview
	Mechanical Design
	Sensor and Communication System
	Planning and Control System
	Coordinate Systems and Orientation Errors

	Control System Extensions for Robust Walking
	Model Predictive Trajectory Adaptation
	Integration with Collision Avoidance Methods
	Improved Joint Feedforward Control
	Real–Time System

	Chapter Summary

	Models for Real-Time Control
	Introduction
	Related Work
	Proposed Model
	Two Degrees of Freedom Prediction Model
	Controlled Model
	Reduced Controlled Model
	Model Verification by Model Order Reduction
	Numerical Solution
	Prediction Accuracy – Results

	Model Motion Adaptations
	Swing Foot Modification
	Center of Gravity Modification
	Gradient Computations
	Additional Contact Points - Including Arms

	Three-Dimensional Model
	Chapter Summary

	State Estimation
	Introduction
	Extended Kalman Filter based State Estimator
	Estimator Overview
	Prediction and Measurement Model
	Observability of the Nonlinear System

	Model Error Compensation
	LIPM Based State Estimator
	Comparison and Analysis
	Filter Performance
	Error Analysis

	Chapter Summary

	Model Predictive Trajectory Adaptation
	Introduction
	Related Work
	Problem Description
	Problem A
	Problem B

	Foot Trajectory Modifications
	Foot Position Optimization
	Coupled 2D Foot Position Optimization
	Predictive Inclination Compensation
	Continuous Trajectory Replanning

	Center of Gravity Modification
	Center of Gravity Trajectory Optimization
	Pontryagin's Minimum Principle with Additional Parameters
	Center of Gravity and Footstep Optimization
	System Integration Details

	Constraints from Obstacle Avoidance
	Geometric Constraints
	Finding Safe Regions
	Footstep Modification with Geometric Constraints
	Implementation Details

	Chapter Summary

	Experimental Results
	Walking on the Spot with Disturbances
	Footstep Optimization (Experiment 1a)
	Center of Gravity Optimization (Experiment 1b)

	Forward Walking with Disturbances (Experiment 2)
	Rough Terrain Walking (Experiment 3)
	Disturbances with Obstacles
	Synthetic Case (Experiment 4a)
	Forward Walking with Vision System (Experiment 4b)

	Conclusions
	Summary and Discussion
	Recommendations for Future Work

	Joint Tracking Performance
	Prediction Model Gradient Computation
	Alternative Derivation of Pontryagin's Minimum Principle for Problem B
	Supervised Student Theses
	Bibliography

