Hydronium ions in aqueous phase catalyze the dehydration of cyclohexanol via monomolecular precursors. In confines such as zeolite pores they are more active than in water, which is caused by an enhanced association between the hydronium ion and alcohol, as well as a greater activation entropy. Alcohol dimers, forming in apolar solvents, reduce the rate of reaction by stabilizing the ground state. Alkylation of arene rings with cyclohexanol requires the formation of a cyclohexyl carbenium ion, which is more difficult to generate in water than in apolar organic solvents.
«
Hydronium ions in aqueous phase catalyze the dehydration of cyclohexanol via monomolecular precursors. In confines such as zeolite pores they are more active than in water, which is caused by an enhanced association between the hydronium ion and alcohol, as well as a greater activation entropy. Alcohol dimers, forming in apolar solvents, reduce the rate of reaction by stabilizing the ground state. Alkylation of arene rings with cyclohexanol requires the formation of a cyclohexyl carbenium ion, w...
»